
Capability-based communication for green buildings and homes
- a REST-like API within the conex.io project -

Olaf Droegehorn, Philipp Trenz, Benjamin Brausse, Timo Schwan, Christin Voscort, Marcel Wemmer

Harz University of Applied Sciences, 38855 Wernigerode, Germany
[odroegehorn, u30054, u30583, u30357, u30001, u29737]@hs-harz.de

Abstract

Within the Kyoto protocol and the Paris agreement

the world’s countries have agreed to limit global
warming to a maximum of 2°C. The European Union
has passed directives to mitigate emissions from
buildings, as around 36% of the EU’s total CO2
emissions stem from them. To implement these
directives, the use of home automation systems can be a
significant contribution installed in existing, even
renovated households. Looking to the global home
automation market it becomes clear that none of the
available vendors/solutions can cover a sufficient end-
user scenario alone. And even with a multitude of
technologies the integration of different systems is a
tedious work as most of the systems are technically
incompatible to each other. Tackling this challenge with
open source software promises an easier integration but
usually comes along with issues of heterogenic
command syntaxes and parameter sets. This paper
outlines a REST-like API and an abstraction
mechanism, enabling user-interfaces and front-ends to
communicate with smart home systems based on
capabilities instead of protocols and technologies. The
API decouples front-ends from specific smart home
technologies and allows for a seamless integration of
new protocols without touching the code of a front-end
again.

1. Introduction

The primary purpose of building automation
systems (BAS) is to optimize cost and energy efficiency
in operating building spaces through the automatic and
remote control of indoor environmental conditions. This
can be done by regulating the heating, air-condition,
ventilation and lighting systems of buildings through the
deployment of interconnected sensors and actuating
devices. A home automation system (HAS) is a
specialization of BAS where, besides optimizing energy

consumption, the comfort and peace of mind of the
home inhabitants are of similar priority.

In recent years, reducing energy consumption in
buildings has gained increased interest amongst
researchers, due to the growing global awareness about
the need to achieve long-term environmental
sustainability. Beyond this, the numerous national
legislations being approved to reduce CO2 emissions
demand immediate actions on this topic. According to
the European Commission, buildings account for 40%
of energy consumption and 36% of CO2 emissions in the
EU. The European Commission estimates that by using
proven and commercially available automation products
in buildings, it is possible to reduce the total EU energy
consumption by 5-6% and the CO2 emissions by about
5% [1].

However, despite the wide availability of home
automation technologies, a significant number of
repeated commercial failures has been noted and the
reluctance of customers to invest into these technologies
still remains relatively high. Many reasons have been
proposed to explain this phenomenon and these include:
lack of flexibility and scalability to adapt to new
technologies, the diverse availability of products, not
being compatible with one another, and last but not
least, the low usability of HAS technologies.

This paper describes the design and implementation
of a REST-like API together with an abstraction
mechanism allowing finally HAS infrastructures to
adapt in a faster manner to new technologies and to
provide better user experiences.

A. Background

Modern home automation system (HAS)
architectures are usually distributed across a three-level
hierarchy namely: a field level, an automation level and
a management level. Figure 1 shows the main functions
that are associated with each level.

Currently there is no single standard technology that
covers all three levels of the architecture and as a result
heterogeneous technologies and design solutions have
proliferated with no standard principles for
interoperability. This greatly affects the development of

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50612
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5767

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a management-level application, such as a visualization-
and control user interface, as each technology comes
with its own data representation that is tightly coupled
to its internal requirements. Since it is difficult to
integrate all these sources of data into a single
information model it becomes complicated for
engineers to build a good and universal user interface
for the HAS.

With the increased availability of different
automation technologies and Software-as-a-Service
business models, home automation has evolved from
being an industrial application retrofitted for domestic
environments to a highly consumer-focused Internet of
Things application.

As home automation is now targeting a wider range
of customers, especially non-technology enthusiasts, it
is important to include the user needs, wishes and
expectations into the design considerations of this
technology. Since it is commonly accepted that a home
environment holds an emotional attachment for its
inhabitants HAS application developers should mainly
concentrate on design aspects and user experience
instead of addressing technology in many different
ways.

