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Abstract 

 
Increased reliance on wearables using Bluetooth 

requires additional security and privacy measures to 

protect these devices and personal data, regardless of 

device vendor. Most wearables lack the ability to 

monitor their communication connections and protect 

personal data without assistance. Attackers can force 

wearables to disconnect from base stations. When a 

wearable loses its connection to its base station, an 

attacker can connect to the wearable to steal stored 

personal data or await reconnection to the base station 

to eavesdrop on communications. If the base station 

inadvertently disconnects from the cloud serving a 

security-aware app, it would be unable to respond to a 

rapid change in the security of its current environment. 

We design a personal fog incorporating wearables, a 

base station, and the cloud that allows the wearable to 

be situationally aware and manage inter- and intra-fog 

communications, given local personal fogs with the 

same app.  

 

 

1. Introduction  

 
Bluetooth devices, such as wearables, have become 

ubiquitous in day-to-day life. With this ubiquity comes 

a rush to get devices to market quickly, often at the 

cost of good security and privacy standards. Many of 

the devices currently available use the basic built-in 

Bluetooth security. While this has been improved over 

each new version of the Bluetooth security standard, 

there are many known holes in the previous and current 

standard [7] to necessitate a method of preventing an 

attacker from gaining personal information from user 

devices. Additionally, with an Ubertooth One [8], an 

open-source hardware device capable of intercepting 

Bluetooth transmission, and crackle [2], an open-

sourced software program which can decrypt Bluetooth 

communication packets, an attacker can gain personal 

data by intercepting device communications using the 

built-in Bluetooth standards. 

Without additional security features, many devices 

are open to interference from malicious users. For 

example, an attacker can force the disconnection of a 

wearable from its base station. Once disconnected, the 

attacker can intercept the pairing packets and gain a 

user’s personal information without any alert to the 

user. This method can be exploited to great effect if the 

wearable is transmitting very sensitive data. If 

wearables rely only on default Bluetooth standards, 

they won’t be equipped to prevent attackers from using 

this exploit. More advanced wearables, such as the 

Apple Watch 2, can operate for some period without 

connection to their base station. As these 

advancements proliferate, they open additional attack 

vectors for disconnected, but still operable, wearables. 

If a base station connected to a wearable has a 

method of recognizing its environments’ insecurity, it 

would still have major issues in practical use. First, it 

would need to rely heavily on users informing the 

application that they are unsafe in their current 

environment. This makes this solution far less effective 

for users that do not have the expertise to properly 

evaluate the risk present in their current environment. 

However, users without the proper expertise could 

rely on cloud-computed rules that dictate which 

environments are unsafe. These rules could be 

computed from data that is provided to our application 

by users who are particularly security conscious. Even 

with enough security conscious users, there are no 

guarantees that users would be able to receive updates 

to their application to utilize the new rules being 

created as there are many situations where users would 

have poor-to-no cloud-connectivity. In environments 

where users cannot receive updated rules it is possible 

that they would be transmitting personal data even 

though their environment had already been deemed 

unsafe by the cloud. Finally, as most current wearables 

are unable to differentiate if a connected device is truly 

secure, any information stored on the device could be 

requested by an attacker who connected to a 

disconnected wearable.  

To increase the security of these devices, we need 

wearables that are capable of better managing their 

own Bluetooth connections without requiring direct 

user involvement. Relieving the security and 
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situational awareness burden from the user requires 

management facilities such as knowledge of the 

devices to which it is currently connected, the ability to 

establish new connections to other devices that are not 

its base station, refuse incoming connections, and 

terminate established connections. This additional 

computing power on the edge (i.e. at the wearable) 

would allow the introduction of these facilities to 

increase personal security and privacy of wearable 

operation and data. 

Even with this added power at the edge, current 

consumer wearables require unique APIs for use with 

each device, requiring developers to create applications 

with different code when a new device is introduced. 

