
Metamorphic Testing of Navigation Software: A Pilot Study with Google Maps

Joshua Brown, Zhi Quan Zhou†, and Yang-Wai Chow
Institute of Cybersecurity and Cryptology

School of Computing and Information Technology
University of Wollongong

Wollongong, NSW 2522, Australia

Abstract—Millions of people use navigation software every day
to commute and travel. In addition, many systems rely upon the
correctness of navigation software to function, ranging from
directions applications to self-driving machinery. Navigation
software is difficult to test because it is hard or very expensive
to evaluate its output. This difficulty is generally known as the
oracle problem, a fundamental challenge in software testing.
In this study, we propose a metamorphic testing strategy to
alleviate the oracle problem in testing navigation software, and
conduct a case study by testing the Google Maps mobile app, its
web service API, and its graphical user interface. The results
show that our strategy is effective with the detection of several
real-life bugs in Google Maps. This study is the first work on
automated testing of navigation software with the detection of
real-life bugs.

Keywords: Mobile navigation software, Google Maps, di-
rections API, Web service, Graphical User Interface, software
testing, oracle problem, metamorphic testing, verification, val-
idation.

1. Introduction

The road network is a vast and complex system of
interconnecting roads and intersections which are extended
through the use of external services such as a road-ferry. In
the world, there are over 64 million kilometres of road [1]
and it continues to grow and change every day. Navigation
software is designed to plan an optimal route between two
points within the constraints it has been passed; the route
contains the directions that the user should follow to reach
the destination. Navigation systems are one of the most
popular applications on the Internet, and on smart phones.
They are the most popular application installed on over
50% of the global smart phone market [2]. Furthermore,
these systems are mission critical applications, as their
failure could potentially cause traffic accidents, especially
when they are used for the navigation of self-driving cars.
Navigation systems, therefore, must be thoroughly verified
and validated.

To verify and validate software systems, testing is es-
sential. It is widely accepted that, in a typical commercial
software development project, the cost of testing can easily
†Corresponding author. Email: zhiquan@uow.edu.au. Telephone: (+61-2)
4221 5399.

exceed 50% of the total development budget. Testing in-
volves executing the software under test (SUT) with a set of
test cases together with a mechanism against which the tester
can decide whether the outcomes of test case executions are
correct (that is, a test oracle). The oracle problem refers
to the situation where an oracle does not exist or it is
theoretically available but practically too expensive to be
applied. The oracle problem is a fundamental challenge in
software testing practice but this problem is often ignored
by the research community — compared with many other
aspects of testing such as automated test case generation,
the challenge of test oracle automation “has received signif-
icantly less attention, and remains comparatively less well-
solved” [3].

There is a severe oracle problem when testing navigation
software. This is because the real-world road networks are
so complex that in most situations it is infeasible to validate
whether or not a route returned by the navigation software
is correct and optimal, except trivial cases. This difficulty
results in a scenario where developers cannot utilize con-
ventional testing techniques. In fact, there has been little
research on automated testing of navigation software in the
literature. A related study was conducted by Wright et al.
[4], where they manually evaluated the position accuracy
and measurement accuracy (driving distance) computed by
GPS receivers against a local area road map.

A growing body of research and industrial application
has investigated the concept of metamorphic testing (MT)
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], and has
proven MT to be a highly effective testing paradigm for
the detection of real-life software faults in the absence of
an ideal test oracle. The idea of MT is simple: Instead of
focusing on the correctness of each individual output, MT
looks at the relationships among the inputs and outputs of
multiple executions of the SUT. Such relationships are called
metamorphic relations (MRs), and are necessary properties
of the intended software’s functionality. For example, when
testing a web search engine, it is very hard for testers
to assess the quality of the search results, such as their
accuracy and completeness [8]. Nevertheless, MT can be
applied by identifying the following metamorphic relation:
A stable search engine should return similar results for sim-
ilar queries. For instance, although a search for [today’s
movies in Honolulu] and a search for [Honolulu
movies today] may return different results, the two

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50602
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5687

sets of search results should have a large intersection if the
search engine under test is robust [8]. Because MT looks
at the relationships among multiple SUT executions instead
of focusing on the verification of each individual output, it
can be performed in the absence of an ideal oracle, hence
alleviating the oracle problem.