B. Statement of the Problem

To encourage house owners or residents to install and
operate home automation systems the applied solution
should cover at least conceptually all the requirements of
the users. But looking into existing vendor-driven
solutions like Philips Hue®, Insteon, eQ3 HomeMatic®,
Buderus, etc. it gets obvious that each of those vendors
is covering only a subset of how a real smart home
should look like. This observation typically leads to a
multitude of installed systems, being isolated to each
other, as only very few vendors are providing bridges to
standardized protocols.

Some of them try to integrate with interaction
systems from service providers, typically residing in the
management level (see figure 1), like HomeKit from
Apple® or Alexa from Amazon®. But this integration is
usually produced by a very specific gateway, connected
to the internet and offering only the vendor specific
elements to the denoted services. This again leads to

isolated systems with many gateways, open ports in the
Firewall, and at best a partial integration in one of the
internet-based services. But no common control element,
no central in-house management and especially no
integration of services that offer only their own control
software, like central heating systems, garden watering
elements, etc. (see Buderus, Gardena), can be achieved
in this way. This doesn’t help the end-users for an overall
systematic approach and leads to a high level of
uncertainty, if a HAS can achieve something for - and
can be handled by individuals.

In order to integrate and to take up technologies,
either being already available or showing up on the
market, open source approaches seem to be the most
promising solutions for end-users not willing to limit
themselves to a specific vendor. Especially as these
solutions are built by many motivated developers and
therefore benefit from a quite fast integration of new
products into their systems. This is quite important
because the market has seen many new vendors during
the past 12-18 months, delivering very specific solutions
for controlling different devices and measuring specific
values, but being mainly incompatible to each other.

Open source approaches are usually including new,
specific modules into their infrastructures in order to
integrate and communicate with new technologies, based
on very specific commands related to the hardware or
interpretation of measured values. As an example the
FHEM project [13], being the largest German open
source project on home automation, uses a dedicated
software module for each vendor technology. These
modules, written by members of the open source
community, implement the specific protocols to
communicate with their related devices like lamps,
sensors, heat radiators, etc. Although there are guidelines
on how to integrate a module in the HAS infrastructure,
typically no guidance is given on how to interpret values
or how to name interaction mechanisms in a common
way, as the functions of these modules might be
completely different. Ultimately no common semantic or
ontology is used as a ground work within these projects,
as all the vendors and the motivated developers are using
their own terms and definitions. This holds for many
open source projects like FHEM, openHAB, Home
Assistant, OpenMotics, Domoticz, etc. [20].

In the case of the FHEM project this leads to a syntax
for addressing a dimmer of the FS20 technology like
“set dimmer 43%” whereas the same command for a
HomeMatic device looks like “set dimmer PCT 43%”.
This is only a very simple example but already shows
the different syntax, based on the different interpretation
and command structure of the integrated technologies.

The same applies to large vendor solutions based on
third party technologies like the “SmartHome” from
Deutsche Telekom [19], which tries to integrate
HomeMatic and EnOcean technology. Here also the

Mana
geme

nt

Auto-
mation

Field

Data are collected from
sensors and commands sent to
actuators.

Sensor data are processed and
action is taken according to
automation rules.

Applications aggregate entire
system’s data for user
visualization and control.

Figure 1: typical architecture of a HAS [3]

Page 5768

only point of integration is the front-end addressing
different devices with a completely different syntax.

Observing this it becomes clear that, although open
source projects as well as vendor solutions based on
third party technology are trying to bring different
technologies together, the lack of at least common
syntaxes and data interpretation requires a change in the
code of front-ends and service bridges whenever a new
technology is integrated. This leads to bad user
experiences due to complicated or outdated user
interfaces and a slower uptake of home automation
systems overall.

C. Aim and organization of the paper

Within this paper the conex.io project is outlined, in
which a REST-like API has been developed, residing on
an abstraction layer in order to eliminate any technology
specific syntax and introducing a capability oriented
interaction mechanism. This enables user-interfaces and
front-ends to communicate with smart home systems
based on capabilities instead of protocols and
technologies from different vendors and allows easy
integration of new vendors without modifying front-
ends and user interfaces. Therefore, the REST-like API
in this paper can be seen to reside between the
automation- and the management level depicted in
figure 1.

Within this paper section two presents a literature
review whereas section three explains the architecture
of the intended system. Chapter four introduces the
REST-like API, which allows for capability based
interaction and its unique filter architecture. Section five
describes the mapping layer and its abstraction
mechanism from technology-specific aspects and the
needs to make this abstraction possible. Section six
discusses the advantages of the used toolchain and the
benefits of this API whereas section seven concludes the
paper.

