
Energy-Aware Scheduling of Conditional Task
Graphs on NoC-Based MPSoCs

Umair Ullah Tariq∗, Hui Wu∗ and Suhaimi Abd Ishak∗†
∗The University of New South Wales, Australia

†Universiti Tun Hussein Onn, Malaysia
{tariqu, huiw, sishak}@cse.unsw.edu.au

Abstract

We investigate the problem of scheduling a set of tasks
with individual deadlines and conditional precedence con-
straints on a heterogeneous Network on Chip (NoC)-based
Multi-Processor System-on-Chip (MPSoC) such that the total
expected energy consumption of all the tasks is minimized,
and propose a novel approach. Our approach consists of a
scheduling heuristic for constructing a single unified schedule
for all the tasks and assigning a frequency to each task
and each communication assuming continuous frequencies,
an Integer Linear Programming (ILP)-based algorithm and
a polynomial time heuristic for assigning discrete frequencies
and voltages to tasks and communications. We have performed
experiments on 16 synthetic and 4 real-world benchmarks. The
experimental results show that compared to the state-of-the-
art approach, our approach using the ILP-based algorithm
and our approach using the polynomial-time heuristic achieve
average improvements of 31% and 20%, respectively, in terms
of energy reduction.

1 Introduction

Modern mobile systems such as robots and driverless
cars require computationally powerful and energy-efficient
hardware due to their complex functions and battery power
constraint. MPSoC is an ideal architecture for those mobile
systems due to its high performance and low power dissi-
pation. Examples of commercial MPSoCs include Samsung
Exynos 5422 SoC [1] and Zynq UltraScale+ MPSoC devices
[3]. Samsung Exynos 5422 SoC powers the famous Samsung
Galaxy smartphone series. Zynq UltraScale+ MPSoC devices
have been used in robots. Typically an MPSoC consists of
processors with different power and performance profiles. For
example, Samsung Exynos 5422 SoC consists of 4 high-
performance ARM Cortex-A15 CPU, 4 low-power ARM
Cortex-A7 CPU. Modern MPSoCs have a large number of
processors and the number of processors on MPSoCs are
expected to grow [10]. According to International Technology
Roadmap for Semiconductors (ITRS), MPSoCs will integrate
thousands of processors [15] by 2025. Therefore, the tradi-
tional bus-based on-chip communication is no longer feasible
due to its poor scalability. NoC-based communication provides
a significant improvement in terms of flexibility, scalability
and performance over hierarchical (e.g., Advanced Micro-

controller Bus Architecture and STBus) and traditional bus
structures [23].

Mobile systems are battery powered. Although battery life-
times have increased over the years, modern batteries are
still far from meeting the needs of power-hungry mobile
devices. Therefore, energy efficiency is a critical issue in
mobile systems. One way to improve energy efficiency is to
apply Dynamic Voltage and Frequency Scaling (DVFS). DVFS
saves energy consumption by lowering the voltage/frequency
of a processor/communication link when it is underutilized.
For example, in order to reduce the energy consumption of a
Nexus 4 Android smartphone on-demand governor scales the
CPU frequency and voltage level based on CPU utilization
every 50 millisecond [17]. In addition to processors, NoC
communication links and routers also consume a large amount
of on-chip energy. For Alpha 21364 processor [32], out
of 125W total on-chip power consumption, 23W (20%) is
consumed by NoC routers and links, and out of 23W, the NoC
links consume 58% of the power. Therefore, it is important
to take communication energy into account when mapping
applications onto NoC-based MPSoCs.

In this paper, we target energy-efficient mobile embedded
systems such as driver-less cars, robots and advanced combat
helmets using a NoC-based MPSoC as the hardware platform.
For those mobile systems, their complex functions such as
object recognition and communication, are known at the
design stage, and the embedded software is typically modelled
as a set of tasks with conditional precedence constraints and
individual deadlines. We investigate the problem of scheduling
a set of tasks with conditional precedence constraints and
individual deadlines on a heterogeneous NoC-based MPSoC
such that the total expected processor and communication
energy is minimized. The processors and NoC links are voltage
scalable and can operate at a set of discrete voltage/frequency
levels. We make the following major contributions:

1) We propose a novel offline task scheduling approach.
Our approach consists of a task scheduling heuristic that
constructs a single unified schedule for all the tasks and
collectively assigns a frequency to each task and each
communication assuming continuous frequencies, and
an ILP-based algorithm and a polynomial-time heuristic
for assigning a discrete frequency to each task and
each communication. To the best of our knowledge, our
approach is the first one that investigates the problem
of scheduling a set of tasks and communications with

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50604
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5707

conditional precedence constraints on NoC-based MP-
SoCs such that the total expected energy consumption
is minimized.

2) We have performed experiments on 20 benchmarks.
Compared to the state-of-the-art approach proposed by
Li and Wu [24] that does not consider conditional prece-
dence constraints, our approach using the ILP-based
algorithm achieves an average improvement of 31% and
a maximum improvement of 61%, and our approach
using the polynomial-time heuristic achieves an average
improvement of 20% and a maximum improvement of
46%. Furthermore, both our approach using the ILP-
based algorithm and our approach using the polynomial-
time heuristic run approximately three times faster than
the state-of-the-art approach.

The rest of this paper is organized as follows. Section 2
gives an overview of the related work. Section 3 describes
all the models, including the task model, the power models,
and the MPSoC model. Section 4 presents our heuristic for
task scheduling and frequency assignment assuming contin-
uous frequencies for both processors and communications.
Section 5 proposes an ILP-based algorithm and a polynomial-
time heuristic for assigning discrete frequencies to tasks and
communications. Section 6 presents our experimental results
and analysis. Lastly, Section 7 concludes this paper.

2 Related Work
Several approaches have been proposed to minimize en-

ergy consumption for heterogeneous multi-processors systems.
Gebotys et al. [12] investigate the problem of scheduling
tasks onto heterogeneous processors such that total energy
consumption is minimized. In their approach task mapping
and scheduling are integrated with dynamic voltage scaling
to maximize energy efficiency. Singh et al. [38] propose a
contention-aware, energy efficient, duplication-based mixed
integer programming (CEEDMIP) formulation for scheduling
task graphs on NoC-based heterogeneous multiprocessors. The
key idea of their approach is to duplicate some tasks to
reduce the communication energy as well as traffic congestion.
Zhang et al. [45] propose an ILP-based, energy-aware task
mapping algorithm on heterogeneous multi-processors, and an
evolutionary algorithm-based, energy-efficient task mapping
heuristic. Cai et al. [6] propose an energy efficient approach
for heterogeneous multi-processor mobile embedded systems.
Their approach assigns discrete frequencies to tasks based
on the critical path lengths of tasks. Lin et al. [25] propose
an energy-efficient algorithm for heterogeneous MPSoC-based
mobile devices. They integrate task mapping and scheduling
with dynamic voltage scaling to reduce the energy consump-
tion of mobile devices.