Although the basic concept of MT is simple, it requires
specific study when applied to different application domains
[9]. This is because different application areas can have
different properties of interest to investigate. The present
paper proposes applying MT to test navigation software
in order to alleviate the oracle problem in testing such
systems. A case study has been conducted with Google
Maps, including the testing of its mobile applications, its
web service APIs (namely, the Directions API), as well as its
Graphical User Interface (GUI) at maps.google.com. Google
Maps was selected for the case study because it is the most
popular mapping system by far [2] (except in China, where
Google services could not be accessed).

In this study we ask the following research question:

∙ RQ: Can we have a practical and effective method of
automatically testing navigation systems in the face
of the severe oracle problem?

The contributions of this paper are summarized as fol-
lows:

∙ To the best of our knowledge, this is the first work
in the literature to address automated testing of nav-
igation software.

∙ The detection of real-life bugs in Google Maps is
significant, and demonstrates the effectiveness of our
approach.

The testing methodology presented in this study can also
be applied to other forms of navigation systems beyond
Google Maps, and can be used as the foundation for future
work in the verification and validation of similar systems
such as self-driving cars.

The rest of this paper is organized as follows: Sec-
tion 2 further introduces some background knowledge and
describes our testing approach with a focus on the identi-
fied MRs for the navigation software under test. Section 3
presents our test results by highlighting the detected defects
in Google Maps. Section 4 makes further discussions and
concludes the paper.

2. Our Approach for Testing Navigation Soft-
ware

In this section, we first look at the difficulties in testing
navigation software, and then describe our testing approach.

2.1. Difficulties in Testing Navigation Systems

As explained in Section 1, navigation systems are diffi-
cult to test owing to the oracle problem. Worse, the lack
of system specifications adds further difficulties to user

validation: The vast majority of users do not have access
to the detailed algorithm designs and system/subsystem
specifications of the navigation software they are using.
Without access to these specifications, the user manual or
online help pages are the only type of information source
available to the users. However, as pointed out by Zhou et al.
[8], user manuals or online help pages are usually very brief
and are not equivalent to the system specification defined as
“an adequate guide to building a product that will fulfill its
goals” [15]. Consequently, it is basically impossible for users
to evaluate the navigation system they are using against its
technical specifications or the intended algorithms.

Zhou et al. [8] pointed out that the above phenomenon
can be quite common when testing many types of software
applications such as web services, poorly evolved software,
and open source software, and showed that MT can be an
effective approach to addressing these difficulties caused by
a lack of detailed knowledge about the system design and
specifications coupled with the oracle problem.

For developers of the navigation systems, even if they
have complete documentation and specifications, it is still
very challenging for them to test such systems because of
the complexity of the underlying algorithms and data. As
will be shown in this paper, MT can be an effective testing
approach for both developers and users, as well as third-
party independent testers.

2.2. Metamorphic Testing (MT)

MT [5], [8], [9] alleviates the oracle problem by testing
the SUT against prescribed MRs, which are necessary prop-
erties of the intended program’s behavior. The difference
between MRs and other types of program correctness prop-
erties is that an MR involves multiple executions of the target
program. Even if the correctness of an individual output
cannot be verified due to the lack of an oracle, the tester can
still check whether the expected relationship among multiple
executions is satisfied. If the MR is violated for any of the
test cases, a failure is detected.

For example, let p(G, x, y) be a program that calculates
the shortest path from node x to node y in an undirected
graph G. When G is large and complex, it can be difficult to
verify the output of p because no oracle can be practically
applied. To perform MT in this situation, we can identify
many MRs for the shortest path problem, one of which
can state that swapping the origin and destination nodes
should not affect the length of the calculated shortest path
[16]. Using this MR, a metamorphic test will run p twice,
namely, a source execution on a source input (G1, x1, y1)
to produce a source output, and a follow-up execution on a
follow-up input (G2, x2, y2) to produce a follow-up output,
where G2 = G1, x2 = y1, and y2 = x1. Any violation
of this MR (that is, if the source output and the follow-
up output are found to have different lengths for some test
case(s)) will reveal a fault in p. Many other MRs can also be
identified and used to test p [16], and different MRs often
have different fault-detection capabilities.

