

Evaluating the FIWARE Platform
A Case-Study on Implementing Smart Application with FIWARE

Peter Salhofer
FH JOANNEUM

 peter.salhofer@fh-joanneum.at

Abstract

This paper describes the result of a thorough
analysis and evaluation of the so-called FIWARE
platform from a smart application development point
of view. FIWARE is the result of a series of well-
funded EU projects that is currently intensively
promoted throughout public agencies in Europe and
world-wide. The goal was to figure out how services
provided by FIWARE facilitate the development of
smart applications. It was conducted first by an
analysis of the central components that make up the
service stack, followed by the implementation of a
pilot project that aimed on using as many of these
services as possible.

1. Introduction
FIWARE is an initiative to provide a platform and

a set of standardized APIs to support the creation of
Smart Applications in various fields. It initially started
in 2011 as an EU’s Seventh Framework Programme
(FP7) project with the goal of “introducing an
innovative infrastructure for cost-effective creation
and delivery of services, providing high QoS and
security guarantees”[1], having a budget of close to 70
million Euro. Since then it has got significant
attention resulting in various follow-up
projects[2][3][4]. Besides this, the so called FIWARE
Foundation[5] was recently founded with the goal to
build a sustainable community around the project.
FIWARE is also promoted as a perfect open-source
choice for building smart city applications that should
prevent vendor lock-in situations.

This paper therefore reports on a feasibility study
that was conducted in order to find out how well-
suited the FIWARE platform is to support smart city
applications. It was actually conducted in two steps.
In a first pre-pilot phase the individual components of
the platform were analyzed. Based on the findings of
this study – especially focusing on those points that
were thought to be problematic at that time – a small
pilot project was designed to demonstrate the
platform’s capabilities in a realistic scenario and use-
case.

2. The FIWARE Platform
The core of the FIWARE ecosystem is the so

called FIWARE platform. It is a set of public and
free-to-use API specifications that come along with
open source reference implementations. There also
exists an initiative called FIWARE lab, which offers
the platform in a cloud environment. Whereas the
FIWARE lab is merely for testing, experimenting and
evaluation, the FIWARE iHub initiative is supposed to
provide production-ready cloud services in the future.

The FIWARE platform is grouped in seven major
parts called the “generic enablers (GEs)”[6]. Every
GE represents a certain aspect of FIWARE services
and also provides one or more components along with
reference implementations that support the specified
APIs. Additionally, there are so called “domain
specific enablers (DSEs) that (will) provide
components for certain domains like health, energy
and so on. The general enablers are organized as
follows:

• Data/Context Management: This contains all
components that are needed to store, access,
process and analyze data as part of a smart
application

• Internet of Things (IoT) Services
Enablement: Here are all components needed
to setup sensor networks and routing sensor
data to other GEs.

• Advanced Web-based User Interface:
Components to design user interfaces,
including geographical information and
interactive 3D charts

• Security: Components to add, define and
enforce declarative security

• Advanced middleware and interfaces to
Network and Devices

• Applications/Services and Data Delivery:
Components and tools for data visualization,
easy generation of mashups and app-store-like
distribution of services and data

• Cloud Hosting: Components and tools aiming
at providing and managing FIWARE services
via cloud infrastructure

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50615
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5797

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FIWARE used a great variety of different
programming languages (C++, Java, Python, NodeJS,
...) and environments for developing their reference
implementations. Fortunately, the FIWARE
community provides docker[7] images for every
component, which makes dealing with different
runtime requirements relatively easy.

3. The Pilot Project
As already pointed out previously, the feasibility

study was conducted in two steps. The first one was
about analyzing the functionality of the individual
components provided by FIWARE without any
specific scenario in mind. In order to support a
detailed analysis, it was decided not to use the
FIWARE lab infrastructure, but to run all components
on premise. This also allowed to use the latest version
of every component and also to get some insight into
the setup and the interaction of these components.
One important outcome of this first analysis was, that
apparently due to the individual progress of certain
components the interaction with other components,
which is vital for the operation of the entire FIWARE
platform, was no longer working without problems.
This seemed specifically true for a key aspect of
FIWARE: Security. Thus, the focus of the pilot
project was put on implementing a permission system
using FIWARE’s internal security mechanism, since
security is definitely a key issue in smart city
applications and therefore a knock-out criterion if it
cannot be met.