2. Literature Review and related Work

The report given in [4] provides a summary of the
energy usage for residential and non-residential
buildings in EU states and a comprehensive analysis of
how the effects of the economic, energy prices and
occupant's behaviors affect energy usage. The analysis
is based on the energy usage data and energy efficiency
indicators provided by the ODYSSEE database and
website. The energy usage in buildings may vary per
country, however this consumption represents in
average a total of 41% of the energy usage in the
European Union (EU) and from this lot, residential
buildings accounts for 65.9% of the total energy usage
of EU buildings and 27% of the energy consumption in

the EU. For Finland, Spain, Portugal and Cyprus
building energy usage represents 33.33% of their total
energy usage while for Germany, Denmark, France and
Poland building energy usage represent 45% of the
overall energy consumption. Also, while the distribution
of building energy consumption between residential and
non-residential buildings may vary per country, the
share for residential building from the total building
consumption for Germany and Finland ranges between
60-70% and the annual consumption per (kWh/m2) for
these two countries are 210 and 325 respectively. This
disparity is associated to climatic differences between
the two countries and therefore in Germany not so much
energy is used overall but the percentage of space
heating is larger due to the lack of other needs as water
heating or lighting. A breakdown of the energy
consumption per household for both Finland and
Germany in table I reveals that space heating represents
the largest share of the total household energy usage.

Distribution Germany (%) Finland (%)
Space Heating 75 66,7
Water Heating 12 14
Electric Appliances
and Lighting

12 19

Cooking 1 0,3
TABLE I: Building energy consumption per usage category

A comparison of the energy usage for space heating
from the year 1990 to 2009 reveals a reduction trend for
the EU average usage with a ratio of 30-60%. This
reduction was attributed to the implementation of
thermal regulations from EU countries for new
buildings. However, the data provided by [5] for heat
consumption per square meter (m2) at normal climate
conditions reveals that between the year 2000 and 2012,
Germany recorded a 17.38% decrease in energy usage
with figures 17.472koe/m2 and 12.436koe/m2 -
respectively while Finland recorded a 2.18% increase
with figures 15.583koe/m2 and 15.923koe/m2 -
respectively. This implies a 21% energy usage
difference for space heating for Finland and Germany
for the year 2012.

Comparing the energy usage for electric appliances
per dwelling for the year 2000 and 2012, the data given
in [5] reveals that Germany recorded a slight 8.81%
increase from 2078kWh to 2261kWh respectively and
Finland recorded a significant 30.23% decrease from
4548kWh to 3173kWh respectively. This implies a 29%
energy usage difference for electricity for Finland and
Germany for the year 2012.

The ecoMOD project by the University of Virginia
given in [6] entails the design, construction and
evaluation of houses for energy efficiency. This project
aims to achieve three objectives: academic,
environmental, and social. An energy monitoring

Page 5769

system was installed to retrieve sensory and actuation
data every second. This monitoring system comprised
of cost effective sensors that measure temperature,
humidity, air quality, water flow, electric usage for
appliances, carbon dioxide level and wind speed.
Sensory and actuation data were retrieved through a
wireless connection and these were stored on a remotely
accessible database. A detailed data analysis was
conducted on a 20-day stored data using a custom
developed web data-analytical application software and
the data analysis results indicates that the Heating,
Ventilation and Air Conditioning (HVAC) and water
heating system contributed the larger portion of the
energy consumption with both measuring 38% and 21%
total energy consumption respectively. Also the result
indicates a 50% and 45% reduction in the envisaged
energy consumption of the building. The discrepancies
between the envisaged consumption and the analysis
result for the hot water heater and HVAC was not
justified with measured data, however it correlated with
the result of a similar study given by [2].

Utilizing various wired and wireless media
approaches for implementing smart gateway
architectures for home automation were extensively
discussed in [7], [8], [9] and [10]. However, setting up
an architecture doesn’t necessarily provide a way how
to implement that architecture.

From the home/technology perspective, one of the
main technology-related problems that HAS application
developers focus on is the interoperability of the
heterogeneous automation technologies. According to
[11] these diverse technologies and protocols have
caused a problem of integration at the information level
due to the lack of interoperability of their data
representation of devices and building layouts. The lack
of interoperability in data description mechanisms
makes it difficult to integrate different sources of
information at the management level which in turn
affects the development of high-level applications to
process, visualize and control the entire automation
system. Within [12] the problem to manage and
aggregate useful information from a large amount of
data, being generated by technology indifferent devices,
has been described. This design problem was
approached by implementing a standardized template
system or information model that defines a common
language for data representation and storage for both
devices and buildings, also called Building Information
Model(ling) (BIM).