Page 5688

When MT was first proposed, it was designed as a
verification technique, where an MR is a necessary property
of the intended algorithm or system specification to be
implemented. In this situation, a violation of the MR reveals
a fault in the implementation. Recently, Zhou et al. [8]
pointed out that MRs can also be defined based on user
expectations “to reflect what they really care about,” rather
than based on the algorithms or system specifications of
the developers—such algorithms and specifications are often
unknown to the users anyway. In this way, MT can be
used as a user-oriented approach to perform validation and
other types of quality assessment (such as the assessment
of usability and functional completeness), and hence MT
has been developed into a unified framework for software
verification, validation, and quality assessment [8].

2.3. The Identified Metamorphic Relations for Nav-
igation Software

In this research, we adopt a user-orientated testing ap-
proach by utilizing the concept of MT, as we identify MRs
for navigation software from a user’s perspective. This is
because the algorithms and detailed system specifications of
the SUT are unavailable for reference. Although this pilot
study has a limited test scope of Google Maps, the approach
proposed here can be applied to test other navigation sys-
tems.

A total of four MRs have been identified, as described
in the subsections below.

2.3.1. MRSimilar. The first MR is named MRSimilar. Its
design is based on the premise that a navigation system
should return similar results for similar queries, in a way
similar to a search engine [8].

For instance, after a source output (a route) is generated
for a source input (an origin and a destination point), we
can produce a follow-up input by very slightly changing the
origin and/or the destination. Then, in most situations, the
follow-up output should be a route having a cost similar
to that of the source output. In this paper, the cost of a
route is in terms of distance or time depending on the user’s
preference; monetary costs are not considered.

More specifically, let d(a, b) be a function that gives
the cost of an optimal route for travel from point a to point
b. MRSimilar states that d(a, b) and d(a′, b′) should be
similar if a ≈ a′ and b ≈ b′. Here, x ≈ y means that x and
y are approximately at the same location.

In our experiments with MRSimilar, each source test
case (namely, an origin and a destination point) was formed
by means of random selection from a set of addresses (to be
explained in Section 2.4), and the corresponding follow-up
test case was produced by adding a tiny amount of distance
(e.g., a few millimeters or centimeters on the same road)
to the origin and/or destination point. A comparison was
then made assessing the difference between the source and
the follow-up outputs. An anomaly would be reported if a
large amount of difference (e.g., more than ten meters) was
detected.

2.3.2. MRRestriction. The second MR is named MR-
Restriction. It employs the navigation system’s ability to
work under different conditions. Examples include avoiding
elements of the route such as tolls, ferries, and highways.
The MR is focused on ensuring that a restrictive condition
does not result in a more desirable/optimal output. More
specifically, MRRestriction states that

dR(a, b) ≥ d(a, b),

where dR(a, b) is a function that gives the cost (distance
or time) of an optimal route for travel from a to b with a
restriction, such as avoiding highways.

MRRestriction can be used to assess how the output
of a navigation system is affected by the rules placed on
the user request or affected by external conditions under
which certain elements of the route are not available (such
as outside ferry operating hours). It is based on the concept
that a query without any restriction should yield a more
beneficial result than a query that has restrictive rules on it.
For example, a route without any restriction should not be
longer and slower than a route that avoids highways.

In the experiments with MRRestriction, each metamor-
phic test started with a source test case and then a follow-up
test case was constructed with the addition of restrictions
such as avoiding ferries, tolls, highways, or a combination
of these restrictions. If a follow-up output was more optimal
than the source output, an anomaly would be reported.
A restriction can be added explicitly by selecting certain
options in the user query or implicitly by setting a travel
time outside certain road/ferry/bus/train operating hours.

