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Abstract

The stable distribution has been shown to more accu-
rately model some aspects of network traffic than alternative
distributions. In this work, we quantitatively examine aspects
of the modeling performance of the stable distribution as
envisioned in a statistical network cyber event detection
system. We examine the flexibility and robustness of the sta-
ble distribution, extending previous work by comparing the
performance of the stable distribution against alternatives
using three different, public network traffic data sets with a
mix of traffic rates and cyber events.

After showing the stable distribution to be the overall
most accurate for the examined scenarios, we use the
Hellinger metric to investigate the ability of the stable
distribution to reduce modeling error when using small
data windows and counting periods. For the selected
case and metric, the stable model is compared to a
Gaussian model and is shown to produce the best overall
fit as well as the best (or at worst, equivalent) fit for all
counting periods. Additionally, the best stable fit occurs
at a counting period that is five times shorter than the
best Gaussian case. These results imply that the stable
distribution can provide a more robust and accurate model
than Gaussian-based alternatives in statistical network
anomaly detection implementations while also facilitating
faster system detection and response.

1. Introduction

Anomaly detection in computer networks has been an
active field of research since the 1980s while yielding very
few widely-adopted solutions [1], [2], [3]. While anonymous
users can now launch denial-of-service (DoS) attacks using
third parties for less than the price of a coffee, data networks
continue to carry ever-increasing loads of critical informa-
tion for services that require a timely and reliable connection
[4].

In an attempt to address the difficulties associated with
handling vast amounts of data while producing a manage-
able number of false detections, the majority of research
efforts over the last decade appear to have focused on

machine learning (ML) detection, or ML techniques in
combination with other methods [5]. The focus of network
anomaly detection research from the most recent survey to
provide such a summary is shown in Table 1.

TABLE 1: Research efforts in network anomaly detection,
2000-2012. Adapted from [5].

Research Area Percentage
Statistical 15

Knowledge based 3

Soft computing 18

Classification 28

Clustering 15

Combination learners 21

Our expectation is that this extended focus on ML
techniques has left the statistical side of the discipline
under-examined. As a result, key advances in both network
anomaly detection and other, relatable disciplines have been
only partially harvested. For instance, Gaussian processes
are often used to model network traffic and detect anomalies,
though their use can require abstractions and inaccuracies
that have been known for quite some time [6], [7]. While
ease-of-analysis and implementation are positive attributes
of traditional approaches, our research considers alternative
models with the goal of reducing modeling errors in order
to improve overall detection system performance. We pro-
pose that by fully exploring and integrating non-Gaussian
estimation and detection techniques and by leveraging the
commoditization of computing power, we can develop real-
time realizations of significantly more accurate statistical
network anomaly detectors.

One objective of this paper is to convey our intended
overall methodology for implementing a statistical anomaly
detector that uses non-Gaussian assumptions in both the
estimation and detection phases. The second objective is to
examine the impacts of some of the detector design choices
(e.g., a priori distribution model, data aggregation period,
and adaptive data collection techniques).

We believe that using the stable distribution in our
system will permit adapting the detection process to better
reflect fundamental characteristics of network traffic [7],
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[8]. To support this, we will quantitatively show that the
best distribution for our chosen traffic feature is the stable
distribution and that its performance can be optimized to
improve fit, which should minimize error thus produce a
more accurate anomaly detection system.

We include initial results that demonstrate the speed,
flexibility, and accuracy improvements enabled by the use
of the stable distribution. Our goal is not to re-prove conclu-
sions in [8], [9] but rather to quantitatively extend their work
to publicly-available, reproducible datasets of real, physical
network traffic across a range of cyber scenarios (e.g.,
benign traffic, SYN flood and low-volume DoS attacks, and
multi-method cyber attack). Additionally, we show using an
analyzed scenario that for the maximum-accuracy case, the
stable distribution permits the use of smaller data windows
and counting periods than the Gaussian distribution and
improves the overall fit to the data. Our results should be
extensible to rapid detection schemes in other disciplines
examining appropriately-distributed data.

This paper is organized as follows. Section 2 provides
background on our anomaly detection model and approach
for reducing errors in the detection process. Section 3
discuses the stable distribution and its application to our
problem. Results are provided in Section 4, and conclusions
are discussed in Section 5.