This makes it difficult to develop a generic solution 

which will work on multiple devices, and necessitates 

looking at the direction wearables are moving. 

In this paper, we introduce a concept of a personal 

fog computing system as part of the quantified self. It 

requires elevating a wearable to a computational 

device, which has already been shown to be feasible 

with the Apple Watch 2. Adding computational power 

to the edge via the wearable, a personal fog introduces 

wearable autonomy for security protection. This 

architecture contrasts with most of today’s wearables, 

which solely rely on their base station.  

A personal fog has additional benefits. Situational 

awareness can be enhanced by creating a security app, 

downloadable by a wearable, where nearby personal 

fog networks can detect app advertisement and inform 

another’s wearable when a social environment is 

insecure. If a wearable becomes disconnected from its 

base station, either inadvertently or maliciously, we 

describe a method for temporarily fostering wearable 

devices in nearby personal fogs that share the security 

app. Fostering, in this scenario, means sending a single 

packet to “quiet” a rogue wearable in an insecure 

environment until it can reconnect to its base station.  

The app also allows the home base station to quiet its 

wearables. We demonstrate how this solution works by 

implementing it in a small-scale testing environment 

and simulating a large-scale application. We analyze 

our application as it relates to the CIA triad of 

confidentiality, integrity, and availability.  

 

2. Background  

 
Kattepur et al. [6] examined the use of fog 

computing to improve battery life and network 

communication speed of robots performing a 

computationally intensive task. Using the fog, they 

improved latency of communication by 77% when 

sorting information and they achieved a 54% 

improvement to battery life. This method shows the 

improvements that are possible even with similar 

processing power at each level of the fog, as the same 

robots were used for all fog layers. They did not test 

their solution in the real world, however, so it is 

possible issues which could not be simulated may 

occur when attempting to use this method. 

Hong et al. [5] describe a generic fog system 

allowing custom code to be loaded into general fog 

machines based on their location via a simple appkey. 

This system allows developers to deploy their systems 

to fog devices which are already in the locations they 

are targeting. This system would allow our solution to 

adapt to security threats more quickly. However, their 

only test of their system was in simulation.  

Vaquero and Rodero-Merino [9] provide a useful 

definition of what the fog really is. Their discussion on 

what it means to be a fog is vital to the development of 

the fog. They settled on a model needing ubiquitous 

devices communicating with each other to perform 

storage and processing automatically, rewarding users 

who allow their devices to be part of this system. Yi et 

al. [12] provided a survey of fog computing concepts, 

applications, and potential issues in design and 

implementation of a fog computing system based on 

this definition.  

Giang et al. [4] designed a flexible fog computing 

model for use with VANETs. Because VANETs suffer 

from high latency, using the fog by including 

processing on the edge would limit the amount of data 

which needs to be transmitted and, because of the 

proximity to processing nodes, lowers the latency of 

the communication between car and network. This 

paper does not address the issue with a network where 

nodes drop in and out. 

There has been work on wearable devices in 

situations which may require our automatic method of 

quieting devices. Abie and Balasingham [1] focused on 

the creation of a framework for Internet of Things 

devices in the healthcare industry. Their system 

focused on wearable sensors communicating with a 

smartphone which would pass this data on to a 

healthcare professional. This system would be a prime 

target for attackers wishing to steal personal data and 

would likely include many users who are not conscious 

of Bluetooth security practices. This type of system 

directly motivated this work. 

 

3. Prior efforts  

 
3.1. Original solution 

 

Previously, we created an application specific to the 

Apple iPhone that adapted the state of its Bluetooth 

communications based on the perceived security of its 

Page 5565



 

current environment [10]. The application collects as 

much data as it can from the iPhone and its connected 

wearables to determine if it is in an insecure 

environment. Once informed of a potential threat, the 

iPhone maintains a connection to the wearable but does 

not send additional information or request information 

from the wearable until it detected or is informed it is 

in a secure environment. Maintaining the connection 

without information sharing requires the sending of 

exclusively empty packets. An example is shown in 

Figure 1. In this case, the phone is in an insecure 

environment only for communication with a Bluetooth 

headset and was considered secure if the headset was 

not connected, as seen in Figure 1a. Once the headset 

was connected however, the phone recognized the 

insecure environment and stopped sending data to the 

now connected Bluetooth headset, as seen in Figure 1b.  