Huang et al. [21] propose a simulated annealing-based
energy-aware task mapping algorithm on heterogeneous NoC-
based MPSoCs. In their model, processors are assumed to be
voltage scalable and NoC links operate at a fixed frequency.
Mixed Integer Linear Programming (MILP) is used to assign
voltages/frequencies to tasks. Shin et al. [37] consider a NoC
model with voltage scalable links and propose a genetic
algorithm for minimizing the communication energy of the

NoC by scaling the link voltages. Ghosh et al. [13] consider
a model similar to that of Huang et al. [21] and propose
an energy-aware task scheduling heuristic based on MILP
relaxation and randomized rounding. Li et al. [24] assume
a NoC model with voltage scalable links. They propose a
task mapping algorithm and a genetic algorithm-based task
voltage/frequency assignment algorithm. A detailed survey
on approaches for multi-processor energy-efficient embedded
computing is given in [31].

Only a few approaches have been proposed aiming at
minimizing the energy consumption of tasks with conditional
precedence constraints. Shin et al. [36] propose a scenario-
based offline Non-Linear Programming (NLP) algorithm that
assigns each task a speed for each scenario. The approach
has an exponential time complexity as it constructs a separate
schedule for each scenario. Wu et al. [41] propose an approach
that employs the schedule table generated by [9] to identify the
available slack time in the worst-case and propose a heuristic
that assigns a frequency to each task. In [28] a heuristic is
proposed to assign each task a speed based on the critical
path length. The heuristic has an exponential time complexity
in the worst case since it enumerates all the possible scenarios
when computing the critical path lengths. Umair et al. [40]
propose a task mapping algorithm for periodic CTGs, and
propose an NLP-based algorithm and a heuristic to assign
voltages/frequencies to tasks.

Energy efficiency is not only critical in mobile embedded
systems but also important in cloud computing. In cloud data
centers, efficient power management may reduce operation
costs, increase system reliability and reduce adverse effects of
large power consumption on environments. Many approaches
have been proposed to minimize energy consumption in the
data center. Hasan et al [19] formulate the problem of offline
scheduling of jobs on the servers of a data center such
that the total energy consumption is minimized, as a binary
integer program. They also propose an online heuristic for
the same problem. Sarood et al. [35] propose an Integer
Linear Programming (ILP)-based scheduler to reduce energy
consumption in data centers. Huai et al. [20] propose a load
balancing algorithm combined with DVFS to significantly
reduce the energy consumption of data center servers. Roukh
et al. [34] argue that database management systems (DBMSs)
are one of the major energy consumers in data centers,
and propose a machine learning-based approach to reduce
the energy consumption of nodes of database clusters when
optimizing queries. Xu et al. [42] propose an energy-aware
query optimization platform called PET for DBMSs. PET
estimates the energy costs of queries offline and the evaluation
engine of the DBMS configures PET parameters towards a
desired energy/performance trade-off. Guo et al. [16] propose
an energy efficient query processing framework in DBMSs.
Their approach works out energy cost query plans and makes
a trade-off between the performance and the energy plans.
Authors in [18] and [14] discuss practices in detail to reduce
the energy footprint of data centers. Mittal et al. [30] give a
survey of power management techniques for data centers.

Our approach differs from all the previous approaches in
three major aspects. First, our approach considers conditional

Page 5708

v1

v2

v3

v4

v5

v6 v7

10

15

8

1

1

a

a’

10

15

3

(a)

v 1

v 2

v 3

v 5

v 6
v 7

v 9

v 10

v 8 v 11

v 13

v 12

v 15

v 14

a
a ’

Task Node

Communication Node

v 4

(b)

Fig. 1. (a) A CTG G (b) An extended CTG Ge

precedence constraints. Second, our approach handles NoC
and takes link contentions into account. Third, our approach
collectively optimizes the frequencies of processors and NoC
links aiming at minimizing the total expected energy consump-
tion of the MPSoC.

3 Models
The target application is modelled by a conditional task

graph (CTG) [39]. A CTG is a weighted directed acyclic graph
G(V,E,A,X) defined as follows. V = {v1, v2, . . . , vn} is a
set of tasks. Each task has an execution time represented by
the number of clock cycles on each processor and a deadline
di. All the tasks are non-preemptible. E ⊆ V × V is a set
of directed edges each denoting the dependency between the
two tasks. A is a set of triplets (ei, ci, p(ci)), where ei ∈ E,
and ci and p(ci) represent the condition associated with ei and
its probability [26], respectively. X is a set of edge weights.
An edge weight χs ∈ X of an edge es = (vi, vj) represents
the communication volume in bits from task vi to task vj .
Our task model is described in detail in [39]. The execution
probability of each node vi ∈ V is represented by p(vi). We
use algorithm presented in [26] to compute the probabilities.

The MPSoC has a set P = {pe1, pe2, . . . , pem} of m
processors. We assume heterogeneous processors, where each
processor pek ∈ P is DVFS-enabled and can operate on
a set {(Vdd1 , f1), . . . , (Vddnk

, fnk
)} of nk discrete voltage-

frequency pairs. A matrix NC represents the execution times
in clock cycles of all the tasks in G on different processors,
where NC(j, i) is the number of clock cycles of task vi on
pej .

The dynamic power Pdk,i
of a task vi on processor pek,

dominated by discharging and charging of load capacitance
due to gate switching, is given as Pdk,i

= Ceffk,i
V 2
ddk,i

fk,i
[5], [4], where Ceffk,i

, Vddk,i
and fk,i are the effective load

switching capacitance, the supply voltage and the operating
frequency, respectively. The execution time of a task vi on
processor pek operating at frequency fk,i is given as tk,i =
NC(k, i)/fk,i. The operating frequency f is approximated by
f = ((1 + K1)Vdd + K2Vbs − Vth1

)α/K6LdVdd [4], where
K1,K2,K6 and Vth1

are circuit dependent constants, Ld is
the logic depth, and α is velocity saturation imposed by the
used technology (1.4 ≤ α ≤ 2). The total energy consumption
Ek,i of a task vi on pek is computed as follows [4]:

Ek,i = NC(k, i)Ceffk,i
V 2
ddk,i

+ Lg(Vddk,i
K3e

K4Vddk,i

eK5Vbs + |Vbs|Ij)tk,i (1)

We consider the 2D mesh NoC architecture, where each pro-
cessor is associated with a router, and there are NR rows and
NC columns. Every router has five ports with one port used to
communicate with the associated processor, and the remaining
four ports used to communicate with the neighboring routers.
A link connecting two routers is called global link and a link
connecting a router with its associated processor is referred
to as a local link. All the links are full duplex. All the global
links are identical and have same link width (also called bus
width or the number of wires) bw.

We only take into account the energy consumption of global
links and neglect the energy consumption of the local links.
In the rest of this paper, links refer to global links unless they
are explicitly specified.

The NoC links can operate at a set {(Vdd1 , f1), . . . ,
(VddF , fF)}, of voltage-frequency pairs. In a 2D mesh, the
Manhattan distance ηi,j between two processors pei and pej
is defined as follows: ηi,j = |xi−xj |+|yi−yj |, where (xi, yi)
and (xj , yj) are the coordinates of pei and pej , respectively.

The wormhole switching [27], [24] and deterministic XY
routing are used. We do not scale router frequencies as
adjusting router frequencies makes the problem too complex.
We assume that router frequencies are fixed and commensurate
with link frequencies as in [24].