2. Reducing Avoidable Errors

With a goal of reducing false positive rates closer to a
usable threshold [10], we examined the statistical anomaly
detection process with a focus on identifying processes
that introduce error through assumptions or implementation
decisions that do not respect fundamental truths of the un-
derlying problem. While these design trade-offs are inherent
to most practical implementations of theoretical concepts,
our goal was to identify the likely major sources of these
avoidable errors and then assess whether they could be min-
imized through recent advances, or by adapting approaches
from other disciplines. This approach required two distinct
steps: First understanding the sources of avoidable errors,
and then identifying the steps we would address to reduce
these errors and improve the process. Identifying the sources
of error required a review of the existing literature and
development of a theoretical model for an anomaly detector.

2.1. Anomaly Detection Model

The steps of basic statistical anomaly detection are
straightforward. A simple implementation first obtains and
preprocesses its data, network traffic in our case. The de-
tector then compares the measured data to the normal (i.e.,
benign conditions) estimate, computing the deviation. If the
deviation exceeds an allowed threshold, the detector declares
an anomaly. Algorithms designed to improve detection accu-
racy introduce complexity to this design, through steps such
as updating estimates of normal, adjusting the threshold,
or considering more than one feature of the traffic (e.g.,
packets, bytes, network addresses, etc.).

To assist in understanding design choices and identify
candidate processes for reducing errors, we developed a
detailed model of our intended detection process. Shown in
Fig. 1, our model collects network traffic for a given period
of time, the processing window, $. To eliminate unneces-
sary data in the window, the system filters the collected data
for specific features (e.g., destination IP address or packets
per unit time). A separate process then measures some
aspect of these features over a uniform counting period, the
sub-window (∆sw). Each measurement yields an individual
vector element, pi. To produce the detector input, the process
then concatenates M instances of these measurements pi to
produce the detector input, the feature vector −→p .
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Figure 1: Detection process model

Next the detector compares −→p to an estimated vector
of the feature’s normal, or expected, values. This estimate
of normal is produced though a combination of memory,
weighting (or decay), and updating processes. If the estimate
differs substantially from the current measurement, based
on a distance metric and threshold, an alert is generated
through a scoring and reporting process. Finally, an adaptive
control mechanism can update the threshold, window length,
monitored features, and memory processes, depending on
the complexity of the implemented model.

Mathematically, the number of M elements pi for i ∈
[1,M ] are related to window and sub-window sizes by

M = $/∆sw, (1)

where
$ = [tstop − tstart] (2)

and tstart and tstop are the start and stop times of the data
processing window, respectively.

As we discuss in Section 4.3, the size of the window
and the sub-window can significantly affect the fit of the
model and distribution of features, and thus could influence
the performance of the entire detection system.

2.2. Framework for Reducing Errors

Our review of the literature combined with our process
model in Fig. 1 suggested modifying three system processes
to improve overall system accuracy. First, the traffic model
should reflect the fundamental nature of the monitored
feature. Gaussian distributions are frequently assumed, but
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recent work has shown that alternatives, such as the stable
distribution, more accurately reflect many distributions of
network traffic features [8], [11].

Similarly, our second modification is that the detection
algorithm (”Activity Recognition” in fig. 1) should reflect
the nature of the inputs, both the signal and the noise. It
is a long-identified principle of the radar and underwater
acoustic disciplines that detectors implementing tests based
on non-Gaussian assumptions significantly improve detec-
tion accuracy in non-Gaussian noise conditions [12], [13].
This concept has been validated in additional areas including
the impulsive noise environment that characterizes wireless
communications [14].

Our third process for improvement and the focus of the
work in this paper is data windowing. It is our prediction
that, when more flexible and accurate non-Gaussian distri-
butions are used to model the data, we can further improve
overall system accuracy through tuning the amount of data
aggregation, or window size, and the detector threshold.

This three-process approach is depicted in Fig. 2, which
presents our framework for improving accuracy through
reducing accepted errors in design and implementation. In
this framework, the cascading nature of avoidable errors is
evident and suggests that small improvements in the initial
stages of the process could yield large improvements in
results.
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Figure 2: Chosen framework for reducing avoidable errors

2.3. Background on Windowing

As examining the windowing process is the principal
contribution of this paper, some additional context for our
research may be useful. As a consequence of the Central
Limit Theorem, the distribution of finite-variance data at
sufficiently large aggregations should tend towards Gaus-
sian. However, the distributions of certain aspects of network
traffic have been shown to be fundamentally heavy-tailed
(i.e., not of finite variance) [7], [9].