The context of the pilot project was “smart living”.
It was not important to demonstrate a lot of
functionality, but to point out where an application
can benefit from using FIWARE’s services rather than
creating a proprietary implementation for them. Thus,
the goal was to maximize the use of platform services
on the basis of a proof of concept. The assumption –
actually inspired by a real project – was that there is a
new neighborhood to be created on the grounds of a
former industrial compound. The newly created
apartment and office buildings will be equipped with
a variety of sensors that shall be utilized for smart
applications. Since the main focus was on security, it
was decided to use only one sensor type (temperature)
in the pilot project.

 The scenario was as follows: A smart mobile
application will be given to all tenants living in the
new apartment buildings. In every apartment, there is
(at least) one sensor measuring the temperature and
reporting it to the smart application platform. All
tenants can observe the temperature in their
apartment(s), including changes over the last five
days. They will automatically receive a notification if
something extraordinary (e.g. temperature is too low
or raises extremely fast) seems to happen.
Additionally, there also exists maintenance staff

responsible for one or several buildings. They will
have access to all sensor data in their building,
including those installed in staircases and corridors. If
something happens that indicates an incidence or
malfunction, responsible maintenance personnel shall
also receive notifications. Additionally, the whole
system is administrated by a so-called building
administration that creates users (tenants, janitors, ...)
and registers them with apartments and buildings. It is
important that all users have only access to data
within their area of interest. Besides this, also sensors
are seen as critical infrastructure and therefore must
not expose vulnerabilities to the system.

4. The Data Layer
The application needs a mechanism to store its

data (buildings, apartments, tenants, …) and usually
this data layer is provided by a database. In case of
FIWARE there is a service called context broker. The
context broker is essentially a REST API based on the
Open Mobile Alliance’s Next Generation Service
Interface (NGSI)[7]. It comes with a reference
implementation called Orion1, which technically
consists of a MongoDB database with an NGSI REST
API on top of it. It allows for the creation of all
necessary entities and does not require any database
schema. All entities are stored in a normalized way in
one MongoDB collection. Every entity has at least
two fields to identify it. One is called ‘type’ (e.g.
“Apartment”) and the other one is called ‘id’ (e.g.
“Top12”).

The context broker allows for multiple tenants. By
using a header-field called “Fiware-Service”, that can
be unique within one application or domain, data can
be nicely separated. Technically the “Fiware-Service”
header identifies a MongoDB database used behind
the scenes. Thus, if applications use different values
for the “Fiware-Service” header field, their requests
can never interfere.

The context broker supports all required CRUD
operations. By default, however, all requests are based
on the so called “normalized” notation, which means
that every query returns its result along with metadata
like field type. But there exists an option called
‘keyValues’, which switches to plain JSON and
therefore makes the NGSI protocol transparent to the
client application. This greatly facilitates the creation
of applications, since they do not have to tread context
broker requests any different than other REST APIs.

On the other side, there is also a minor, yet
important design flaw in one specific aspect. Similar
to the header field “Fiware-Service” that can be used
to separate the data storage for different applications
or domains, there is an additional header-field called

1 https://github.com/telefonicaid/fiware-orion

Page 5798

“Servicepath” that is intended to further structure or
classify data within an application or domain[9]. The
problem with using this field is that it cannot be read
via the API. Thus, if this field was set, there is no way
to later figure out its value. This is critical, since
besides id and type also the servicepath is part of the
“primary key” that uniquely identifies an entity. Thus,
there can be two entities with the same type and id but
different servicepath, which leads to an error when
making a query by id. Since, however, it is impossible
to figure out what the servicepath of an existing entity
is, this can lead to serious issues. So, although the idea
behind the servicepath is nice, it should not be used
until the API is extended to also include this field in
the response.

One of the most powerful features of the context
broker, however, is the capability to subscribe to
events. This allows to nicely react to changes in the
data store. Subscriptions can be of different scope,
like “inform me whenever a new entity is created” or
“inform me, whenever the temperature in room 212
exceeds 25 degrees Celsius”. This greatly facilitates
the implementation of smart applications.