3. Capabilities and the system architecture

Based on existing approaches and identified
solutions of the literature review it seems a valid starting

point to build a system architecture, which can
communicate based on capabilities rather than on
technology-oriented protocols. Open source projects
already integrate a multitude of available technologies;
therefore, different home automation systems should be
taken into account. In our example the open source
project FHEM [13] was selected, but the architecture
and the system layout was designed in such a way, that
any underlying HAS could be used.

The architecture for providing a capability-based
interface was designed in the conex.io project [21],
which aims at fostering the uptake of home automation
systems. Within the project a system architecture has
been laid out, an API was designed as well as a mapping
layer, which translates the abstract devices and their
capabilities into specific syntactic objects for the
underlying HAS. The project itself consists also of a
team for live demos, web casts and physical
presentations for developers and even end-users, in
order to foster the uptake of the API and of a related
HAS itself. It connects to several activities in Germany
together with the Harz University of Applied Sciences,
the IBM Client Innovation Center Germany GmbH, the
DHS-Computertechnik GmbH and the FHEM
community overall, in order to ease the use and
development of an open HAS, which provides a good
and hassle-free user experience while integrating new
technologies when they appear [22], [23], [24].

To be able to provide such an API it was needed to
abstract from specific technological elements and their
protocols. Nevertheless, a HAS and its users want to
manage devices, as they represent physical objects and
related functions to them. Therefore, the conex.io
project uses the same concept of devices like an
underlying HAS but in a more abstract manner. The
(physical) devices themselves will be kept, enriched
with some attributes being useful for management and
navigation (see section 4) but stripped from any detail
of the underlying technology. Instead of this the
capabilities of a devices will be described by so called
functions, which are abstract mechanisms for
controlling a device or getting data from it. Figure 2
depicts the idea where an (abstract) device has certain
capabilities and is a container for several functions. E.g.
a room-controller for a heat radiator has the capability
to control the room temperature based on measured
values and programmed schedules. As a consequence,
this device, in an abstract view, contains several
functions like the temperature sensor, a humidity sensor
as well as an actuator to open a valve and commands to
program a schedule. This concept is the baseline of the
conex.io API-project and allows the control and usage
of abstract devices based on functions building up their
capabilities.

Page 5770

Figure 2: Device with capabilities and related functions

These functions, being the generalizing elements in
this approach, can be defined by the API designer or
maintainer. Of course they can be based on ontologies
or taxonomies, and several research projects have
tackled this, but it can be observed that none of the
realistic solutions (being in practical use) have reached
a common semantic ground represented by an ontology.
And especially within the domain of open source only
very few participants have even the knowledge to use or
follow an ontology. Because of this, the conex.io project
has designed an API description mechanism, allowing
the maintainer (-community) of an HAS to define these
functions and their names according to their own
wording, preferably maintained in a dictionary. Simple
examples for these functions are “onoff” for a switch,
“dimmer” for dimming devices or “temperature” for
sensors to get data or valves to set a target temperature.
Although this seems to be quite simple it appears that
these very basic functions are programmed with
different syntaxes for different technologies in most
cases. Based on this concept the architecture of the
conex.io project, as shown in Figure 3, incorporates
several elements.

Figure 3: Architecture for a Capability based interface

The API itself is built in a REST-like manner. The

details of the API and its design will be explained in the
following section. To build the API the Spring
framework (spring.io) was chosen, as this gives an easy
entry for designing and implementing the API. The API
itself incorporates several endpoints, as usual for a
REST API, and is stateless, meaning that each request
needs to contain all necessary information and is not
related to any other request. This API allows front-end

developers to address all desired devices or capabilities
independent from any underlying technology. Under the
API itself, a database of abstract devices, their
capabilities, built by a set of functions, actual states and
values has been foreseen. This database is mainly
intended to reduce the amount of interactions with the
HAS, as requests from the API about state evaluations
can be answered directly from the interface layer. The
database should therefore store the actual states of
devices in an abstract manner and also values of related
sensors and actuators. In which way this database should
be implemented has not been specified on this level, as
several possibilities are available. Either a real database-
system can be incorporated, storing each change of
values communicated from the HAS for the devices, or
a real-time update mechanism, leading to a change of
simple state-variables within the objects for the abstract
devices within the interface can be used. This highly
depends on the level of complexity and available
mechanisms of the HAS to communicate state updates.