2.3.3. MRSplit. The third MR is named MRSplit. It ob-
serves that the cost of a route from a to c via b should
be similar to the cost of a route from a to b plus the cost
of a route from b to c. More generally, MRSplit requires
that dm(a1, a2, … , an) should be similar to d(a1, a2) +
d(a2, a3) + … + d(an−1, an), where dm(a1, a2, … , an)
denotes the cost of an optimal route for travel from a1 to an
via a2, a3, …, an−1.

MRSplit can be used to assess how the output of the
navigation software is affected by intermediate nodes. In our
experiments, each source test case included some waypoint
nodes between the origin and destination, and a series of
follow-up test cases were formed by splitting up the source
test case.

2.3.4. MREnvironment. Our last MR is named MREnvi-
ronment. It assesses how the navigation system’s behavior
is affected by different user environments. An example of
this MR is the same request issued using the API (source
input) and the mobile application (follow-up input)—an
ideal navigation system should return similar results across
these different user environments.

More specifically, let P and Q be two different environ-
ments or platforms. Let dP and dQ be the cost functions for
environments P and Q, respectively. MREnvironment states
that dP (a, b) and dQ(a, b) should be similar.

Page 5689

(a)

(b)

(c)

(d)

Figure 1. Google Maps failure detected using MRSimilar with American addresses. (a) The entire driving direction generated by Google Maps (screenshot
taken at maps.google.com). (b) Zoom in to show that the destination point has been traversed twice in the route. (c) Further zoom in to show the origin
and destination points. (d) A similar failure produced by the Google Maps app for Android on a Samsung Galaxy S4 mobile phone. Page 5690

In our experiments with MREnvironment, each meta-
morphic test consisted of source and a follow-up test cases
involving exactly the same query but different environ-
ments. An anomaly would be reported if the outputs were
significantly different (e.g., having more than ten meters
difference).

2.4. General Design of the Experiments

For the experiments, a set of source test data was gener-
ated by randomly sampling a large number of addresses in
Australia and a small number of addresses in America, as it
was more convenient for the authors to validate Australian
addresses.

An individual address formed the basis of a node. Each
request to the navigation software can be broken down into
five elements: a starting node, an ending node, waypoint
node(s) (that is, the intermediate stop(s)), time (departure
or arrival time), and restrictions.

To ensure a stable and consistent testing environment,
the real-time traffic feature of Google Maps was turned
off during the experiments, as otherwise routing might be
affected by live traffic and the test results might not be
repeatable. To avoid personalized results, the tester did not
log into any online accounts including Google accounts.
Furthermore, when an anomaly was observed, the test was
immediately repeated. An anomaly would be reported only
if it could be reproduced. This treatment was to ensure that
the reported anomalies were not caused by the update or
dynamics of the maps or algorithms.

Apart from the identification of the MRs (which cost
about one hour brainstorming), the testing process was
largely automated by means of test scripts and test drivers.
In this research, a total of 1,000 hours of test executions
were completed across the different environments of Google
Maps. As all of the tests were web-based, the impact of
hardware selection was very small.

3. Issues Detected in Google Maps

Overall, Google Maps passed the majority of the ex-
ecuted tests; however, there were cases where the system
resulted in an unexpected output as detected by MR viola-
tions. A manual inspection of the MR violations revealed
several defects in Google Maps. This section will highlight
some notable examples of these defects.

3.1. Defects Detected by MRSimilar

In this subsection, we report two failures detected by
MRSimilar, where the first failure was detected when search-
ing for a route in America and the second failure was
detected when searching for a route in Australia. In software
testing, a failure refers to erroneous behavior of the SUT.

3.1.1. Searching for a route in America. When Google
Maps was tested against MRSimilar, a source test case

yielded an output that had an expected time duration of 1
minute and a distance of 0.0 miles. The follow-up test case
featured the same starting node and the same conditions and
only modified the ending node by a distance of 0.98 cm; the
follow-up output, however, suddenly changed dramatically
with an expected time duration of 11 minutes and a distance
of 4.3 miles, as shown in Figure 1.