Consider the message ei for a communication node. The
time taken by ei on the links operating at frequency fi such
that ei traverses the network without contention is calculated
as follows [24]:

ti =
χi
bwfi

(2)

We use the bit energy model given in [43], [29] for communi-
cation. Assume that the source node and the destination node
of ei are mapped on processors pes and ped, respectively.
The energy of transmitting one bit of the message ei is
Ebit = (ηs,d+1)ERbit+ηs,dElbiti , where ERbit is the energy
consumption of one bit on one router, and Elbiti is the energy
consumption of transmitting one bit on one link when all
the links of ei operate at fi. Thus, the energy consumption
of transmitting ei on the links operating at frequency fi is
calculated as follows:

Ecommi
= χi((ηs,d + 1)ERbit + ηs,dPi/(fibw)) (3)

where Pi is the total power consumed in transmitting one bit
when the links that ei traverses operate at frequency fi. Pi is
the sum of the dynamic power Pdyni

and static power Pstati ,
Pi = Pdyni

+Pstati [4]. The static and dynamic powers depend
on how links are implemented. The frequency fi is approx-
imated by fi = ((1 + K1)Vdd + K2Vbs − Vth1)

α/K6LdVdd
[4].

4 Task Mapping, Scheduling and Frequency As-
signment

In order to schedule tasks and communications in a unified
way, we first transform a CTG G into an extended CTG by
adding an additional node for every edge in the original CTG.
We refer to these additional nodes as communication nodes.
The original nodes in G are kept unchanged and are referred to
as task nodes. Specifically, for each edge (vi, vj) ∈ G, we add

Page 5709

a communication node vs, and replace (vi, vj) by two directed
edges (vi, vs) and (vs, vj). If (vi, vj) ∈ G has a condition,
(vi, vs) has the same condition and probability. The extended
graph is represented by Ge(V +V ∗, E′, A′), where V is a set
of task nodes, V ∗ is a set of communication nodes, E′ is a
set of edges, and A′ is a set of 3-tuples where each 3-tuple
consists of an edge, the condition associated with the edge and
probability of the condition. Figure 1(b) shows the extended
graph Ge of the CTG in Figure 1(a).

4.1 Successor-Tree-Consistent Deadline
Our offline scheduling algorithm schedules nodes using

the priorities of task nodes and communication nodes. We
extend the notion of successor-tree-consistent deadline [39]
to NoC-based MPSoCs, and propose a priority scheme for
nodes, where the priority of each node vi is its successor-
tree-consistent deadline denoted by d′i. When computing the
successor-tree-consistent deadline of each node, we assume
that all the processors and NoC-links operate at the maximum
frequencies. Furthermore, the original CTG is used rather than
the extended graph Ge. Before defining the successor-tree-
consistent deadline, we introduce the worst case set of a task.
Let IPred(vi) and ISucc(vi) be the sets of all the immediate
predecessors and all the immediate successors of a task vi,
respectively.

Definition 1: The worst-case set of a task vi, denoted by
WCS(vi), is a set of tasks defined as follows:

1) If vi is a sink node, WCS(vi) = ∅.
2) If vi is an OR-FORK node, WCS(vi) = {vj} ∪

WCS(vj), where vj is in ISucc(vi) satisfying
d′j − min∀pek∈P {tk,j} = min∀vs∈ISucc(vi){d′s −
min∀pek∈P {tk,s}}.

3) If vi is an AND-FORK node, WCS(vi) =⋃
vs∈ISucc(vi) (WCS(vs) ∪ {vs}).

Definition 2: Given a CTG G and a task vi, the successor
tree of a task vi is a weighted directed tree ST(G,vi)= (V ′,
E′, X ′) where v′ = {vi} ∪ WCS(vi), E′ = {(vi, vj) :
vj ∈ WCS(vi)}, and X ′ = {w′i,j : if vj is an immediate
successor of vi, w′i,j is equal to the edge weight of (vi, vj) in
G; otherwise, w′i,j = 0}.

Definition 3: Given a task vi, if vi is a sink task, its
successor-tree-consistent deadline d′i is equal to its preassigned
deadline di. Otherwise, d′i is the upper bound on the latest
completion time of vi in any feasible schedule of the relaxed
problem instance: a set V ′ = {vi} ∪WCS(vi) of tasks with
the precedence constraints in the form of the successor tree
ST (G, vi), where the deadline of each task vj ∈WCS(vi) is
its successor-tree-consistent deadline, and the deadline of vi
is its preassigned deadline, and the same MPSoC.

The successor-tree-consistent deadlines of all the tasks in
G are computed as follows. For each task vi in reverse
topological order of G, if vi is a sink node, its successor-tree-
consistent deadline d′i is equal to its preassigned deadline di
and WCS(vi) is an empty set. Otherwise, compute WCS(vi),
construct the successor tree of vi, and do the following:

1) Partition the tasks in WCS(vi) into two disjoint sets U
and J. The set U consists of all the tasks in WCS(vi)

each of which does not receive any data from vi, and
the set J contains all the tasks in WCS(vi) that are not
in U.

2) Sort all the tasks in U in non-increasing order of their
successor-tree-consistent deadlines.

3) Schedule each task vj in U on a processor that maxi-
mizes its start time.

4) Sort all the tasks in J in non-increasing order of their
successor-tree-consistent deadlines. For the tasks with
the same successor-tree-consistent deadlines, sort them
in non-increasing order of their edge weights.

5) Schedule each task vj in J on a processor that maximizes
its start time.

6) Schedule vi on a processor that maximizes its com-
pletion time respecting the constraints specified by the
successor tree of vi.

7) Set d′i to the completion time of vi.
A communication node vs in the extended graph Ge has a

single child node vj . Therefore, the successor-tree-consistent
deadline of vs is d′s = d′j − min∀pek∈P {tk,j}, where the
execution time tk,j of a task node vj is computed assuming
the maximum processor frequency.

4.2 Earliest Successor-Tree-Consistent Deadline First
Algorithm

In a CTG, the number of scenarios grows exponentially as
the number of conditions increases. Therefore, it is not feasible
to construct a separate schedule for each scenario. Our offline
scheduling approach constructs a single unified schedule for
all the scenarios by exploiting the mutual exclusion relations
between communication and task nodes. Two nodes are said
to be mutually exclusive in the graph Ge if they cannot co-
exist in any scenario. For example, in Figure 1(a) v5 and v6
are mutually exclusive. Two mutually exclusive nodes can be
allocated the same resource at the same time. In a CTG, two
nodes are said to be concurrent if they are not reachable from
each other in graph Ge and are not mutually exclusive.

We propose an Earliest-Successor-Tree-consistent Deadline
First (ESTDF) list scheduling algorithm assuming that all
processors and links operate at the maximum frequencies.
ESTDF is called by our main algorithm IOETCS described in
the next subsection. It determines the order in which task nodes
and communication nodes execute and captures this order by
adding additional precedence constraints in the input graph G.
The output of ESTDF is the input graph G with the additional
precedence constraints. Given a CTG G, a matrix NC of
worst-case clock cycles of tasks, a vector X of communication
volumes and a task-to-processor mapping Map, ESTDF works
by constructing a set ReadySet containing the source nodes of
G and repeating the following steps until ReadySet is empty.

1) Select a node vj with the minimum successor-tree-
consistent deadline from ReadySet.

2) Compute its ready time rj = max{ζl : vl ∈
IPred(vj)}, where ζl is the finish time of the node vl.