In our pilot project, we ended up with the
following entity types:

• Person: Representing the properties of persons
involved in the use-cases, including tenants
(living in an apartment), maintenance staff
(responsible for one or more buildings), and
building administration staff (administering a
group of buildings)

• Building Administration: A company that
owns and/or administrates a set of buildings.

• Building

• Apartment: Part of a building rented by one or
more tenants.

5. Attaching Sensors
An important part of smart applications is the

ability to automatically react to changes in the
environment. Therefore, sensor networks play a
crucial role. This could be surveillance cameras that
are used to detect free parking slots and route users to
this place, or simple sensors that deliver a single
numeric value like the current temperature. Within the
pilot project it was important to demonstrate how
sensors can be integrated into the platform and how
their values are made available to the application on
top of it. In our context, we had temperature sensors
that were installed in buildings and in apartments. For
the sake of simplicity, we decided to have only one
sensor per apartment and building, since the focus was
less on a realistic scenario but on the interaction of the
various FIWARE components. It turned out that

FIWARE provides a very nice way to integrate
sensors into the application via its Internet of Things
(IoT) General Enabler (GE). The reference
implementation of this GE is called IDAS[10]. It
provides a REST endpoint with the API required for
registering sensors and dealing with their data. Before
a sensor can be added to the system, in a first step a
so-called service needs to be created, which serves as
the logical endpoint for a group of sensors. The
general idea is that sensors provide values for
properties of entities stored in the context broker (e.g.
the temperature of a specific room or apartment). So,
when registering a new sensor device, a reference to
this entity needs to be set up. This reference has to
include the entity_name (which is the id property
within the context broker), the entity_type (e.g.
‘building’, ‘apartment’, …) and the name and type of
the entity’s property that will eventually hold the
sensor’s value. The registration also has to include a
device_id that is used to uniquely identify the sensor.

Thus, whenever a sensor reports a new value to
the IoT component via REST (using its device_id and
the id of the IoT service), the value is extracted from
the request and the corresponding entity within the
context broker gets updated by the IoT component.
So, in our example every apartment and building had
a property called temperature that was always holding
the latest value reported by the connected sensor.

Here the problem with the servicepath property
described in the previous chapter became evident. The
IoT component can only identify a specific entity
using a pair consisting of entity_name and entity_type.
The context broker, however, internally uses a triple
consisting of these two fields and the servicepath. So,
if the servicepath of an entity is set to some non-
default value, it can no longer be referenced by IDAS.
In such a case, instead of updating the existing entity,
a new entity with the given entity_name, entity_type
and the default servicepath is created that only holds
the property defined by the sensor (temperature in this
case).

Another important fact is that with every new
sensor value, the previous value gets overwritten.
Thus, there is no time-series of values stored in the
context broker.

6. Historic Data and Time Series
When only using the IoT and Context Broker

components, no time series data will be available,
since new sensor data replaces the existing one. If,
however, the historic data shall be preserved, an
additional component called Cygnus[11] is required.
This component is essentially an extension of Apache
Flume[12].

Page 5799

Figure 1: Data flow upon arrival of new

sensor value

The idea is to create a subscription with the
context broker in order to get informed once a
particular property of the entities of a specific type
(e.g. the temperature property of entities of type
apartment) changes. Whenever such an event occurs,
the data related to this event gets stored in a data sink.
Possible data sinks are MongoDB, HDFS,
PostgreSQL and many more. This data and event flow
is shown in Figure 1. When the sensor sends a new
value to the IoT component, this will result in an
update request sent to the context broker, which in
turn causes the context broker to inform all interested
subscribers. Cygnus receives the event sent from the
context broker and stores it in the registered data
sink(s).

This architecture allows for a clear separation of
live data stored in the context broker and the historical
data stored in any database of choice. Having split the
task over several loosely and asynchronously
connected components allows for high performance
and throughput. Probably most important, this can all
be achieved without a single line of programming so
far.

Since everything in FIWARE is about REST-
based APIs, there is also a component that allows for
RESTful access to the historic data sink. The name of
this component is Short Term Historic (STH) and the
reference implementation is called Comet[13]. It
provides an API for reading historic data produced by
the component chain described above, but only
supports MongoDB data sinks so far.