Accordingly, it is our belief that in some detection
implementations, depending on the amount of aggregation
(i.e., window and sub-window size), processes might display
Gaussian characteristics at larger data windows and non-
Gaussian characteristics at smaller aggregations. Indeed, we
show in Section 4.3 that while counts of packet per sub-
window are Gaussian-distributed for large windows, for
small windows (and sub-windows) these feature vectors
instead possess a stable distribution.

Thus, in order to determine the appropriateness and
accuracy of stable models, we must examine smaller win-
dow lengths. Previous work in the literature has focused on
choosing window sizes that are small enough to minimize
accuracy impacts from other properties of network traffic,
such as non-stationarity and self-similarity [6], [11]. These
concerns may dominate when using large aggregation win-
dows that are most appropriate for a Gaussian distribution;
for instance, [11] used 30-minute windows as the basis for
avoiding non-stationarity effects.

However, the flexibility of the stable distribution permits
significant fit improvements over the Gaussian case when
using small windows, encouraging the introduction of new
window size criteria and enabling the adaptation of the data
to the model. As such, we propose a different optimization
criterion that can shrink the window even further, and in
some cases to seconds: That of maximizing the fit of the
distribution to the data. The shorter windows that result thus
remove error through providing a more accurate estimation
of normal while offering the potential to improve the re-
sponse time of the detection system.

3. The Stable Distribution and Anomaly De-
tection

We will now provide some brief (due to time con-
straints and extensive documentation in existing literature)
background into the mathematical foundations and practical
applications of stable distributions. We refer the interested
reader to the cited references for more comprehensive back-
ground, including [8], [11], [15], and [16].

3.1. Mathematical Characterization

The stable distribution is characterized by four param-
eters representing the size of the tail (α), asymmetry or
skewness (β), dispersion (γ), and location (µ). These four
parameters provide tremendous flexibility, allowing symmet-
ric as well as wholly-skewed forms, but also complicate
fitting the distribution to data. The stable parameters are
constrained per Table 2.

TABLE 2: Stable distribution parameters and constraints

Parameter Property Range
α Tail size (0, 2]

β Asymmetry [−1, 1]
γ Spread [0,∞)

µ Location <

The computational costs of applying the stable distri-
bution are further increased by its lack of a closed-form
solution. It must be defined using its characteristic function
which has two cases depending on the value of α,

E
[
eiθZ

]
= e
−γα|θ|α

[
1−iβ tan(πα

2 )sign(θ)
]
+iµθ

(3)
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for the case of α 6= 1, and

E
[
eiθZ

]
= e
−γ|θ|

[
1+iβ 2

π (ln|θ|) sign(θ)
]
+iµθ

(4)

for α = 1 [15].
The stable distribution is more flexible than other dis-

tributions partially because of its four degrees of freedom
(i.e., parameters α, β, γ, and µ). This allows for the im-
plementation of very expressive models to more accurately
reflect both small and large changes in the underlying time
series. This modeling quality has undoubtedly contributed to
the stable distribution’s adoption in numerous applications
including financial forecasting, sound propagation in water,
radar, geology, and astronomy, among many others [16],
[17].

The stable distribution possesses special cases with
closed-form solutions and heavy tails, including the Gaus-
sian (where α = 2), Cauchy (α = 1), and Lévy (α = 0.5)
distributions. The Gaussian is pertinent as the limiting case
for large window and sub-window sizes, as shown in Section
4.3. Finally, to model highly-impulsive data series where
α < 1, the stable distribution can be restricted to (−∞, µ]
or [µ,∞) through constraining β = {−1, 1} and µ appro-
priately [16].

3.2. Application to Anomaly Detection

The stable distribution has repeatedly been found to
improve signal modeling and detection in the presence of
impulsive noise (or high-variance outliers) [13], [17], [18].
The existence of high variance outliers (demonstrated as
heavy tails) in the distributions of many aspects of network
traffic has been previously demonstrated [7]. These long
tails, as well as the characterization of network traffic as
the result of a combination of the many random processes
of transmitting, transporting, and routing data from source to
destination, warrant the application of the stable distribution
to the networking field as well [18].

However, there are limited examples of this application
in networking literature; most recently, stable distributions
appear to have been used by Simmross-Wattenberg et al.
as traffic models in 2008 [9] and as part of a network
anomaly detector in 2011 [11]. Our review of the literature
identified no subsequent work using stable distributions in
network anomaly detection, though other disciplines such
as radar and image processing continue to apply the stable
distribution to detection problems for the reasons discussed
previously [19], [20].