This method is viable primarily because wearables 

contain storage on the device to collect data when a 

device is disconnected from its base station. Thus, the 

application can stop sending data without losing any 

important information the wearable might still collect. 

Different wearables have different amounts of storage 

for their data, but most can store more than two days’ 

worth of data before overwriting. 

 

 
Figure 1. iPhone application a) before 

adaptation and b) after adaptation 
 

There were issues with this method. First, we chose 

to work with the Apple iPhone, as it is seen by 

developers as the most restrictive platform for app 

development and it is widely used by consumers. 

Porting the application to less restrictive OSs proved 

difficult. For example, the Android framework does 

not allow for specific knowledge of connected 

Bluetooth devices at runtime, requiring workarounds to 

learn what devices are connected.  

3.2. Adding the cloud 
 

To provide a more variable ruleset for wearable 

adaptation while in an insecure environment and 

introduce crowd-sourcing to improve and hasten 

wearable knowledge regarding such environments, we 

extended our app to use cloud-based machine learning 

algorithms to adjust to newly-forming insecure 

environments [11]. This method allowed the app to 

operate regardless of connection to the cloud, as all 

rules would be stored on the device and updated when 

a connection could be reestablished.  

The app took a snapshot of its current state at 

regular intervals. Snapshots included the connected 

devices, all information available to the phone, either 

from the wearable (e.g. heartrate) or from the phone 

itself (e.g. time), and the current security state of the 

environment. The snapshots were passed to our cloud-

based machine learning algorithm, which would use 

existing snapshots to learn to identify potential 

insecure environments. The results of this learning 

were then translated into rules for use in our app.  

Our approach stored all rules on a single cloud 

service which was queried periodically to see if the 

current environment was secure. This method was 

accurate when predicting if an environment was 

insecure and, with the low risk of Wi-Fi encryption 

being broken for secure communication, making it a 

good option for predicting if the phones current 

environment is insecure.  

While the use of a cloud-based machine learning 

algorithm improved the speed at which newly insecure 

environments were discovered, it still allowed for a 

window of time where devices were susceptible. For 

example, if an attacker is sniffing Bluetooth traffic in a 

coffee shop, the cloud would not be able to truly adapt 

to this problem quickly. It would only allow those who 

told the app they were insecure to be secure until the 

cloud was able to “catch up” and tell the other users. 

Thus, an attacker can stay in one place and collect 

information from users who believe they are secure 

until the cloud is able to recognize the newly insecure 

environment. Once discovered, the attacker is free to 

move to a new location which is marked by the cloud 

as secure and start eavesdropping on the 

communications there.  

Another issue with this extension was the inability 

of our app to work for all Bluetooth devices. Because 

many Bluetooth device manufacturers create custom 

APIs for interacting with their devices, we were forced 

to create custom code for each device tested. While it 

was possible to prevent communication with these 

devices, the lack of a generalized Bluetooth API 

prevented us from creating an app that would work 

with every Bluetooth device currently on the market.  
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3.3. Addressing confidentiality, integrity, and 

availability 
 

Our previous app focused on the confidentiality and 

integrity of wearable data by preventing data which 

may be intercepted from being transmitted in insecure 

environments. In both our original solution and the 

improved cloud-based solution, we maintained the 

focus on confidentiality and integrity of the data by 

protecting what was streamed from a wearable device 

to its base station. The drawback is that the data is not 

immediately available when the wearables are forced 

to send empty packets. 