7. Complex Event Processing
To make our pilot project “smart”, the goal was to

automatically recognize suspicious patterns in sensor
values that might indicate incidents or malfunction.
As was already mentioned in section 4, simple cases
(e.g. temperature lies outside a specified range) can be
solved solely relying on the context broker’s
subscription model. But what about a sensor that is
defective and does not send a signal at all? Or a sensor

that does report a rapid temperature increase by more
than 10°C within 10 minutes?

To recognize things like this, the FIWARE
platform provides the so-called Complex Event
Processing (CEP) General Enabler with a reference
implementation called Proactive Technology Online
(Proton)[14].

During the evaluation, it became quickly clear that
this implementation is far from being production
ready when it comes to usability and error handling.
While generally the documentation of the FIWARE
components seems not always to reflect the latest
version of the actual software, the documentation on
Proton is specifically poor and it took lots of trial and
error and research on stackoverflow to get it running
at all. For example, Proton supports different types of
events. They are called ContextUpdate (which means
incoming data from sensors, typically via context
broker subscriptions), Alert and Warning (which both
stand for outgoing events). However, when creating a
new event there is no way to define its type other than
using a naming “convention”. This is not actually a
“convention” since failing to name events with
exactly these suffixes results in an error. The error
message, however, does not tell the user about this
“convention” but is a plain Java NullPointerException
stack trace with no clue about the reason of the
problem at all. Consequently, Proton must be
considered an “expert system” that apparently can
only be used by people who have been closely
involved in its development process.

Anyway, with this tool, it is possible to create
time-framed rules via so called TemporalContexts.
This way it was possible to react to a certain number
of sensor events within a given period of time.
Unfortunately, we failed to distinguish between
individual devices, thus, all events coming from any
sensor were considered here. The documentation
describes a so-called SegmentationContext that is
designed to keep different event sources separated.
But since the time budget reserved for the evaluation
of this component was already exhausted, we had to
give up on that. Even tutorials on the web2 mention
that there are still severe bugs in the software. In
response to issue reports on Github, we learned that
development of this component was already stopped.
Thus, this part of the platform needs to be considered
incomplete and it is more likely the better option to
integrate some alternative tool instead (e.g. Apache
Flink’s CEP[15]).

8. Security
As we already pointed out in section 3, security

was a key requirement for the pilot project. In fact,

2 https://appshelfer.de/09/

Page 5800

none of the components that have been discussed so
far provides any security mechanism at all. This
means, that as soon as the context broker is up and
running there are no restrictions on using the REST
API. As a consequence, every user can read, write and
also delete any data stored there. The same is true for
all other components. So how can these resources be
protected then? Definitely the first thing that needs to
happen is that none of the REST endpoints must be
accessible from any untrusted network. For the rest,
the FIWARE platform provides three components that
need to interact together in order to provide controlled
and safe interaction with the other services and
applications. These components are:

• Identity Manager (IdM): This is a service to
create users, roles and permission.

• Policy Decision Point (PDP): This service
provides authorization by deciding whether the
current user is allowed to perform a certain
action

• Policy Enforcement Point (PEP): This is a
proxy server that performs the actual
authentication and optional authorization
checks in interaction with the other two
components

8.1. The Identity Manager (IdM)

The IdM is the central component of the FIWARE
security architecture. Its reference implementation is
called Keyrock[16] and it is based on OpenStack
Keystone[17], which in turn is an open source
implementation of the OpenStack Identity API[18].
Keyrock is – besides the CEP rule editor – the only
FIWARE component that comes with a web-based
user interface. This web interface is internally called
Horizon whereas Keyrock more specifically refers to
the REST interface.

Keyrock is essentially an OAuth2[18]
authorization server and therefore supports
authentication for the entire platform as well as client
applications on top of the FIWARE infrastructure. It
is holding all user information and is a single sign-on
service for all components and applications. Thus,
applications do not necessarily need to maintain user
information (especially no private credentials) and
one account can be used for all applications using the
platform.