3) If vj is a communication node, compute its finish time
ζj = rj + tj , where tj is given in Equation (2), and
insert unconditional directed edges in G from vj to the
communication nodes that are concurrent to vj , have

Page 5710

larger or equal successor tree consistent deadlines as
compared to vj and traverse the same links that vj
traverses.

4) If vj is a task node, compute its finish time ζj = rj +
tk,j , and insert unconditional directed edges from vj to
unscheduled nodes concurrent to vj and mapped on the
same processor where vj is mapped.

5) Delete vj from ReadySet and insert all ready nodes in
G to ReadySet.

Consider the CTG in Figure 1(b) and the MPSoC in Figure
2(a) where all the processors are identical. The execution
times of tasks at the maximum processor frequency are t1,1 =
7, t1,2 = 2, t1,3 = 5, t1,4 = 3, t1,5 = 3, t1,6 = 2, t1,7 = 4 time
units. The communication times are t8 = 7, t9 = 8, t10 =
6, t11 = 5, t12 = 4, t13 = 5, t14 = 7, t15 = 9 time units.
All the tasks have a common deadline of 40 time units.
Consider the task mapping in Figure 2(a). Based on this
task mapping the input CTG Ge shown in Figure 1(b) to
ESTDF does not contain communication nodes v11, v14 and
v15. Furthermore edges (v4, v11), (v11, v3), (v6, v14), (v14, v7),
(v5, v15), (v15, v7) in Ge are replaced by (v4, v3), (v6, v7)
and (v5, v7). Figure 2(b) gives an illustration of ESTDF
scheduling algorithm for task mapping in Figure 2(a). Three
communication nodes v8, v10 and v9 become ready after v1 is
scheduled. Communication nodes v8 and v10 traverse the same
link l1. Since they are concurrent, they contend for l1. ESTDF
resolves this conflict by scheduling v8 before v10 as v8 has a
smaller successor-tree-consistent deadline than v10. Since v8
and v10 are concurrent nodes, an edge is inserted from v8 to
v10 to capture this order as shown in Figure 2(c). Notice that
communication nodes v12 and v13 are allocated the same time
slot even though both use the same link l3. This is because
both are mutually exclusive. No additional edges are inserted
between v12 and v13 as they are not concurrent nodes.

4.3 Iterative Offline Energy-Aware Task and Com-
munication Scheduling Algorithm (IOETCS)

We propose an iterative offline energy-aware task and
communication scheduling algorithm (IOETCS), Algorithm 1,
for a NoC-based MPSoC. IOETCS constructs a single unified
schedule iteratively assuming continuous frequencies for both
processors and links.

IOETCS repeats three major steps until all the nodes in Ge
are mapped and scheduled. First, it selects an unscheduled
task node vi ∈ V with the smallest successor-tree-consistent
deadline among all the unscheduled task nodes. Second, it
initializes the initial energy consumption Eini of the schedule
to infinity and repeats the following steps for every pek ∈ P :

1) Tentatively assign vi to the processor pek by Map[i]←
k and construct a sub-graph Gs(Vs + V ∗s , Es) where
Vs is the set of all the mapped task nodes, V ∗s is a
set of communication nodes with both child and parent
nodes mapped on different processors and Es is a set
of all the edges where every edge in Es belongs to E′

and both its head and tail nodes are in Vs + V ∗s . For
each communication node vs whose parent node vp and
child node vc are mapped on the same processor, insert
a directed edge (vp, vc) to Es.

ALGORITHM 1: IOETCS
input : CTG Ge(V + V ∗, E′, A′) with a matrix NC and

a set X , node deadlines, and a NoC-based
MPSoC

output: Schedule graph G∗(Vs + V ∗s , Es), a vector Map
for task mapping, and a communication and task
voltage assignment.

Construct a list L of nodes in V sorted in non-descending
order of successor-tree-consistent deadlines;
∀vi ∈ VMap[i]← 0;
for each vi ∈ L in order do

Eini ←∞; p← 0;
for each pek ∈ P do

Map[i]← k;
Construct graph Gs;
Gs ← ESTDF (Gs, NC,X,Map);
Compute voltage assignment of nodes in Gs and
total expected energy Eexp of Gs by solving
NLP;
if Eexp < Eini then

G∗ ← Gs; Eini ← Eexp; p← k;

Map[i]← p;

2) Call Gs ← ESTDF (Gs, NC,X,Map) to construct
a local schedule and capture the resource constraints
introduced by the local schedule.

3) Given a task-to-processor mapping and a graph Gs,
assign voltages/frequencies to task and communication
nodes by solving a non-linear programming (NLP)
problem. The objective of the NLP is to minimize
the total expected energy consumption of graph Gs.
The expected energy consumption is given as Eexp =∑
vi∈Vs

p(vi)Ek,i +
∑
vi∈V ∗s

p(vi)Ecommi
. The NLP

problem is formulated as follows:

min{Eexp}
Subject To

∀vi ∈ Vs tk,i =
NC(k, i)K6LdVddk,i

((1 +K1)Vddk,i
+K2Vbs − Vth1

)α

(4)

∀vi ∈ V ∗s ti =
χiK6LdVddi

bw((KVddi +K2Vbs − Vth1)
α)

(5)
∀vi ∈ Vs ρi + tk,i ≤ d′i (6)

∀(vi, vj) ∈ Es ∧ vi ∈ Vs ρi + tk,i ≤ ρj (7)
∀(vi, vj) ∈ Es ∧ vi ∈ V ∗s ρi + ti ≤ ρj (8)

ρi ≥ 0 (9)
Vddk,min

≤ Vddk,i
≤ Vddk,max

(10)
Vddmin

≤ Vddi ≤ Vddmax
(11)

In Equation (5), K = K1+1. The decision variables are,
the start time ρi, the task node execution time tk,i, the
communication time ti, the task voltage Vddk,i

and the
communication voltage Vddi . Vddk,max

and Vddk,min
are

Page 5711

R R R

R R R

R R R

l2

l3

v5 v6

 v7

v3 v4 l1

v1 v2

Processor Router

(a) Mapping

40

v1 v8

v10

v4 v3 v12

v13

v6

v5 v7

v9 v2

5 10 15 20 25 30 350

(b) Local Schedules

v1

v2

v3

v5

v6
v7

v9

v10

v8

v13

v12

a
a’

v4

(c) Schedule Graph

Fig. 2. An illustrative example (a) Task-to-processor mapping (b) Local schedules constructed by ESTDF (b) Graph capturing the precedence and resource
constraints

the minimum and the maximum supply voltages of the
processor pek, respectively. Equations (4) and (5) are the
task execution time and communication time constraints,
respectively. Equation (6) is the deadline constraint, and
the Equations (7), (8) are precedence constraints. Since
the constraints and the objective function are convex, this
NLP problem can be solved in polynomial time [44].

4) If the initial energy Eini is greater than Eexp, set p← k,
G∗ ← Gs, and Eexp ← Eini.

In the final step, IOETCS maps vi to processor p, and set
Map[i]← p.

5 Discrete Frequency Assignment
Algorithm 1 constructs a graph G∗(Vs + V ∗s , Es) that

captures the original precedence constraints and constraints
introduced by the schedule, and assigns an optimal fre-
quency/voltage to each node in G∗. However, the fre-
quency/voltage level assigned to a node may not be a valid dis-
crete frequency/voltage of the processor/link where the node
is mapped. Therefore, we propose an ILP-based algorithm and
a polynomial time heuristic for assigning a discrete frequency
to each node.