Despite a lack of follow-on work in the networking and
cyber-security fields, we believe that the flexibility of the
stable distribution, combined with its improved ability to
accurately model network traffic, fully justifies its adoption
in network anomaly detection. This flexibility, including
available constraints, allows the stable distribution to repre-
sent fundamental characteristics of network traffic without
approximation or abstraction. For instance, network traffic
features are usually one-sided, asymmetric, and wholly pos-
itive, characteristics which are native to only a few other

distributions [9]. Also, as we will see in Section 4.2, some
distributions previously used in literature (e.g., Weibull,
gamma) cannot model processes with zero counts, unlike
the stable distribution [6].

The computational cost of utilizing stable distributions is
a likely contributor to its limited adoption to date, even given
the advantages discussed above [16]. However, computing
power continues to increase while costs fall, facilitating
practical implementation of real-time network cyber security
approaches using the stable distribution. Further, other dis-
ciplines, particularly the financial field, have long accepted
the costs of the stable distribution in order to harvest its
benefits of robustness and accuracy. These benefits, as ap-
plied to network traffic modeling, are demonstrated in the
next section.

4. Results

Our preliminary applications of stable distributions to
network traffic quantitatively confirm the conclusions in
[9]. The flexibility and robustness of the stable distribution
enable models that more accurately depict network traffic
than other alternatives, including Gaussian, Poisson, and
gamma distributions, across a range of windows and traffic
scenarios.

4.1. Examined Datasets and Applied Metrics

Previous studies have quantitatively demonstrated the
improved modeling accuracy of stable distributions at both
higher (approx. 30 Mbps) and lower (approx. 0.37 Mbps)
link volumes under benign conditions [11]. We were inter-
ested in the flexibility of the stable distribution as character-
ized by its performance across a range of traffic scenarios,
including sparse links, as well as during transitions in traffic
volume due to background network processes, and during
attacks.

The ISCX dataset [21] was chosen to investigate stable
distribution accuracy in many different scenarios and at low
link volumes; average link volume was 74 kbps for the 14
June trace. This sparse link required data windows on the
order of minutes or hours, and large sub-windows, while
our research objective is ultimately data windows of less
than a minute and sub-windows of milliseconds. However,
the ISCX dataset is publicly-available, contains both high
and low-volume DoS attacks, and is well-documented [22].
Also, the variety of scenarios and relatively low traffic
volume helped to demonstrate the flexibility of the stable
distribution. For the ISCX scenarios, we examined only the
portion of the network traffic destined for the web server (IP
address 192.168.5.122) in two traces from different days, 14
and 15 June.

To validate the effectiveness of the stable distribution at
higher link volumes (16 Mbps), we used a dataset avail-
able from the 2010 Mid-Atlantic Collegiate Cyber Defense
Competition (MACCDC) [23], again filtered for a single
IP address (41.204.84.14). The role of this host was not
identified in the dataset documentation, but we judged that
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filtering for the host was an acceptable abstraction to support
our research goal of identifying various DoS attacks on web
servers.

We then expanded our high link speed analysis using
data from the Measurement and Analysis on the Wide
Internet (MAWI) archive. These datasets are 15-minute trun-
cated captures of anonymized real-world traffic transiting a
trans-Pacific backbone link [24]. The selected MAWI trace
[25] allowed us to extend our analysis to backbone speeds
(approximately 750 Mbps) and seemed most appropriate for
investigating the affects of sub-window size due to its real-
life traffic mix.

Figure 3 summarizes the results of analyzing these 4
different network traffic traces under 15 different scenarios,
for various traffic conditions and window sizes. The feature
collected in all scenarios was packets per sub-window, since
this is a non-spoofable characteristic of DoS attacks as well
as many other cybersecurity anomalies.

Feature vectors from these different scenarios were pro-
cessed using native functionality of MATLAB [26] to fit
various distributions to each filtered trace, and the log like-
lihood (LL) results from the maximum likelihood fit were
recorded and used to assess the fit of each distribution to the
to the associated data set. For each scenario, the results were
then normalized by the LL value of the best-performing
(i.e., closest fit) distribution. For each distribution, the per-
formance across each scenario was then averaged and is
shown by the ”Avg. Normalized LL” in the bottom row of
the figure. Not all scenarios are shown in Fig. 3 due to space
constraints; the displayed scenarios are discussed in further
detail in Section 4.2.