With the IdM’s web interface, it is possible to
create/register:

• Users (“resource owners” according to
OAuth2) with their credentials

• Applications using FIWARE services
(“clients”) along with an automatically

generated pair of credentials needed to interact
with the authorization server (e.g. to retrieve
the access token)

• Roles within an application (logical names of
different user groups)

• Permissions (detailed access rules) assigned to
roles

• Assignments of roles to users in the context of
an application

8.2. Policy Enforcement Point (PEP)

The reference implementation of this component
is called Wilma[20] and it is playing the role of the
so-called resource server according to OAuth2. The
resource server is hosting information that is sensitive
and therefore can only be accessed by authorized
requests. In fact, sensitive information is stored in the
context broker, the IoT service and of course also in
our client application and several other services.
Wilma is therefore implemented as a simple proxy
server (also called PEP proxy) that is adding security
by transparently acting on behalf of the actual service
that needs to be protected. Thus, instead of allowing
direct access to a sensitive service, clients interact
with the proxy (see Figure 2). It is also possible to
configure so-called public URLs for which the proxy
won’t perform any security checks. Otherwise the
proxy checks authentication with the other security
components (in this case the IdM) and forwards the
request to the actual resource server (called “Back-end
Apps” in the graphic) if security constraints are met.
Therefore, the PEP proxy needs to know about the
addresses and ports of the service it is protecting and
of the other security components. Additionally, when
registering a new application with the IdM, also a pair
of credentials for the PEP proxy is generated that is
needed by the proxy to authenticate with the IdM.

Figure 2: Authentication (Level 1

Security)[20]

Page 5801

So, if the request is properly authenticated, the
protected application has access to the user id and the
roles of the current user, which are provided as a list
of role names. It is important to realize that in this
scenario (called Level 1 security in FIWARE) only
authentication is checked, but it is not tested, whether
the user is allowed to perform the current action. To
deploy authorization, there exist two possible options.

• Application layer security

• Platform layer security (Level 2 or Level 3
Security)

In the first case, authorization decisions are made
as part of the application logic. Since the application
has access to the current user’s id and roles and it also
knows about the semantics of these roles in can decide
whether it allows for this action to be performed or
not. Alternatively, also the FIWARE platform
supports authentication based on so called
permissions (see next section), which takes security
related decisions out of the application logic and
performs them on the platform layer.

FIWARE provides a sample application3 that is
designed as a tutorial for using FIWARE’s GEs. This
tutorial is using application layer security and
therefore cannot be used as a reference to the Level
2/3 security approach. Since the goal of our pilot was
the demonstrate the platform services (with a clear
focus on security), we decided to go for platform
authorization.

8.3. Policy Decision Point (PDP)

Figure 3: Platform level authorization

(Level 2)[20]

When making use of platform level authorization
(called Level 2 and Level 3) an additional component
called the Policy Decision Point (PDP) is needed.
FIWARE provides a reference implementation called
AuthZForce[21]. The authorization flow is shown in
Figure 3.

3 https://github.com/Fiware/tutorials.TourGuide-App

In this scenario, the PEP – after having checked
the validity of the access-token with the IdM – makes
a consecutive request to the PDP providing the current
user’s roles and the request details (URL plus the
HTTP request method used). The PDP checks this
information with its security policies and decides
whether access should be granted or not.

Access rules – called permissions in FIWARE –
are written in the eXtensible Access Control Markup
Language (XACML)[22]. Up to Level 2 security,
developers do not have to deal with the details of
XACML. When defining a permission, which always
is part of a specific role, the IdM’s user interface
simply accepts a URL and a http verb (e.g. GET,
POST, PUT, …) that should be granted to all users
belonging to the corresponding role. The necessary
XACML is created automatically behind the scenes.
Level 3, however, allows users to write custom rules
using XML. Although rules are edited using the IdM
web interface, they are required to be stored in the
PDP. Thus, every time a user-profile or a role gets
updated, the corresponding XACML policies are re-
generated and automatically transmitted to the PDP
via REST. This, however, requires access rules to be
stored redundantly within the IdM and the PDP,
which turned out to be rather problematic during the
evaluation. Besides this, every change to a role or user
results in a new XACML security policy that is then
made the active one, while the older versions are still
kept. However, the number of policies per rule within
AuthZForce is restricted to ten. So, after 10 changes
there will be an error, that can only be solved by
deleting older policy versions via REST requests.