5.1 ILP-Based Algorithm
The optimal frequency fopti of a communication node and

the optimal frequency foptk,i of a task node are computed as
described in Section 4. We differentiate between the following
two cases for each task or communication node vi:

1) If vi is a task node and its frequency foptk,i is a discrete
frequency of the processor pek where vi is assigned,
assign foptk,i to vi. If vi is a communication node and
its frequency fopti is equal to a discrete link frequency,
assign fopti to vi.

2) If vi is a task node and its frequency foptk,i is not a
discrete frequency of the processor pek where vi is
assigned, find two frequencies fopt,uk,i and fopt,lk,i of the
pek where vi is assigned such that fopt,uk,i is the smallest
discrete frequency of pek larger than foptk,i and fopt,lk,i

is the largest discrete frequency of pek smaller than
foptk,i . Similarly, if vi is a communication node and its
frequency fopti is not a discrete link frequency, find
two discrete frequencies fopt,li and fopt,ui of commu-
nication links such that fopt,ui is the smallest discrete
frequency of communication links larger than fopti and
fopt,li is the largest discrete frequency of communication

links smaller than fopti . Clearly, the optimal discrete
frequency of vi must be either fopt,ui or fopt,li for a
communication node and either fopt,uk,i or fopt,lk,i for a
task node.

We introduce a binary decision variable to select between
fopt,ui and fopt,li if vi is a communication node or between
fopt,uk,i and fopt,lk,i if vi is a task node.

xi =

{
0 if vi uses fopt,li orfopt,lk,i

1 if vi uses fopt,ui orfopt,uk,i

Let V opt be a set of nodes that lie in Case 1. VR = Vs \V opt
is a set of task nodes and V ∗R = V ∗s \V opt is a set of commu-
nication nodes for which Case 2 holds. The expected energy
consumption is now given as Eexp =

∑
vi∈VR

((1−xi)Eopt,lk,i +

xiE
opt,u
k,i)p(vi)+

∑
vi∈V ∗R

((1−xi)Eopt,lcommi
+xiE

opt,u
commi

)p(vi)+

C, where Eopt,lk,i and Eopt,uk,i (given in Equation (1)) are the
energy consumptions of a task node vi on a processor pek
at the frequencies fopt,lk,i and fopt,uk,i , respectively, Eopt,lcommi

and
Eopt,ucommi

(given in Equation (3)) are the energy consumptions
of a communication node vi when all the links on its routing
path operate at the frequencies fopt,li and fopt,ui , respectively
and C is the sum of energy consumption of nodes in V opt.
The ILP problem is formulated as follows:

min{Eexp}
Subject To

∀vi ∈ VR tk,i = topt,lk,i (1− xi) + topt,uk,i xi (12)

∀vi ∈ V ∗R ti = topt,li (1− xi) + topt,ui xi (13)
∀vi ∈ VR ρi + tk,i ≤ d′i (14)

∀vi ∈ V opt, Vs ρi + toptk,i ≤ d
′
i (15)

∀(vi, vj) ∈ Es ∧ vi ∈ V opt, Vs ρ(vi) + toptk,i ≤ ρj (16)

∀(vi, vj) ∈ Es ∧ vi ∈ V opt, V ∗s ρ(vi) + topti ≤ ρj (17)
∀(vi, vj) ∈ Es ∧ vi ∈ VR ρ(vi) + tk,i ≤ ρj (18)
∀(vi, vj) ∈ Es ∧ vi ∈ V ∗R ρ(vi) + ti ≤ ρj (19)

ρi ≥ 0 (20)

The decision variables are task execution time tk,i, commu-
nication time ti, binary variable xi and start time ρi. t

opt,l
k,i

and topt,uk,i are the execution times of the task node vi on
the processor pek where vi is mapped at the frequencies foptk,l

and foptk,u , respectively. topt,li and topt,ui are the communication
times (given in Equation (2)) of the communication node

Page 5712

vi when all the links of the communication path operate
at the frequencies fopt,li and fopt,ui , respectively. toptk,i is the
execution time of the task node vi at frequency level foptk,i and
topti is the communication time of the communication node
vi when all the links of the communication operate at the
frequency fopti . Equation (12) defines the execution time of a
task node. Equation (13) defines the communication time of
a communication node. Equations (14) and (15) collectively
define the deadline constraints, Equations (16), (17), (18) and
(19) collectively define the precedence constraints.

5.2 Heuristic Algorithm
The ILP problem is a well-known NP-Complete problem.

Therefore, the previous ILP-based algorithm is not scalable.
Next, we propose a polynomial time heuristic to assign discrete
frequencies to task and communication nodes. The heuristic
uses the schedule constructed by IOETCS algorithm (Algo-
rithm 1) and works as follows:

1) Compute the cuts of graph G∗ as follows:
• Create a copy G′ of G∗ and repeat the following

steps until G′ is empty:
a) Create a cut containing all the source nodes with

zero in-degree in G′.
b) Remove all the source nodes and their incident

edges from G′.
2) For every node vi ∈ Vs + V ∗s , if its optimal frequency

computed by NLP is a discrete frequency, assign the
optimal frequency to vi. Otherwise, assign fopt,lk,i to vi if
vi is a task node or fopt,li to vi if vi is a communication
node.

3) Construct a new local schedule using the new frequency
such that the order between nodes remain the same as
in the schedule used by the NLP-based algorithm.

4) If there is no late task node, the algorithm terminates.
Otherwise, repeat the following steps until there is no
late task node.
• Find the first late task node vj and repeat the

following steps until vj is not late.
a) Find a set B of nodes where every node vz ∈

B satisfies the following two conditions. First,
vz belongs to the set {vj} ∪ Pred(vj), where
Pred(vj) is a set of predecessors of vj . Second,
the frequency of vz has not been adjusted before
and vz has not been assigned an optimal discrete
frequency by NLP.

b) For every node vi ∈ B, compute its rank. The
rank of vi is a 2-tuple (gi, κi) which reflects
the impact of vi on shifting the late node vj
to an earlier time. Let Cp be a set of nodes
of a cut containing vi, C ′p be Cp ∩ B, FT oldj
the finish time of vj in the current schedule,
FTnewj the finish time of vj after the frequencies
of all the nodes in the set C ′p are increased by
one level, and FTnew,ij the finish time of vj
when the frequency of vi is increased by one
level. The normalized time gain gi of the cut

TABLE I
CHARACTERISTICS OF BENCHMARKS WITHOUT CONDITIONAL

PRECEDENCE CONSTRAINTS.

BM a/b/D Dim BM a/b/D Dim
TG 1 17/19/1.4 4x5 TG 2 20/24/0.77 5x4
TG 2 15/11/0.98 4x5 TG 4 16/12/0.89 5x4
TG 5 27/28/2.4 6x5 TG 6 27/35/2.7 6x5
TG 7 27/39/2.9 6x5 TG 8 30/40/3.45 6x6

TABLE II
CHARACTERISTICS OF BENCHMARKS WITH CONDITIONAL PRECEDENCE

CONSTRAINTS.