For the implemented case, being FHEM as the HAS,
this was realized as a simple Web-Socket connection to
the FHEM-system, delivering all state changes from the
HAS to the interface and leading to a state change of
related Java-Objects, representing the abstract devices.
This is mainly necessary as the API is designed in a
REST-like manner, meaning it is completely stateless
and therefore each request for a state of a device would
lead to a newly formed request towards the HAS. This
can be reduced significantly by storing the relevant
states in the database, or in this case in variables of the
Java object for the corresponding device, of the API.

The mapping layer maps the technology specific
procedures and values into abstract devices with
functions and supported values of the API.

The descriptions of functions as well as of the
FHEM modules are done in a technology agnostic way,
using YAML and JSON respectively. This is shown in
Figure 4, where the YAML descriptions denotes the
available functions for the device capabilities (denoted
in figure 3 as capability descriptions) and the JSON files
for the technology specific HAS modules.

The descriptions are further detailed in section five,
explaining how module developers within open source
communities could make use of the API and its
mechanisms. The mapping layer translates the
functions, describing the capabilities of the abstract
devices, specified in the YAML file, into specific
technological commands for the HAS. According to the
JSON description the correct command syntax will be
derived to address the HAS and the used technology in
there. With the use of JSON-files, describing the
technology specific aspects of the HAS, the mapping
layer generates the technology agnostic abstraction
using a parser to read out data from the HAS.

Page 5771

Figure 4: The API and related description files

Whenever a new technology is integrated in the HAS
only the corresponding JSON file needs to be added to
the API architecture to empower front-ends to use these
devices at the API layer.

The connection to the HAS is built by a connector
(in this case for FHEM), which could be implemented
in any desired way to fit to an available system. This
doesn’t only apply for open source solutions, but also to
vendor specific or third party servers like the system
from Deutsche Telekom, etc.

4. REST-like API based on Capabilities

The typical design of a RESTful API is to define an
endpoint and add a specific path for each resource to it.
This is in principle doable but whenever a new device is
integrated in the HAS a new path needs to be added to
the endpoint, like “/device/new_device_id”. This would
be conforming with the REST architectural approach as
defined in [14]. But for front-end developers this is quite
complicated as each front-end needs to be able to
formulate and parse new paths whenever a new device
and therefore a new path-element is added. This is not
practical and doesn’t lead to simplifications for front-
end developers, which is the ultimate goal of the REST-
like API here.
Therefore, the conex.io project has selected a REST-like
approach, in which only a few endpoints have been
defined but equipped with a powerful filter architecture.
This API defines the following endpoints:

“/devices”, “/rooms”, “/groups”, “/functions”
These four endpoints are able to address either devices,
defined in the HAS and abstracted by the interface,
rooms in which those devices are located (if supported
by the HAS), specific groups, which may be used to

organize sets of devices, and functions
characterizing the capabilities, which are
applicable to numerous devices. As this
omits a very specific URI per resource,
meaning here per device, this violates the
RESTful requirements but is still REST-
like, as the request scheme is still
stateless and JSON is used for data
transport.

Each of these endpoints is using a
filter mechanism based on JSON, which
will be delivered in the BODY of the
requests. Therefore, the HTTP-GET
method can’t be used, as according to the
HTTP standard everything has to be
encoded in the URL. This isn’t doable
with complex filter-objects and therefore
the requests for status towards the API

are encoded by the HTTP-POST method and state
updates are communicated by HTTP-PATCH methods.
This again violates the RESTful approach, but as HTTP-
methods are used, although not the semantic obvious
one (like GET for status request), it still remains to be
REST-like.

For each of the requests a JSON based filter can be
added in the BODY-part, which limits the selected
devices or functions. This is shown in Figure 5, where
the different filters for the “/devices” endpoint are listed.

Figure 5: REST-Endpoint for “/devices” with filters

What can be seen is, that although the endpoint itself

is designed for devices, the filter allows to limit the
response to a very specific set of device_ids, a set of
room_ids, group_ids and even function_ids. By this an
application can request a list of all devices being
together in a specific room or group or supporting a
specific function as part of their capabilities, like
dimming or switching. As this endpoint delivers the
device objects, and not only the IDs of the devices,
including the capabilities represented as function
objects in a JSON representation, the states of the
different devices can be retrieved.