8.4. Security and the pilot project

As already pointed out, it was decided to use (at
least) level 2 security in order to evaluate platform
level authorization. One of the potential benefits was
to entirely exclude security from the application and
to use a declarative rather than programmatic concept.

One of the first problems was to make the three
components (IdM, PEP and PDP) work together. It
turned out that the documentation on how to configure
this interaction is rather scarce. Besides this there had
been some conflicts between the then available docker
images that got solved by the FIWARE components’
development teams after a couple of issue reports via
GitHub.

Besides these problems, it soon became clear that
a clean separation of security concerns between the
application and the platform was not possible. Inside
the application all persons (tenants, janitors, ...) and
therefore potential users are stored as entities in the
context broker. One use-case was to list the current
temperature of all units the current user has access to.

Page 5802

This requires establishing a mapping between the
concept of a user as it is kept within the application
and the user as defined within the IdM. While this was
simply solved by using the same user name on either
side, some other problems resulted in a significant
programming effort. For example, whenever a tenant
was assigned to an apartment, this required to set up
the appropriate access rights allowing this user to read
the respective data of the apartment, including of
course the current temperature. To keep this in sync
manually by requiring the administrator to maintain
data about the user using our pilot project’s interface
while simultaneously setting up the proper
permissions using the IdM interface is completely
infeasible. Thus, the decision was made to make all
changes to the security configuration from within the
application. So, every time a new user (tenant or
maintenance staff) is created in the application a
corresponding user is created in the IdM using the
REST API. Also, when a user is made a tenant of an
apartment (or a janitor of a building) the proper roles
along with their permissions are also automatically
created using REST. Here the aforementioned
redundancy and a lack of functionality in the IdM’s
API became problematic. It is relatively straight
forward to define permissions in the IdM’s web
interface. When saving these changes, permissions are
internally translated into XACML and sent to the PDP
via its API. It is also possible to create the same roles
and permissions via the IdM’s REST interface instead
of using the web user interface, but there is no way to
cause the IdM to transfer these programmatically
made changes to the PDP. Consequently, it was
necessary to directly send REST requests containing
the correct XACML to the PDP. This would have
allowed to write more complex rules than supported
by the level 2 security mechanism. Unfortunately, it
turned out that whenever the IdM’s web interface was
used to make any change to the security configuration
it caused the IdM to generate a new XACML policy
based on its local configuration and to send this to the
PDP. This will cause the programmatically – and
potentially more sophisticated – configuration made
by our pilot application to be overwritten by the IdM.
Therefore, the pilot application was limited to the
same rules that are generated by the IdM and it was
decided to create these rules redundantly within the
IdM and the PDP. This way, even when the IdM
overwrites a policy, the result is essentially the same.

Thus, in the end it turned out that a good part of
the logic that is already part of the IdM (e.g. creating
XACML policies out of permissions and sending
them to the PDP) had to be re-implemented as part of
our application. On the other hand, some
shortcomings of the IdM had to be solved as well, like
deleting older policies once they are no longer used.
So, it is really questionable whether using application

layer security in the first place would not have been
the better option.

While – although with significant effort – the
application could be secured properly against
unauthorized access from the client side, also sensors
are forming a massive security risk, since potential
attackers can get easily access to their hardware. Thus,
while protecting the communication channel (e.g.
with TLS[23] and/or VPL[24]) is important, it is
especially critical to enforce authentication and
authorization here as well. The IdM allows to create
credentials for sensors as well, which is very similar
to registering a PEP. These credentials need to be
used by the sensor, once access to the IoT service is
protected using a PEP proxy. Unfortunately, it turned
out that the credentials produced be the IdM’s web
interface – due to some restrictions in the underlying
user type that gets created within KeyRock - can only
be used for level 1 security only. This means that
there is no authorization possible and that every
authenticated sensor can technically send values on
behalf of any other known sensor. This would allow
attackers to use this sensor account to get potentially
unlimited access to the sensor network. The solution
to this unacceptable security hole was to use standard
user accounts instead of the special sensor accounts.
Once again, these accounts are automatically
generated by the pilot application whenever the
administrator adds a sensor to an apartment or
building. This will also create a permission rule that
allows this sensor to only send data of a specific type
to a specific service endpoint eliminating the chance
to spoof some other sensor’s identity.