BM x/y/z/D Dim BM x/y/z/D Dim
CTG1 17/2/6/0.74 3x3 CTG2 20/1/2/1.06 3x3
CTG3 15/2/4/0.723 3x3 CTG4 17/2/6/0.93 3x3
CTG5 30/4/11/1.73 3x3 CTG6 35/3/8/3.101 3x2
CTG7 33/5/15/3.7128 3x2 CTG8 31/3/9/3.69 3x2

containing vi, is given as gi =
FT old

j −FTnew
j

ET+EC
,

where ET =
∑
vi∈C′p,Vs

(Eopt,uk,i − Eopt,lk,i)p(vi)

and EC =
∑
vi∈C′p,V ∗s

(Eopt,ui − Eopt,li)p(vi).
The normalized time gain κi of vi is computed
as:

κi =

FT old

j −FTnew,i
j

(Eopt,u
i −Eopt,l

i)p(vi)
vi is commun−

ication node
FT old

j −FTnew,i
j

(Eopt,u
k,i −Eopt,l

k,i)p(vi)
vi is task node

c) Select a node with the highest rank by compar-
ing ranks lexicographically. Adjust its frequency
to fopt,ui if vi is a communication node or fopt,uk,i

if vi is a task node. Update the schedule.

6 PERFORMANCE EVALUATION
In this section, we use IOETCS-ILP and IOETCS-Heuristic

to denote our approach using the ILP-based algorithm and
the heuristic, respectively, for assigning a discrete frequency
to each task and each communication. To demonstrate the
effectiveness of IOETCS-ILP and IOETCS-Heuristic, we com-
pare them with three approaches. The first approach is Li-Wu
approach, a state-of-art approach for unconditional task graph
model proposed in [24]. The second approach ILP-vpv-flv that
is the same as IOETCS-ILP except that the NLP and ILP
algorithms are modified such that they only scale processors
frequencies/voltages and assign the maximum link frequency
to all communication nodes. The third approach is ILP-fpv-
vlv that is the same as IOETCS-ILP except the NLP and ILP
algorithms are modified such that they only scale the voltages
of links and assign the maximum processor frequencies to task
nodes.

6.1 Simulation Setup
We use the same experimental setup as in [11], [7], [4].

The technology parameters are taken from [7]. We use two
types of processors in our experiments, Type 1 and Type
2, modelled after the processors in [7] and [8], respectively.
The configuration for NoC links are adopted from [24].
The execution times in cycles of tasks are randomly gener-
ated within [10, 100] × 106 and [5, 10] × 106, respectively.

Page 5713

0

2

4

6

ATR JPEG Encoder

En
er

gy
 C

on
su

m
pt

io
n

(J
ou

le
s)

Benchmarks

IOETCS-ILP IOETCS-Heuristic

Li-Wu Approach

(a) Energy Consumption

0

1

2

3

4

ATR JPEC Encoder

Ti
m

e
(m

in
s)

Benchmarks

IOETCS-ILP IOETCS-Hueristic

Li-Wu Approach

(b) Running Time

Fig. 3. Comparison of real-world benchmarks without conditional precedence
constraints

0

0.5

1

1.5

2

2.5

CTG 1 CTG 2 CTG 3 CTG 4 CTG 5 CTG 6 CTG 7 CTG 8

En
erg

y C
on

sum
pti

on
 (Jo

ule
s)

Benchmarks

IOETCS-ILP IOETCS-Hueristic

ILP-vpv-flv ILP-fpv-vlv

(a) Energy consumption

0

1

2

3

4

5

6

CTG 1 CTG 2 CTG 3 CTG 4 CTG 5 CTG 6 CTG 7 CTG 8

Tim
e (

mi
ns)

Benchmarks

IOETCS-ILP IOETCS-Hueristic

ILP-vpv-flv ILP-fpv-vlv

(b) Running time

Fig. 4. Comparison of eight benchmarks in Table II

The communication volumes are generated randomly within
[80, 800] × 106 in bits. The deadline for each application is
set to twice the makespan of the schedule of the application
constructed by IOETCS algorithm assuming the maximum
processors frequencies, the maximum links frequencies and a
common deadline of 300 seconds for all the tasks so that there
is reasonable slack for energy reduction. All the approaches
are implemented in Matlab version R2015a. We use fmincon,
quadprog and intlinprog solvers to solve the NLP, quadratic
programming and ILP problems, respectively. The hardware
platform consists of Intel(R) Core(TM) i5-4570 CPU with a
clock frequency of 3.20 GHz, 8.00 GB memory, and 3 MB
caches.

6.2 Results and Discussion
6.2.1 Experiments with conditional task graphs: In the

first set of experiments we choose eight benchmarks and their
details are given in Table II where x/y/z/D stands for the
number of tasks, the number of OR-FORK tasks, the number
of conditions and the deadline of the application in seconds,
respectively. The column with heading Dim represents NoC
dimensions. The benchmarks in Table II are the same bench-
marks used in [26].

IOETCS-ILP achieves an average improvement of 31%, a
maximum improvement of 62 % for CTG 7 and a minimum

0

5

10

15

Cruise Control Robot ControlEn
er

gy
 C

on
su

m
pt

io
n

(J
ou

le
s)

Benchmarks

IOETCS-ILP IOETCS-Hueristic
ILP-vpv-flv ILP-fpv-vlv

(a) Energy consumption

0

20

40

60

80

100

Cruise Control Robot Control

Ti
m

e
(m

in
s)

Benchmarks

IOETCS-ILP IOETCS-Hueristic

ILP-vpv-flv ILP-fpv-vlv

(b) Running time

Fig. 5. Comparison of real-world benchmarks with conditional precedence
constraints

0

5

10

15

20

TG 1 TG 2 TG 3 TG 4 TG 5 TG 6 TG 7 TG 8

En
erg

y C
on

sum
pti

on
 (Jo

ule
s)

Benchmarks

IOETCS-ILP IOETCS-Hueristic Li -Wu Approach

(a) Energy consumption

0

10

20

30

40

50

60

70

TG 1 TG 2 TG 3 TG 4 TG 5 TG 6 TG 7 TG 8

Tim
e (

mi
ns)

Benchmarks

IOETCS-ILP IOETCS-Hueristic Li -Wu Approach

(b) Running time

Fig. 6. Comparison of eight benchmarks in Table I

improvement of 1.03 % for CTG 1 over ILP-vpv-flv. It
achieves an average improvement of 27%, a maximum im-
provement of 61% for CTG 3 and a minimum improvement of
7.9% for CTG 6 over ILP-fpv-vlv. IOETCS-Heuristic achieves
an average improvement of 23%, a maximum improvement of
40% for CTG 5 and a minimum improvement of 1.3% for CTG
1 in comparison to ILP-vpv-flv. It achieves an average im-
provement of 18%, a maximum improvement of 61% for CTG
3 and a minimum improvement of 4% for CTG 6 over ILP-fpv-
vlv. We observe that ILP-vpv-flv performs significantly better
in terms of energy consumption if the computation energy
dominates the total energy, and ILP-fpv-vlv performs better if
communication energy dominates the total energy. CTG 5, 6
and 7 favour ILP-fpv-vlv as the communication volumes for
these benchmarks are significantly larger than the execution
times of task nodes. Both IOETCS-ILP and IOETCS-Heuristic
distribute slacks efficiently between communication nodes and
task nodes and thus perform significantly better than ILP-vpv-
flv and ILP-fpv-vlv. In terms of running time both ILP-vpv-
flv and ILP-fpv-vlv run slightly faster than IOETCS-ILP and
IOETCS-Heuristic. This is because the search space of ILP-
vpv-flv and ILP-fpv-vlv is smaller as compared to IOETCS-
ILP and IOETCS-Heuristic. ILP-vpv-flv only scales processor
voltages and ILP-fpv-vlv only scales link voltages. Whereas,
IOETCS-ILP and IOETCS-Heuristic scale both the processor