 

4. Designing the personal fog 

 
4.1. Increasing wearable computational power 

 

Informing users of a potentially insecure 

environment should be done as rapidly as possible, 

especially when they are trusting an app to have this 

knowledge.  Relying solely on a cloud service based on 

crowd sourcing means such an app would assume it 

was secure until enough users determined they were 

insecure for our cloud service to learn of a new 

insecure environment. This type of service also 

requires large numbers of users to be engaged in their 

environment and recognize potential insecurities. In 

addition, it requires constant connectivity to obtain 

information from the cloud and to prevent an attacker 

from accessing data stored on a “quieted” wearable.  

To address these pitfalls while retaining the 

benefits of the prior work, we extend our app, 

including the cloud service usage, to a new 

computation and communication model. Moving the 

traditional quantified-self architecture to a personal fog 

is illustrated in Figure 2. The difference in the models 

appears slight, but the personal fog capitalizes on edge 

computing to increase Bluetooth security and privacy. 

The new model allows for rapid communication of 

insecure environments while focusing on the privacy of 

a user’s personal identifying information, moving some 

of the burden of situational awareness from the user to 

the wearable. By increasing the computational power 

on the edge, the wearables can become aware of other 

wearables using the app, as well as their state if 

disconnected, either from the cloud or their base 

station. This increased computational power also 

allows the wearable to process data by checking 

against XML rules provided by the app and stored on 

the device based on the sensor capabilities of the 

wearable. For example, if a wearable has access to 

heartrate sensors, any rules related to heartrate will be 

stored on the device and checked to ensure that, should 

the wearable be in an insecure environment, it will not 

transmit any personal information which may lead to 

the user of the wearable being identified. 

 
Figure 2. Left - current quantified-self model 
Right - personal fog with wearables model 
 

Where the traditional quantified-self has its edge 

devices as the phones, wearable edge devices with 

increased computing power can now process the data 

collected from their own sensors before sending that 

information to the phone. Unlike our previous work, 

this allows the wearable to package its snapshot 

information separately from the phone. The phone can 

perform additional data processing on the stream of 

information it is receiving, such as compressing the 

snapshots from the wearable device or checking device 

specific security rules, before sending to the cloud. As 

before, the cloud will return information on the 

predicted security of the phone and the wearables 

environment, along with learned security rules for the 

devices to follow. With that information, the phone can 

secure itself, as before. However, with increased 

wearable processing power, we can push security and 

privacy information directly to the wearables, allowing 

for finer grained adaptations at the edge. 

Another benefit of the personal fog concept is the 

increased ability to ensure wearables can operate 

securely in insecure environments by incorporating 

wearable situational awareness and intelligence of their 

current security state. If wearables are connected to 

their base station when they enter an insecure 

environment, the method previously used works to 

control transmission. However, it poses a problem if 

the wearable inadvertently disconnects from its base 

station before entering an insecure environment. In this 

case, the wearable would have no knowledge of its 

environmental state and could allow an attacker to 

connect and request data directly from the device. 
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Without information about its current state, the 

disconnected, and more powerful, wearable could not 

stop its communication. Our approach to resolve this 

issue is to enable wearables to communicate with valid 

base stations external to their initial fog, while still 

maintaining privacy and adapting without divulging 

any personal information. We label this interaction as 

fostering fog devices and describe a design and 

implementation of how it can be performed. 

 

4.2. Fostering devices between fogs 
 

Similar to VANETs [4], we establish dynamic 

computational networks between personal fogs to 

perform the fostering. We provide no guarantees that 

specific connections will remain static or that the 

topology of our fog networks will remain the same 

over time. The objective is to implement a network that 

is flexible while remaining true to the fog computing 

paradigm. However, unlike many other applications of 

the fog, our specific problem domain can contain a 

multitude of fog networks each with unknown and 

non-rigid topologies.  