Figure 1 (a) shows the entire driving direction generated
by Google Maps. The screenshot was taken by using a
browser to access the website maps.google.com. Figure 1
(b) zooms in to show a portion of the route surrounding
the origin and destination points. It is surprising to see that
the destination point has been traversed twice in the driving
direction, which is an obvious error. Figure 1 (c) zooms
in further to show a Satellite View of the exact origin and
destination points. Figure 1 (d) is an excerpt of a screenshot
taken from a Samsung Galaxy S4 mobile phone running the
Google Maps app for Android. This screenshot shows that
a similar failure was produced using the mobile device.

Given the extremely small distance between the origin
and destination points shown in Figure 1, a normal driver
would probably not require any navigation software to guide
him or her. It is, however, not the case for self-driving
vehicles or robots because such autonomous machinery
will always rely on software systems to navigate. It is not
acceptable for a driverless car to travel 4.3 miles to reach a
destination that is actually only two meters ahead.

3.1.2. Searching for a route in Australia. Figure 2 shows
another failure detected by MRSimilar, using Australian
addresses. Figure 2 (a) shows a screenshot taken from a
Huawei mobile phone running the Google Maps app for
Android. It shows that Google Maps returned 1 minute
walking distance from the current location to “Unit 9/890
Bourke Street, Zetland NSW.”

To conduct MT, we also queried the Google Maps app
using a slightly modified destination address, which differed
from the previous address only in the unit number (namely,
using “Unit 8” instead of “Unit 9,” as we verified that
“Unit 8” was a valid address), but Google Maps returned a
very different location that was 2 km away, which required
11 minutes driving (Figure 2 (b)) or 26 minutes walking
(Figure 2 (c)). A violation of MRSimilar was reported
because the difference between the “Unit 8” route and the
“Unit 9” route was too large given that they were at the
same street address.

After the MR violation was reported, we manually an-
alyzed the test results to investigate the root cause of the
failure. We first validated that “Unit 8/890 Bourke Street,
Zetland NSW” was indeed a correct address and that Unit 8
and the other units were physically located near each other
at 890 Bourke Street. Figure 3 shows a picture taken at the
entrance to Unit 8 during the site visit. We further found
that Google could not actually locate this unit (although
it had been a valid address for a long time) and therefore
automatically changed the user query from “Unit 8/890
Bourke Street, Zetland NSW” to “Bourke Street, Redfern,
NSW” without explicitly requesting the user to confirm the

Page 5691

(a)

(b)

(c)

Figure 2. A Google Maps app failure on a Huawei Mate 9 Pro mobile phone running Android, detected using MRSimilar with Australian addresses. (a)
Google Maps app returned “1 min” for walking from the current location to “Unit 9/890 Bourke Street, Zetland NSW.” (b) Google Maps app returned
“11 min” for driving from the current location to “Unit 8/890 Bourke Street, Zetland NSW.” (c) Google Maps app returned “26 min” for walking from
the current location to “Unit 8/890 Bourke Street, Zetland NSW.” In (a), (b), and (c), the “current location” was basically the same. It was found that the
location for the address “Unit 8/890 Bourke Street, Zetland NSW” generated by the Google Maps app in (b) and (c) was wrong: It was 2 km away from
the actual location.

Page 5692

Figure 3. Site visit to Unit 8/890 Bourke Street, Zetland, NSW, Australia,
which confirmed that this was a valid physical address and that Unit 8 and
the other units were located near each other.

change. In this modified address, the unit number “8” and
the street number “890” were removed, and the suburb
“Zetland” was changed to “Redfern.” This explains why the
location returned by the Google Maps app was 2 km away.

We recognize that many so called “intelligent” systems
(actually, their developers) might assume that they were
smarter than the human users and therefore could auto-
matically “correct” user input without even informing the
users. This phenomenon was initially reported by Zhou et
al. [8] where they studied web search engines and found
that major search engines could automatically change user
queries without explicitly informing the users, hence reveal-
ing a crucial deficiency in the software system’s functional
completeness.