Page 5714

voltages and the link voltages.
We choose two real-world benchmarks vehicle cruise con-

troller [33] and Robot control [2] that are the task graphs of
actual applications. These benchmarks are executed on 3x3
NoC where the processors are selected randomly as either
Type 1 or Type 2. Both IOETCS-ILP and IOETCS-Heuristic
perform significantly better than ILP-vpv-flv and ILP-fpv-
vlv in terms of energy consumption. In terms of running
time IOETCS-ILP and IOETCS-Heuristic take longer time
compared to ILP-vpv-flv and ILP-fpv-vlv. The reason is that
IOETCS algorithm cannot find a feasible solution for some
sub-problems, and thus the solver takes a longer time to
converge.

6.2.2 Experiments with non-conditional task graphs:
To demonstrate the effectiveness of our approach on task
graphs without conditional precedence constraints, we have
conducted a second set of experiments. We choose eight task
graphs (TG) and their details are given in Table I where
a/b/D stand for the number of tasks, the number of edges and
the deadline of the application in seconds, respectively. The
column with the heading Dim represents NoC dimensions. The
benchmarks in Table II are the same benchmarks used in [26]
except that all the edges are treated as unconditional edges.
Figure 6(a) gives a comparison of 8 benchmarks in Table I
in terms of energy consumption where all the processors are
of Type 1. IOETCS-ILP achieves an average improvement
of 31%, a maximum improvement of 61% for TG 6 and a
minimum improvement of 9% for TG 1 over Li-Wu approach.
IOETCS-Heuristic achieves an average improvement of 20%,
a maximum improvement of 46% for TG 4 and a minimum im-
provement of 2% for TG 1 over Li-Wu approach. We observe
that Li-Wu approach makes very poor mapping decisions for
heterogeneous processors. The benchmarks TG 3, TG 4, TG 6
and TG 8 are executed on MPSoCs where the processors are
randomly selected as either Type 1 or Type 2. The reason for
poor performance of Li-Wu approach is that it does not take
into account the energy profiles of processors when making
mapping decisions. The benchmarks TG 1, TG 2, TG 5 and
TG 8 are executed on MPSoCs with homogeneous processors
(Type 1). As a result, Li-Wu approach performs considerably
better. In terms of running time, IOETCS-ILP and IOETCS-
Heuristic run approximately three times faster than Li-Wu
approach. The major reason is that the genetic algorithm takes
significantly longer time as it constructs a new schedule for
each candidate solution using ETFGBF.

We have chosen two real-world benchmarks JPEG encoder
[22] and Automatic Target Recognition (ATR) [24]. JPEG
encoder is executed on a 3x3 MPSoC and ATR is executed
on a 4x5 MPSoC. The processors are randomly selected as
either Type 1 or Type 2. For both benchmarks, IOETCS-ILP
and IOETCS-Heuristic outperform Li-Wu approach in terms
of both running time and energy consumption.

We observe that the energy consumption of the schedules
produced by IOETCS-Heuristic are close to those of the
schedules produced by IOETCS-ILP. IOETCS-ILP achieves
the average improvement of 11% over IOETCS-Heuristic in
terms of energy consumption for all the problem instances. In
terms of running time, IOETCS-Heuristic runs slightly faster

than IOETCS-ILP.

7 Conclusion
We investigate the problem of energy-aware mapping and

scheduling of tasks and communications with conditional
precedence constraints and individual deadlines on a hetero-
geneous NoC-based MPSoC and propose a novel approach.
Our approach reduces the total expected energy consumption
by collectively optimizing the voltages/frequencies of proces-
sors and NoC links. The IOETCS algorithm maps tasks to
processors and serializes communications that use same com-
munication links. It constructs a unified schedule and assigns
voltages/frequencies to tasks and communications collectively
assuming continuous voltages/frequencies. The IOETCS al-
gorithm significantly narrows down the search space for our
ILP-based algorithm and our heuristic for assigning discrete
frequencies/voltages to tasks and communications. The exper-
imental results show that in terms of energy consumption,
our approach using either ILP or heuristic outperforms the
state-of-the-art approach proposed by Li and Wu [24] that
considers only unconditional task graphs. Compared to the
state-of-the-art approach, our ILP-based approach achieves an
average improvement of 31%, a maximum improvement of
61% and a minimum improvement of 9%, and our heuristic-
based approach achieves an average improvement of 20%, a
maximum improvement of 46% and a minimum improvement
of 2%. In terms of running time, our approach is approximately
3 times faster than the state-of-the-art approach.

8 References
[1] “Mobile processor exynos 5 octa (5422),” http://www.samsung.com/

semiconductor/minisite/Exynos/Solution/MobileProcessor/Exynos 5
Octa 5422.html, accessed: 2017-09-4.

[2] “Standard task graph,” URLhttp://www.kasahara.elec.waseda.ac.jp, ac-
cessed: 2017-09-4.

[3] “Zynq ultrascale+ mpsocs,” https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html, accessed: 2017-09-4.

[4] A. Andrei, P. Eles, Z. Peng, M. T. Schmitz, and B. M. Al Hashimi,
“Energy optimization of multiprocessor systems on chip by voltage
selection,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 15, no. 3, pp. 262–275, 2007.

[5] T. D. Burd and R. W. Brodersen, “Energy efficient cmos microprocessor
design,” in Proceedings of the Twenty-Eighth Hawaii International
Conference on System Sciences, vol. 1. IEEE, 1995, pp. 288–297.

[6] Y. Cai, M. T. Schmitz, B. M. Al-Hashimi, and S. M. Reddy, “Workload-
ahead-driven online energy minimization techniques for battery-powered
embedded systems with time-constraints,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 12, no. 1, p. 5, 2007.

[7] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time
multiprocessor system-on-chip with optimal dvfs and dpm combination,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 13,
no. 3s, p. 111, 2014.

[8] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff
based on the ratio of off-chip access to on-chip computation times,”
IEEE transactions on computer-aided design of integrated circuits and
systems, vol. 24, no. 1, pp. 18–28, 2005.

[9] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of
conditional process graphs for the synthesis of embedded systems,” in
Proceedings of the conference on Design, automation and test in Europe.
IEEE Computer Society, 1998, pp. 132–139.

Page 5715

[10] M. Engel and O. Spinczyk, “A radical approach to network-on-chip
operating systems,” in System Sciences, 2009. HICSS’09. 42nd Hawaii
International Conference on. IEEE, 2009, pp. 1–10.

[11] Y. Ge, Y. Zhang, P. Malani, Q. Wu, and Q. Qiu, “Low power task
scheduling and mapping for applications with conditional branches on
heterogeneous multi-processor system,” Journal of Low Power Electron-
ics, vol. 8, no. 5, pp. 535–551, 2012.