Stable Weibull Exponential Gaussian

1 ISCX 15th Benign Low Vol 60 83 1.00 1.07 1.14 1.45

2 ISCX 15th Benign Mid Vol 60 83 1.01 1.00 1.02 1.03

3 ISCX  15th Attack Transition 60 83 1.00 1.03 2.10 1.03

4 ISCX 15th Flood Attack 60 61 1.00 1.00 3.12 1.01

8 ISCX 15th Scenario 1 10 25 1.00 1.01 1.17 1.67

9 ISCX 15th Scenario 1 (5 min) 10 5 1.04 1.00 1.00 1.08

10 MACCDC 30 Second Trace 1 0.5 1.00 1.09 1.05

11 MACCDC 30 Second Trace 0.1 0.5 1.00 1.82 2.40

12 MACCDC Full Trace 1 5.6 1.00 1.08 1.00

13 MACCDC Full Trace 0.1 5.6 1.00 1.55 1.98

14 MAWI Benign 20150925 0.002 0.07 1.00 1.22 1.01

15 MAWI Attack 20150925 0.01 0.10 1.00 1.27 1.01

1.00 1.02 1.38 1.30

Normalized log-likelihood of given fit:

Avg. Normalized LL for ALL Scenarios (some not shown)

Scenario Trace Scenario

Subwindow 

[sec]

Window 

[min]

Figure 3: Normalized, best fit assessment for distributions in
various traffic scenarios. Values closer to one are better. LL
results of gamma and Poisson distributions were omitted for
display purposes; the Weibull distribution performed better
than the gamma in nearly all scenarios.

The LL value results from use of the maximum like-
lihood algorithm to estimate the unknown parameter θ of
a distribution that is most likely to produce a known data
series with samples Xi. The likelihood function of the
unknown parameter, ϕ(θ), can be defined in terms of the
product of the probability of observing each Xi for a given
value of θ such that

ϕ(θ) = f(X1|θ)× ...× f(Xn|θ) =

M∏
i=1

f(Xi|θ) (5)

for integer i ∈ [1,M ] [27]. By taking the natural log of (5)
and finding the value of θ that maximizes this likelihood, θ̂,
the log-likelihood is calculated as [27]

lnϕ(θ̂) =

M∑
i=1

ln f(Xi|θ̂) (6)

LL is frequently used to determine which distribution
provides the most accurate fit [27]. However, the nature
of the LL prevents it from being a preferred metric for
comparing the fit of a single distribution across data sets
of different sizes, because the LL can be seen in (6) to be
the result of a sum, and as such is dependent on the size of
the dataset used to produce the estimation.

To assess fit of the stable and Gaussian distributions
as a function of sub-window size, we utilized the average
Hellinger metric [28], defined as

S
(−→p , fZ(z)

)
=

1

N

√√√√2

N∑
j=1

(√
hj −

√
fZ(j)

)2

(7)

where fZ(z) is obtained from the results of the maximum
likelihood fit to the histogram of −→p . This histogram has N
bins, each with mean location j and bin value hj for j ∈
[1, N ]. The metric in (7) is averaged by integer N ∈ (0,∞)
to enable comparing fits across data series of different sizes.

4.2. Accuracy and Robustness

The stable distribution provides significant accuracy im-
provements over the selected alternative distributions, as
shown by the Average Normalized LL in Fig. 3. Scenarios
were chosen to examine to assess the flexibility of the
stable distribution under various traffic conditions: benign,
low volume; benign, medium volume, bursty conditions
characteristic of background network processes; part-benign
and part-attack; high-volume DoS; and low-volume DoS.

Additionally, Scenarios 8 and 9 examined the boundaries
of the stable distribution’s performance using part of the
same data as Scenario 1 but with significantly smaller win-
dows and sub-windows. Scenarios 10-12 used the MACCDC
trace to continue exploring the effects of sub-window and
window sizing at higher data rates and the suitability of
the stable distribution to model abnormal traffic conditions
(in this case, heavy cyber attack with limited benign back-
ground). Scenarios 14 and 15 confirmed the previous results
using the most realistic, highest-speed trace (MAWI).