3.2. Defects Detected by MRRestriction

Figure 4 shows a failure where Google Maps generated
an infeasible route involving vehicular ferries. In Figure 4
(a), the user searched for a route and set the departing time
to be “5:00 AM.” Google Maps returned a route that will
“arrive around 5:30 AM.” The route involved the use of
free vehicular ferry service operated by the government,
which carries cars across the Clarence River. According
to the government official website (Figure 4 (b)), the ferry
operating hours start at 6:00 AM seven days a week. This
means that the route shown in Figure 4 (a) is infeasible for
the user’s travel time (departing at 5:00 AM and arriving
at the destination around 5:30 AM). Google Maps failed
to identify this restriction and still recommended the user
to use the (unavailable) ferry service. Actually, there was a

nearby bridge that should be recommended instead for the
given travel time.

This failure could be potentially due to incorrect ferry
operating time data in the Google Maps database.

3.3. Defects Detected by MRSplit

When testing the Google Maps API against MRSplit,
one of the source test cases involved an origin, a destination,
and eight intermediate nodes. The corresponding follow-up
test cases consisted of the nodes broken up in individual
queries. For the source test case, Google Maps API returned
UNKNOWN_ERROR as follows:

{
" r o u t e s " : [] ,
" s t a t u s " : "UNKNOWN_ERROR"
}

In Google Maps API online documentation, an
UNKNOWN_ERROR indicates that “a directions request
could not be processed due to a server error” [17]. The
“smaller” follow-up test cases, however, did not result in
any error.

To further investigate this issue, we ran the test via
the website GUI at maps.google.com, and the test passed
without causing any failure or error, as shown in Figure 5.
This observation demonstrates that the Google Maps GUI
and API are actually not the same, and in this test the API
appeared to be more vulnerable to “large” input involving
a large number of waypoint nodes. A further investigation
shows that this failure could also be replicated using other
“large” inputs.

3.4. Defects Detected by MREnvironment

More failures were detected that were unique to the
API environment, an example of which is shown in Fig-
ure 6, where a problem related to Geocoding was revealed.
Geocoding is a process of converting addresses into geo-
graphic coordinates. Figure 6 shows that, for the test case
under consideration, the API could not find the address, and
therefore could not generate the geographic coordinates. As
a result, the API could not generate a route, hence reporting
a “NOT_FOUND” status.

When the same query was made via the Google Maps
website GUI, it generated a route without causing any prob-
lem, as shown in Figure 7. This obserevation again suggests
that the Google Maps API was not as reliable as the website
GUI.

4. Discussions and Conclusion

In Section 1, we asked a research question: Can we have
a practical and effective method of automatically testing
navigation systems despite the oracle problem?

To meet this challenge, we proposed applying MT to
test navigation systems, and have completed a pilot study

Page 5693

(a)

(b)

Figure 4. Google Maps returned an infeasible route. (a) Excerpts of a screenshot showing that Google Maps returned a route involving vehicular ferry
service for travel departing at “5:00 AM” and arriving “around 5:30 AM.” (b) Ferry operating times: It starts at 6:00 AM, seven days a week.

using Google Maps. The results of this study provide an
affirmative response to the research question. The detection
of several types of real-life bugs in Google Maps fur-
ther demonstrated the effectiveness of MT in testing “non-
testable programs,” i.e. programs that are difficult to test
due to the lack of an oracle. Our testing approach can be
used by developers for software verification, by users for
software validation, and by independent testers for various
quality assessment purposes.

Compared with the significance of the detection of major
defects across several different environments (namely, the
Google Maps mobile app, its web service API, and its
GUI at maps.google.com), the testing cost was relatively
small. The reported failures could be caused by problems in
the routing algorithms and/or the underlying databases. We
have reported our findings to Google, and received a reply
indicating that these issues are currently being investigated.

This pilot study suggests that navigation systems can
be considered as a special type of search engine, which
accepts user queries and returns routes or driving directions.
Previous results on search engine testing [8] can therefore

be useful for the testing of navigation systems. This research
employed a useful general metamorphic relation (that is, a
pattern of metamorphic relation) that is valid for both search
engines and navigation systems, namely, the software under
test should return similar results for similar queries. This
kind of general MR, or MR pattern, can be used to derive
many concrete MRs. In future research, more effort should
be made into the identification of MR patterns that can be
used across different application domains.

This research can also be significant for the development
of testing techniques for the navigation components of self-
driving vehicles and even self-navigating drones. Future
research will be conducted at a larger scale by taking these
systems into consideration.