9. The big picture
In Figure 4 the architecture of the entire pilot

application and its interaction with the FIWARE
components used is shown.

Every labeled box represents a docker container
and can therefore be seen as a virtual machine. The
big box indicates the trusted environment without any
security restrictions. The box labeled “FSH Server”
represents the server-side logic of our pilot
application. On the top, we see the mobile client
application that is given to all tenants and
maintenance staff. The admin application is used by
the building administration to manage buildings, staff
and tenants. At the lower end the sensor network is
indicated. All external clients need to use a PEP proxy
for accessing services.

Page 5803

Figure 4: The overall system architecture

This makes sure that all requests are authenticated
and authorized. So, once a request has passed a PEP
proxy the application can trust it. Beside the PEP
proxies also the port of the Keyrock service is
publicly available. This is necessary to enable OAuth2
authentication. The server-side application logic
interacts with various FIWARE services. Keyrock and
AuthZforce are used to create accounts, roles and
permissions. IDAS is used to register sensor devices
and to route sensor data to the correct building or
apartment. Orion (the context broker) is used to hold
the application’s domain. Proton is used to register
subscriptions with the context broker and to emit
alerts once some unusual pattern in sensor data is
detected, while Comet is used to read the temperature
history of a sensor (see screenshot in Figure 5).

One constraint that was initially perceived to be
rather limiting is the fact that every application can
contain only one PEP proxy and that every PEP proxy
can only protect one service endpoint. For this
scenario, however, three PEP proxies have been
necessary, leading to three logical applications. This
turned out to be very intuitive and helpful in the end.
Although the pilot was considered to be one
application and the server-side logic is just one
application – thanks to this PEP proxy constraint – we
ended up with the following three ‘logical’
applications registered with the IdM:

• The Client Application

• The Administrative Application

• The Sensor Application

Figure 5: Screenshot of the mobile client

application

The practical implications are that all roles,
permissions and their assignments to users are
separated from one another. Thus, we have an
individual set of users, rules and permissions for every
of these logical applications, which leads to a clear
structure that is considered to be very helpful.

10. Conclusions
The overall goal of this case study was to get an

unbiased analysis of the capabilities of the FIWARE
platform from a software engineering point of view. It
was important to find out how and to which extend
smart applications can benefit from making use of the
various services provided by the platform. In the end,
it could be demonstrated that there is actually some
point in building on top of FIWARE, since there is a
huge set of functionalities that supports smart
application development. However, it also needs to be
said, that the way getting there was really tedious.
This had partly to do with the fact that FIWARE is a
really large and complex platform with a huge set of
components and services, which definitely takes some
time to learn and understand, but had also to do with
the lack of up-to-date documentation and some severe
bugs as well as several design flaws that still exist in
some of the components. This was especially
surprising since already the initial effort to come up
with such a platform was funded with close to 70
million Euros.

As it could be demonstrated with the pilot project,
smart applications can significantly benefit from using
the FIWARE platform. As long as the servicepath

Page 5804

property is not used (see section 4), the context broker
provides a stable and reliable persistence layer.
Especially its subscription mechanism greatly helps to
meet typical smart application requirements without
the need of programming. The same is true for
FIWARE’s IoT component and the idea of keeping
live data separated from historic data. However, it
needs to be stated that no performance and load tests
have been conducted. Concerning the pilot’s security
implementation, retrospectively it might have been
less effort to use application layer security, allowing
the application to make authorization decisions
programmatically. Consequently, this is a design
decision that needs to be made carefully, considering
all sorts of implications like the level of trust between
client-applications and platform components. But also
some really severe issues have been identified during
evaluation. Probably the biggest problem is the
extremely poor quality of the CEP component Proton,
which needs to be considered a key component for
“smart” applications. As described in section 7 this
component is extremely hard to use and contains
several serious bugs. Even worse, this project was
apparently stopped and is no longer under
development. Thus, if complex event processing is
needed – which is very likely in a smart application –
alternative solutions need to be found. If the currently
shaping FIWARE foundation really wants to push the
platform, some significant action is required here. A
second huge problem is the web interface of the IdM.
Some of the issues here have already been discussed
in section 8. But additionally, the interface falls short
on some very basic functionalities. For example, it is
currently not possible to modify, delete or even view
existing permissions, which does not make the
application fit for real-life use. On the other side, it
could be demonstrated that there is always a
workaround possible. So, if several organizations
decide to use the FIWARE stack and commit their
solutions and bug-fixes back to the public repository a
lively and self-sustaining open source community
could emerge that would make the whole platform
even more attractive. Definitely the biggest advantage
of the FIWARE idea is to use open standards that are
designed to avoid vendor lock-in situations.