Regarding the examined distributions in Fig. 3, we apply
the exponential distribution in all scenarios as a sort of limit
marker for sparse link conditions, because it demonstrates
the best fit under the lowest-traffic scenarios (e.g., Scenario
9), where there are a large number of sub-windows with low
or zero packet counts. The Weibull and gamma distributions
were not assessed for all scenarios. These distributions,
special cases of the exponential distribution, are constrained
∈ (0,∞), and thus can only be used as models in low-
traffic scenarios if sub-windows with a packet count of zero
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are excluded during the curve fit. These distributions were
initially included to assess potential alternatives, but because
sub-windows with zero packet counts are valid outcomes on
sparse links, we do not consider these distributions viable
alternatives and discontinued their analysis after Scenario
10. Finally, the Poisson distribution (results not shown)
was only assessed for a few scenarios before analysis was
discontinued due to its significantly lower performance than
all other distributions, as previously demonstrated in the
literature [9].

Some interesting conclusions can be drawn from Fig.
3. First, as demonstrated in other disciplines, the heavy-tail
of the stable distribution makes it more robust to outliers
than other distributions. Scenario 1, while low volume on
average (mean of 39 packets per minute), included 4 outlier
packet storms greater than 1500 packets per minute. These
outliers explain the stable distribution’s improved relative
results as compared to Scenario 2, which had no significant
outliers. This robustness continued during actual attacks and
transition periods, when attacks began, such as Scenarios 3,
4, and 7.

The flexibility of the stable distribution is demonstrated
by Scenarios 9 - 11, where we attempted to assess the limits
of the stable distribution by both shrinking the window size
and the aggregation period. This produced a large number
of sub-windows with zero packet counts and an extremely
left-skewed packet count distribution; in Scenario 9 the
exponential distribution was the most accurate. The stable
distribution’s performance did not suffer extremely under
these conditions, however, still producing a better fit than the
Gaussian. This suggests that Scenario 9 parameters provide
a sort of lower bound regarding the smallest achievable
window and sub-window sizes for the trace’s 16 Mbps link
rate.

4.3. Effect of Window and Sub-window Sizes

Two other important conclusions can be drawn from
Figs. 3, and can be conveyed with the help of Fig. 4 and 5,
which compare packet count histograms for different sub-
window sizes. These figures demonstrate the importance
of the stable distribution in network traffic modeling when
utilizing small windows. Small windows are desirable be-
cause they speed detection system response time; faster
data aggregation and comparison leads to faster detection
of cyber security events and response by network defenders.
Comparing Scenarios 12 and 10 (or 13 and 11) for stable fit
relative to the Gaussian case show that the gain from using
the stable distribution improves as window size shrinks from
minutes to seconds. The stable fit converges to Gaussian in
the nearly 6-minute window and 1 second sub-window case
in Fig. 4, but when a smaller window is used (Fig. 5), the
better fit becomes decidedly non-Gaussian due to the heavy
left tail.

A similar effect for sub-window can be visually observed
in Fig. 4. The symmetric and near-Gaussian data distribution
of the 1 second sub-window case in becomes asymmet-
ric and heavy-tailed when 100 millisecond sub-windows

0 100 200 300 400 500 600 700 800 900

Packets per Sub-window

0

0.002

0.004

0.006

0.008

0.01

0.012

D
e

n
s

it
y

Packets per 1 second

  Gaussian fit, 1 s subwindow

  Stable fit, 1 s subwindow

Packets per 0.1 second

  Stable fit, 0.1 s subwindow

  Gaussian fit, 0.1 s subwindow

Figure 4: Measured and estimated distributions of packet
count of the MACCDC trace over 336 seconds (Scenarios
12 and 13). Note that for the 1 second sub-window case, the
Gaussian fit plots on top of the stable fit. The origin bin for the
0.1 second case is truncated for display purposes, and has a
value of 0.237.

are used. The impacts of both sub-window and window
qualitatively show that the stable distribution provides a
better model at smaller aggregation periods. This result is
intuitively satisfying; aggregating less data should move us
farther from the limiting results of the central limit theorem
that lead to a Gaussian result. The implication of this result
is that for anomaly detection systems which use shorter
windows to lower response times, the stable distribution
should be used to model traffic.
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Figure 5: Measured and estimated distributions of packet
count of the MACCDC trace over 30 seconds (Scenarios 10
and 11). The origin bin for the 0.1 second case is truncated
for display purposes, and has a value of 0.131.