With the endpoints “/rooms”, “/groups”,
“/functions” an application can request IDs of rooms,
groups and functions, which apply to the filtered
objects. By this each front-end can derive the desired

Page 5772

subsets of devices and their states, according to the
specific needs. Additionally, the PATCH method, being
implemented for the “/devices” endpoint, can be used to
alter the state of a single or a multitude of devices. This
leads to possibilities like switching on or off all devices
that might support these capabilities, like switches,
dimmers, etc. or to set all dimmers in a room or a group
to a specific value. With this HTTP-method also the
JSON filter object can be passed, so that a front-end
developer can issue a single command to a multitude of
devices, depending on their capabilities, their physical
or logical organization.

Although the use of a JSON-based filter object
violates explicitly the RESTful requirements, as no
endpoint/URI is built per resource and the methods for
requesting data needs to be POST instead of GET, this
seems for the purpose of easing the front-end
developers’ life more than meaningful. No drawbacks
are arising from this filter architecture but giving the
user of this API a great amount of power by addressing
several devices or functions at the same time. This also
reduces traffic between mobile front-ends and the API
itself, as same commands don’t have to be repeated for
different devices, saving therefore resources, lines of
code and air time. And beyond this all these commands
can be issued completely independent from the
underlying technology or technology-specific syntax of
the used HAS.

5. The Mapping Mechanism

For being able to abstract from technology specific
protocols and commands of the HAS the API
architecture incorporates a mapping layer. This layer is
based on two description mechanisms, outlining the
different levels of abstraction. A JSON description for
each of the HAS specific modules defines the different
commands, values and their interpretation as well as
specific paths of those values in the data structure of the
HAS.

The functions supported by the API-layer are
described in the YAML API-specification. The
mapping layer has to translate technology specific
commands, described in their syntactic structures in the
different JSON-files, into the abstract functions
provided via the API, building the capabilities of the
devices and the overall system (see figure 4).

The communication with the HAS should deliver a
JSON structure of defined devices in the HAS. This can
be implemented for each desired HAS but should return
the data structures of the devices in the HAS via JSON
in a meaningful way. In the case of FHEM being the
HAS figure 6 shows the JSON-structure for a specific
device of the FS20 technology.

Figure 6: JSON data from the HAS for a FS20 device

To allow the mapping layer to parse the JSON data
from the HAS corresponding JSON-description files for
each used technology in the HAS are needed, as the
syntax, paths, data representation and -interpretation of
each technology might be different. The conex.io
project has built a JSON-Schema that defines the
syntactic structure and rules for these files.

Figure 7: Structure of JSON-description file, example for FS20

They are built in such a way, that the representation

of a technology in the HAS can be parsed and all related
values, SET/GET commands and identifiers can be
found. The beginning of the structure is depicted in
figure 7, showing the information fields needed and
sample data for the FS20 technology.

As shown the paths for the name and the type of a
device in the delivered JSON data is denoted in such a
way that the parser can derive the name of the delivered
device “FS20_Lampe” and the type “FS20” in a straight
forward way (apply fig. 7 to fig. 6). This is quite simple

Page 5773

for string-based data, as those only need to be read out.
As soon as state variables, ranges or even units are part
of the data, more complex mapping modes can be
applied. Here several possibilities like regular
expressions, range converters and min/max rules can be
used to derive the data from the HAS and to convert it
to a common scale used in the conex.io project.

Figure 8: Excerpt of the FS20.json file

This leads overall to several JSON files, one for each
technology. An excerpt of the FS20.json file is shown in
figure 8 depicting also the function identifiers of the
API, that are supported by the FS20 technology. When
parsing the above sample data (fig. 6) based on the
FS20.json description an internal representation of the
device in an abstract form will be generated. This is
shown in figure 9.

Figure 9: Internal abstract device representation

By this an abstract device representation in the API-
infrastructure is derived for each device in the HAS, if a
technology specific JSON file exists. If a new
technology is integrated into the HAS only the JSON
description file needs to be produced and integrated into
the API infrastructure in order to allow the mapping
layer to use it. So given the case that a new dimmer or
switch, using another different technology and therefore
a different syntax and scale is integrated, the JSON
description can be added and the device is abstracted in
the same way as the others using the abstract functions
(here “onoff” and “dimmer”) from the YAML
specification. In this way the open source community
can easily integrate new technologies without changing
any code in the API-infrastructure, just adding the JSON
files, and even without touching any front-end code
whatsoever.