[12] C. H. Gebotys and R. J. Gebotys, “Power minimization in heterogeneous
processing,” in Proceedings of the Twenty-Ninth Hawaii International
Conference on System Sciences, 1996., vol. 1. IEEE, 1996, pp. 330–
337.

[13] P. Ghosh, A. Sen, and A. Hall, “Energy efficient application mapping
to noc processing elements operating at multiple voltage levels,” in
Proceedings of the 2009 3rd ACM/IEEE International Symposium on
Networks-on-Chip. IEEE Computer Society, 2009, pp. 80–85.

[14] Q. Gu, P. Lago, H. Muccini, and S. Potenza, “A categorization of
green practices used by dutch data centers,” Procedia Computer Science,
vol. 19, pp. 770–776, 2013.

[15] G. Guindani and F. G. Moraes, “Achieving qos in noc-based mpsocs
through dynamic frequency scaling,” in 2013 International Symposium
on System on Chip (SoC). IEEE, 2013, pp. 1–6.

[16] B. Guo, J. Yu, B. Liao, D. Yang, and L. Lu, “A green framework for
dbms based on energy-aware query optimization and energy-efficient
query processing,” Journal of Network and Computer Applications,
vol. 84, pp. 118–130, 2017.

[17] J. Guo and M. Potkonjak, “Coarse-grained learning-based dynamic
voltage frequency scaling for video decoding,” in 26th International
Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2016. IEEE, 2016, pp. 84–91.

[18] R. Harmon, H. Demirkan, N. Auseklis, and M. Reinoso, “From green
computing to sustainable it: Developing a sustainable service orien-
tation,” in 43rd Hawaii International Conference on System Sciences
(HICSS), 2010. IEEE, 2010, pp. 1–10.

[19] C. Hasan and Z. J. Haas, “Deadline-aware energy management in
data centers,” in IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2016. IEEE, 2016, pp. 79–84.

[20] W. Huai, Z. Qian, X. Li, G. Luo, and S. Lu, “Energy aware task
scheduling in data centers.” JoWUA, vol. 4, no. 2, pp. 18–38, 2013.

[21] J. Huang, C. Buckl, A. Raabe, and A. Knoll, “Energy-aware task alloca-
tion for network-on-chip based heterogeneous multiprocessor systems,”
in 19th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), 2011. IEEE, 2011, pp. 447–454.

[22] J. In, S. Shirani, and F. Kossentini, “Jpeg compliant efficient progressive
image coding,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, 1998., vol. 5. IEEE, 1998,
pp. 2633–2636.

[23] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip com-
munication architecture exploration: A quantitative evaluation of point-
to-point, bus, and network-on-chip approaches,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 12, no. 3,
p. 23, 2007.

[24] D. Li and J. Wu, “Energy-efficient contention-aware application map-
ping and scheduling on noc-based mpsocs,” Journal of Parallel and
Distributed Computing, vol. 96, pp. 1–11, 2016.

[25] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with
dynamic voltage and frequency scaling for energy minimization in the
mobile cloud computing environment,” IEEE Transactions on Services
Computing, vol. 8, no. 2, pp. 175–186, 2015.

[26] M. Lombardi, M. Milano, M. Ruggiero, and L. Benini, “Stochastic
allocation and scheduling for conditional task graphs in multi-processor
systems-on-chip,” Journal of scheduling, vol. 13, no. 4, pp. 315–345,
2010.

[27] Z. Lu, “Using wormhole switching for networks on chip: Feasibility

analysis and microarchitecture adaptation,” Ph.D. dissertation, KTH,
2005.

[28] P. Malani, P. Mukre, Q. Qiu, and Q. Wu, “Adaptive scheduling and
voltage scaling for multiprocessor real-time applications with non-
deterministic workload,” in Proceedings of the conference on Design,
automation and test in Europe. ACM, 2008, pp. 652–657.

[29] C. Marcon, N. Calazans, F. Moraes, A. Susin, I. Reis, and F. Hessel,
“Exploring noc mapping strategies: an energy and timing aware tech-
nique,” in Proceedings of the conference on Design, Automation and
Test in Europe-Volume 1. IEEE Computer Society, 2005, pp. 502–507.

[30] S. Mittal, “Power management techniques for data centers: A survey,”
arXiv preprint arXiv:1404.6681, 2014.

[31] ——, “A survey of techniques for improving energy efficiency in em-
bedded computing systems,” International Journal of Computer Aided
Engineering and Technology, vol. 6, no. 4, pp. 440–459, 2014.

[32] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb, “The alpha
21364 network architecture,” in Hot Interconnects 9, 2001. IEEE, 2001,
pp. 113–117.

[33] P. Pop, Scheduling and communication synthesis for distributed real-time
systems. Department of Computer and Information Science, Linköpings
universitet, 2000.

[34] A. Roukh, L. Bellatreche, N. Tziritas, and C. Ordonez, “Energy-aware
query processing on a parallel database cluster node,” in Algorithms and
Architectures for Parallel Processing. Springer, 2016, pp. 260–269.

[35] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing throughput
of overprovisioned hpc data centers under a strict power budget,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2014, pp.
807–818.

[36] D. Shin and J. Kim, “Power-aware scheduling of conditional task
graphs in real-time multiprocessor systems,” in Proceedings of the 2003
international symposium on Low power electronics and design. ACM,
2003, pp. 408–413.

[37] ——, “Communication power optimization for network-on-chip archi-
tectures,” Journal of Low Power Electronics, vol. 2, no. 2, pp. 165–176,
2006.

[38] J. Singh, S. Betha, B. Mangipudi, and N. Auluck, “Contention aware
energy efficient scheduling on heterogeneous multiprocessors,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 5, pp.
1251–1264, 2015.

[39] U. U. Tariq and H. Wu, “Energy-aware scheduling of conditional
task graphs with deadlines on mpsocs,” in IEEE 34th International
Conference on Computer Design (ICCD), 2016. IEEE, 2016, pp. 265–
272.

[40] ——, “Energy-aware scheduling of periodic conditional task graphs
on mpsocs,” in Proceedings of the 18th International Conference on
Distributed Computing and Networking. ACM, 2017, p. 13.

[41] D. Wu, B. M. Al-Hashimi, and P. Eles, “Scheduling and mapping
of conditional task graph for the synthesis of low power embedded
systems,” IEE Proceedings-Computers and Digital Techniques, vol. 150,
no. 5, pp. 262–273, 2003.

[42] Z. Xu, Y.-C. Tu, and X. Wang, “Pet: reducing database energy cost
via query optimization,” Proceedings of the VLDB Endowment, vol. 5,
no. 12, pp. 1954–1957, 2012.

[43] T. T. Ye, G. D. Micheli, and L. Benini, “Analysis of power consumption
on switch fabrics in network routers,” in Proceedings of the 39th annual
Design Automation Conference. ACM, 2002, pp. 524–529.

[44] A. N. Yurii Nesterov, Interior Point Polynomial Algorithms in Convex
Programming. SIAM, 1987.

[45] W. Zhang, E. Bai, H. He, and A. M. Cheng, “Solving energy-aware
real-time tasks scheduling problem with shuffled frog leaping algorithm
on heterogeneous platforms,” Sensors, vol. 15, no. 6, pp. 13 778–13 804,
2015.

Page 5716