4.4. Towards Adaptive Sub-window Sizes

The visual changes in fit of the stable distribution for
different sub-windows imply that it should be possible to
select a sub-window size that minimizes stable fit residuals
(i.e., fit error) for a given link traffic rate. Quantitatively, the
relative LLs of Scenarios 11 and 12 begin to confirm this;
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the Gaussian distribution’s fit grows relatively worse worse
as the sub-window length is shortened from 1 sec to 0.1 sec.

To examine this idea, we analyzed a portion of the
MAWI trace by determining the average Hellinger distance
between the data and best-fit stable and Gaussian distribu-
tions using six sub-window sizes and a fixed window size
of four seconds. Table 3 and Fig. 6 show the results of
this analysis. We find that for a constant window size, the
average divergence (i.e., error of fit) of both distributions
changes with sub-window size and that both cases possess
a global minimum (within the sub-window sizes examined).
The global minimum demonstrates that it should be possible
to optimize fit (and thus detection system accuracy) by
adapting sub-window size when using the stable distribution.

TABLE 3: Average Hellinger distance of stable and Gaussian
fits for constant window size. The 0.5 ms case is not shown
for display purposes; both values in this case are 2.46e-2.

Distribution
Sub-window [ms]

1 2 5 10 20

Stable 1.08e-3 7.79e-4 1.01e-3 1.34e-3 1.51e-3

Gaussian 2.47e-3 1.78e-3 1.60e-3 1.43e-3 1.50e-3
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Figure 6: Average Hellinger distance of the best-fit stable
and Gaussian distributions, for a fixed 4 second window with
varying sub-windows. The 0.5 millisecond case was truncated
for display purposes, and has a value of 0.02462 for both fitted
distributions.

Three aspects of Fig. 6 warrant further discussion. Defin-
ing the smallest distance as the best accuracy, Fig. 6 shows
that the stable distribution’s accuracy in the 1, 2, and 5 ms
cases are better than the Gaussian distribution’s best case.
Second, the stable distribution provides its best accuracy at
a sub-window that is 5 times shorter than the Gaussian best
case, which should lead to a significantly faster anomaly
detection time.

Finally, in the 0.5 and 20 millisecond sub-window cases,
the maximum likelihood estimate for the stable distribution
converged to the Gaussian distribution, as demonstrated by
their equivalent accuracy. Reinforcing this conclusion, the
fitted stable distribution parameters in these two cases are
the special Gaussian case, with α = 2. Thus, the stable dis-
tribution should provide better or equivalent accuracy to the

Gaussian fit in all cases. In all, these results demonstrate the
flexibility of of the stable distribution and its ability provide
accurate estimation at both large and small aggregations.

Moving forward, we continue to acquire large, real-
world data sets and confirm our initial results with more
extensive analysis. We are also assessing empirical and ana-
lytical solutions for optimizing window size based on native
features of the link being monitored, such as background
traffic rate. We expect that analyzing additional realistic
datasets containing a mixture of background traffic will
reinforce our conclusions and more thoroughly demonstrate
the improved fit of the stable distribution at smaller aggre-
gations.

5. Conclusion

This work has demonstrated benefits of using stable
distributions to detect cyber events. For the three datasets
and range of scenarios examined, the stable distribution was
shown to be the most suitable distribution for modeling the
selected feature of packets per sub-window across a range
of different aggregation sizes and network event scenarios.
Integrating the stable distribution model into our planned
detection system, an item of future work, should facilitate
more robust detection even in the presence of large fluctu-
ations of link traffic volume and conditions.

As shown in Fig. 3, the stable distribution can provide
better estimation of normal conditions at low link rates as
well as smaller sub-window and window lengths. This will
speed detection system response since the time to identify an
anomaly is constrained by the window size and processing
costs.

Also, regarding the selection of window and sub-window
sizes, we have clearly shown through Fig. 6 that the accuracy
of the estimated stable fit is significantly influenced by sub-
window size. This demonstrates that fit measures can be
used to optimize the selection of sub-window length when
using the stable distribution. The impact of window size on
distribution fit was also demonstrated qualitatively for the
Gaussian case using Figs. 4 and 5; we expect that this can
be quantitatively extended to the stable distribution in the
future.

Harnessing these conclusions should enable the intro-
duction of new data-adaptive network security techniques
that optimize model fit against shorter system response
times. We expect that combining stable methods of modeling
traffic and detecting anomalies with the data-adaptive tech-
niques demonstrated in this work will significantly improve
the end-to-end accuracy of our planned detection system.
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