Acknowledgments

This work was supported in part by a linkage grant of
the Australian Research Council (project ID: LP160101691)
and an Australian Government Research Training Program
scholarship.

Page 5694

Figure 5. The Google Maps website GUI at maps.google.com successfully passed this test case that had eight intermediate nodes, while the API failed.

" geocoded_waypo in t s " : [
{
" g e o c o d e r _ s t a t u s " : "ZERO_RESULTS"
} ,
{
" g e o c o d e r _ s t a t u s " : "OK" ,
" p l a c e _ i d " : "ChIJd0ShQqAZE2sRLCpaDBjrqUY " ,
" t y p e s " : [" s t r e e t _ a d d r e s s "]
}
] ,
" r o u t e s " : [] ,
" s t a t u s " : "NOT_FOUND"
}

Figure 6. Google Maps API failure: Geocode not found.

Figure 7. For the same test case, the Google Maps website GUI at maps.google.com has passed (as shown in this figure) whereas the Google Maps API
failed (as shown in Figure 6). This problem was detected using MREnvironment.

Page 5695

References

[1] “The world factbook,” Central Intelligence Agency,
2013. [Online]. Available: https://www.cia.gov/library/publications/
the-world-factbook/fields/2085.html

[2] BuiltWith, “Mapping usage statistics,” 2017. [Online]. Available:
https://trends.builtwith.com/mapping

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[4] M. Wright, D. Stallings, and D. Dunn, “The effectiveness of global
positioning system electronic navigation,” in Proceedings of IEEE
SoutheastCon, 2003, pp. 62–67.

[5] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without
the need of oracles,” Information and Software Technology, vol. 45,
no. 1, pp. 1–9, 2003.

[6] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?” IEEE Transac-
tions on Software Engineering, vol. 40, no. 1, pp. 4–22, 2014.

[7] M. Lindvall, D. Ganesan, R. Árdal, and R. E. Wiegand, “Metamorphic
model-based testing applied on NASA DAT – an experience report,”
in Proceedings of the 37th International Conference on Software
Engineering (ICSE’15), 2015, pp. 129–138.

[8] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for
software quality assessment: A study of search engines,” IEEE Trans-
actions on Software Engineering, vol. 42, no. 3, pp. 264–284, 2016.

[9] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey on
metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[10] T. Y. Chen, F.-C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q.
Zhou, “Metamorphic testing for cybersecurity,” Computer, vol. 49,
no. 6, pp. 48–55, 2016.

[11] U. Kanewala, L. L. Pullum, S. Segura, D. Towey, and Z. Q.
Zhou, “Message from the workshop chairs,” in Proceedings of the
IEEE/ACM 1st International Workshop on Metamorphic Testing
(ICSE MET’16), in conjunction with the 38th International Confer-
ence on Software Engineering (ICSE). ACM Press, 2016.

[12] D. C. Jarman, Z. Q. Zhou, and T. Y. Chen, “Metamorphic testing
for Adobe data analytics software,” in Proceedings of the IEEE/ACM
2nd International Workshop on Metamorphic Testing (ICSE MET’17),
in conjunction with the 39th International Conference on Software
Engineering (ICSE), 2017, pp. 21–27.

[13] J. Ding, X.-H. Hu, and V. Gudivada, “A machine learning based
framework for verification and validation of massive scale image
data,” IEEE Transactions on Big Data, in press.

[14] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse,
and Z. Q. Zhou, “Metamorphic testing: A review of challenges and
opportunities,” ACM Computing Surveys, in press.

[15] M. Pezzè and M. Young, Software Testing and Analysis: Process,
Principles, and Techniques. New York: Wiley, 2008.

[16] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou, “Case
studies on the selection of useful relations in metamorphic testing,”
in Proceedings of the 4th Ibero-American Symposium on Software
Engineering and Knowledge Engineering (JIISIC’04). Polytechnic
University of Madrid, 2004, pp. 569–583.

[17] “Google Maps Directions API,” Google, 2016. [Online]. Available:
https://developers.google.com/maps/documentation/directions/intro

Page 5696