As the REST-like API is based on functions,
building up the capabilities of the different devices, the
specification of these functions should be done
beforehand. All desired functions, being part of the
capabilities of the technical devices integrated by the
HAS, are described in a central YAML file [16] (see fig.
4). This file incorporates descriptions about the end-
points, the filters added to the endpoints and the
supported functions like “onoff”, “dimmer”, etc. of the
API.

The format YAML is used because the JAVA code
for instantiating and handling the endpoints can be
automatically generated within the Spring Framework,
using the Swagger-CodeGen tool [17]. This allows for a
fast generation of API functions, being used in the
mapping layer for device and function abstraction. An
excerpt of the YAML file is shown in Figure 10. In such
a way the functions and finally the capabilities
supported by the API, the needed JAVA code, the
endpoints and their filters can be specified and
generated.

Page 5774

Figure 10: YAML description for capabilities

Whenever a new function is added in the YAML
specification the API-infrastructure needs to be
recompiled and redeployed as the code for the new
function needs to be added. If the newly integrated
function is only used in a new technology from the HAS,
this function just needs to appear in the newly produced
JSON file. If any of the existing technologies also
support the new function, it has to be added in the
existing JSON files also.

This leads to a very flexible API system, being able
to be supported and enhanced within any open-source
community. The core maintainers of an open source
community could be responsible for the specification of
the API-functions and capabilities (the YAML
specification) whereas each and every technology
contributor could add JSON files into the API
infrastructure.

6. Discussion

Within the conex.io project an API for abstracting
different smart home technologies was designed,
incorporating an underlying home automation system to
communicate with different technologies.

This API is based on capabilities of abstract devices,
split into several functions, which are defined in a

YAML file and delivered via several REST-like
endpoints for application programmers. The API itself
is designed to be deployed in an application server like
Apache TomCat [18]. As the design of the API is mainly
controlled by the specifications in the YAML file a two-
step build-process needs to be executed. First the JAVA
code for the endpoints and the abstract devices and their
capabilities need to be generated out of the YAML
description. Afterwards the generated code and control-
logic of the mapping layer need to be compiled into a
Web-Application Archive (WAR) for being deployed in
an Application Server. This process is based on a quite
sophisticated tool chain based on the Spring Framework
and needs to be installed in order to build the API.

This toolchain can, based on the YAML file, also
generate the client code for front-ends and applications,
which needs to be included to use the API. Therefore,
the application developer doesn’t have to address the
API by himself but can use the pre-generated code from
the toolchain in his front-end project.

This eases the task of front-end developers
significantly as the front-end itself doesn’t have to deal
with differences stemming from different technologies
in the HAS anymore. The same holds for gateways
towards internet-based interaction systems like Alexa or
HomeKit, as for now either each technology has to
provide a specific gateway or an integrating HAS has to
reformat each technology for those services manually.
With the presented API a general abstraction and
therefore gateway towards these systems can be derived
without the need of changes for new technology
integrations. This can easily lead to better user
interfaces, as front-end developers now can focus on the
user experience instead of dealing with communication
and technology issues related to the underlying HAS. In
the same way the integration of new technologies in
existing systems and their front-ends can be faster as no
changes in the code of front-ends and gateways need to
be made. This might lead to a much faster uptake of
home automation systems as the user experience could
be much better and a more hassle-free installations and
updates could be done.

7. Conclusion

This paper presented the API of the conex.io project,
enabling a capability based communication with smart
homes and buildings. The API resides on top of a
selected Home Automation Server, meaning on top of
the automation layer in figure 1, and abstracts the
communication from any technology specific aspects
the HAS may still have, especially considering open-
source projects.

Page 5775

The API itself provides a REST-like interface with
endpoints that support specific filters. These filters
allow for each endpoint a selection of specific devices
based on groups, rooms or functions of their
capabilities. The API is built by the Spring Framework
and its toolset. With this toolchain the API can be
configured with a YAML file, specifying endpoints,
filters and functions. The Framework, beside building
the API, generates also client code for different
environments to address the API. This helps front-end
and application developers to ease the use of the API.