11. References
[1] Publications Office of the European Union, 2011, FI-WARE:

Future Internet Core Platform, EU, Brussels, Belgium
[2] Publications Office of the European Union, 2016, FI-

GLOBAL: Building and supporting a global open community
of FIWARE innovators and users, EU, Brussels, Belgium

[3] Publications Office of the European Union, 2017, A
FIWARE-based SDK for developing Smart Applications, EU,
Brussels, Belgium

[4] Publications Office of the European Union, 2017, Bringing
FIWARE to the NEXT step, EU, Brussels, Belgium.

[5] FIWARE, 2017, https://www.fiware.org/foundation/
[6] FIWARE 2017, The FIWARE Catalogue,

https://catalogue.fiware.org/.
[7] John Fink, 2014, Docker: a Software as a Service, Operating

System-Level Virtualization Framework, code{4}lib Journal,
Issue 25, 21.04.2014

[8] Open Mobile Alliance, 2012, NGSI Context Management,
http://www.openmobilealliance.org/release/NGSI/V1_0-
20120529-A/OMA-TS-NGSI_Context_Management-V1_0-
20120529-A.pdf.

[9] FIWARE Orion Team, 2017, FIWARE-ORION
Documantation – Entity service paths, http://fiware-
orion.readthedocs.io/en/master/user/service_path/index.html

[10] Carlos Ralli Ucendo, 2016, Backend Device Management –
IDAS, https://catalogue.fiware.org/enablers/backend-device-
management-idas

[11] FIWARE Cygnus Team, 2017, Cygnus, http://fiware-
cygnus.readthedocs.io/en/1.2.2/index.html

[12] Apache Flume Team, 2017, Apache Flume User Guide,
https://flume.apache.org/FlumeUserGuide.html

[13] FIWARE Comet Team, 2016, FIWARE Short Time Historic
(STH) - Comet documentation ,https://fiware-sth-
comet.readthedocs.io/en/latest/

[14] Uri Shani, 2016, Proton Documentation
https://github.com/ishkin/Proton/blob/master/documentation/
Readme.md

[15] Till Rohrmann, 2016, Introducing Complex Event Processing
(CEP) with Apache Flink
https://flink.apache.org/news/2016/04/06/cep-
monitoring.html

[16] Joaquín Salvachúa and Álvaro Alonso, 2016, Identity
Management – KeyRock,
https://catalogue.fiware.org/enablers/identity-management-
keyrock

[17] The OpenStack Foundation, 2017, Keystone, the OpenStack
Identity Service,
https://docs.openstack.org/developer/keystone/

[18] The OpenStack Foundation, 2017, Identity API v3
https://developer.openstack.org/api-ref/identity/v3/

[19] D. Hardt (Ed.), 2012, The OAuth 2.0 Authorization
Framework, https://tools.ietf.org/html/rfc6749

[20] Álvaro Alonso, 2016, PEP Proxy – Wilma, http://fiware-pep-
proxy.readthedocs.io/en/latest/

[21] Cyril Dangerville, 2017, Authorization PDP - AuthZforce,
https://catalogue.fiware.org/enablers/authorization-pdp-
authzforce

[22] Erik Rissanen (Ed.), 2013, eXtensible Access Control
Markup Language (XACML) Version 3.0, http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

[23] T. Dierks, 2008, The Transport Layer Security (TLS)
Protocol, Version 1.2, Internet Engineering Task Force –
Network Working Group, RFC 5246,
https://tools.ietf.org/html/rfc5246

[24] E. Rosen, Y. Rekhter, 1999, BGP/MPLS VPNs, Internet
Engineering Task Force – Network Working Group,
http://www.ietf.org/rfc/rfc2547.txt

Page 5805