With this approach the conex.io project has built an
API that abstracts smart home systems and their control
from technology specific aspects and provides a REST-
like API. This API allows filters to be applied and
enables a capability-based communication with devices
independent of their technology.

Acknowledgements

We would like to thank Axel Krüger and Alexander
Schreiner for their support, technical help and
continuous willingness to bring advances to the conex.io
project.

8. References

[1] Chathura Withanage, “A comparison of the popular home

automation technologies”, Dev. Pillar, Singapore Univ.
of Technol. & Design, Singapore, 2014 IEEE Innovative
Smart Grid Technologies – Asia, ISSN: 2378-8534

[2] Global eSustainability Initiative, “GeSI SMARTer2030:
Enabling the low carbon economy in the information
age,” UK, [Online], Available:
http://smarter2030.gesi.org/, accessed 04.2016

[3] O.Drögehorn, J.Porras, F.Sangogboye, “Home
Automation, using OpenSource to fulfill EU-Directives“,
Proc. of the17th Int. Conf. on Internet Computing; ed.
H.R. Arabnia, LasVegas Nevada, USA, July 2016

[4] Odyssee-Mure, “Energy Efficiency Trends in Buildings
in the EU,” 2012. [Online].
Available:http://www.odyssee-mure.eu/publications/br
/Buildingsbrochure-2012.pdf, accessed 02. March 201

[5] Enerdata, March 2015. [Online]. Available:
http://www.indicators.odyssee-
mure.eu/onlineindicators.html, accessed 04.2016

[6] S. Foster, A. Tramba and L. MacDonald,
“ecoMOD:Analyzing Energy Efficiency in Affordable
Housing,” Charlottesville, VA, 2007

[7] C. Wei and Y. Li, "Design of energy consumption
monitoring and energy-saving management system of
intelligent building based on the Internet of things," in
Electronics, Communications and Control (ICECC),
2011 International Conference on, Zhejiang, 2011

[8] J. Skon, O. Kauhanen and M. Kolehmainen, “Energy
consumption and air quality monitoring system,”
Adelaide, SA, 2011

[9] C.-Y. Chen, Y.-P. Tsoul, S.-C. Liao and C.-T. Lin,
“Implementing the design of smart home and achieving
energy conservation,” Cardiff, Wales, 2009

[10] D.-M. Han and J.-H. Lim, “Smart home energy
management system using IEEE 802.15.4 and zigbee,”
Kongju, South Korea, 2010

[11] W. Granzer and W. Kastner, "Information modeling in
heterogeneous building automation systems," in Factory
Communication Systems (WFCS), 2012 9th IEEE
International Workshop On, 2012, pp. 291-300

[12] T. Weng, A. Nwokafor and Y. Agarwal, "BuildingDepot
2.0: An integrated management system for building
analysis and control," in Proceedings of the 5th ACM
Workshop on Embedded Systems for Energy-Efficient
Buildings, Roma, Italy, 2013, pp. 7:1-7:8

[13] The open source project FHEM, www.fhem.de, accessed
06.2017

[14] The REST-Cookbook, www.restcookbook.com, access
06.2017

[15] Jeremy Dorn, the web-based JSON-Editor,
http://jeremydorn.com/json-editor/, access 06.2017

[16] YAML, another markup language, http://www.yaml.de/,
accessed 06.2016

[17] The Swagger CodeGen, http://swagger.io/swagger-
codegen/, accessed 06.2017

[18] Apache Foundation, the TomCat Project,
http://tomcat.apache.org/, access 06.2017

[19] German Telekom Smart Home, www.smarthome.de,
accessed 06.2017

[20] 5 open source home automation tools,
https://opensource.com/life/16/3/5-open-source-home-
automation-tools, accessed 08.2017

[21] conex.io project, prototype implementation of a REST-like API
for home automation systems,
https://github.com/philipptrenz/conex.io/, accessed
08.2017

[22] The conex.io project overview, project-descirption within the
media-informatics projet landscape @ Harz University of
Applied Sciences, http://www.medieninformatik.de/conex-io-
entwickelt-appschnittstelle/, accessed 08.2017

[23] The IBM CIC Blog,
https://mymagdeburgexperience.wordpress.com/2016/12/08/op
en-source-und-motivierte-studenten/, accessed 08.2017

[24] DHS-Computertechnik GmbH, Home Automation Services and
Developments, http://www.dhs-computertechnik.de/home-
automation, accessed 08.2017

Page 5776