We have designed a set of protocols for fostering 

that use nearby personal fog networks to better aid the 

security of our app users by allowing, not only 

temporary connections between either two nodes in the 

same personal fog network, but also between two 

nodes that do not share a personal fog network. The 

temporary connections made by fostering last only 

long enough to inform the disconnected node of a 

potentially insecure environment before disconnecting, 

ensuring no transfer of personally identifying 

information between the nodes.  

Our communication protocols create temporary 

connections in one of three ways.  

• Foster a disconnected wearable with nearby 

base station 

• Foster a base station disconnected from the 

cloud with a nearby base station 

• Allow two disconnected wearables in the same 

fog to directly communicate 

 

4.2.1. Wearable fostering. To secure wearable 

devices that become disconnected from their base 

station, as seen in Figure 3, we have designed a 

protocol that would allow for connected personal fog 

networks to temporarily foster another network’s 

disconnected wearable device. Through this protocol, 

base stations in each personal fog network can accept 

incoming connection requests to foster a disconnected 

wearable by advertising an app specific service known 

to all devices running our app. 

When a wearable becomes disconnected from its 

base station, it first attempts to discover other base 

stations in the area advertising the app service. If a 

base station which is in an insecure environment 

receives a fostering request, it will inform the wearable 

of the state of the environment to which the wearable 

will respond by adapting its state. The devices will 

then disconnect. 

 

 
Figure 3. Wearable fostering. Left shows an 
unsafe personal fog (purple), right shows a 

disconnected fog device (green) being 
fostered 

 

4.2.2. Base station fostering. If a base station is 

having trouble connecting to the cloud for new 

updates, it will attempt to establish a connection with 

the base station of another personal fog network in the 

vicinity, as seen in Figure 4. The disconnected base 

station attempts to discover nearby base stations 

advertising the app specific service. Once a connection 

has been established, the base stations can share with 

each other their knowledge about the environment and 

adapt their state, as well as the state of their personal 

fog. Such communication events could be triggered 

through one base station receiving an update from the 

cloud, from user input, or from another personal fog 

network if one of the networks were to have multiple 

external base station connections. 

 

 
Figure 4. Fostering a base station. Left shows 

an unsafe personal fog network (purple) 
communicating this to an unaware network 

(green) on right 
 

With this same method, certain base stations can 

have embedded app rules to be proactive and use the 

advertised service to alert other nearby personal fog 

networks that the environment is unsafe, for quicker 

adaptation. Base stations are not required to reflect the 

changes proposed by other personal fog networks, but 
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through this protocol each user can make more 

informed decisions about the risk present to their own 

wearable devices given the alerts received when using 

our app. 

 

4.2.3. Intra-fog fostering. Sibling wearables in a 

single personal fog can connect to one another, as seen 

in Figure 5 to share security awareness. Typically, all 

wearables in a personal fog are connected to a base 

station within that network. These base stations are 

responsible for quieting the wearables in the network if 

the environment is deemed to be unsafe (as discussed 

in Section 3). However, if some of the wearables 

become disconnected from their base station then it is 

possible that they would not be properly quieted when 

the other wearables are, which can increase 

vulnerability to attack at both the wearable and the 

personal fog.  

 

 
Figure 5. Intra-fog communication. Right 

shows a wearable (purple) informing its fog 
neighbor (green) it is unsafe 

 
To prevent this situation, after a wearable has been 

quieted from a base station outside its personal fog, it 

subsequently attempts to establish a connection to its 

sibling wearable devices to inform them of the change 

in the environment. Wearable devices in each personal 

fog network advertise a unique service known only to 

members of that personal fog, restricting discovery. 

Once a wearable device has been quieted, it can 

attempt to discover other wearables which have not 

been quieted through this advertising. This 

communication technique is also useful if multiple 

wearables in the same fog become disconnected 

simultaneously and become fostered by different base 

stations. Following this protocol, disconnected siblings 

can work together to better secure the wearables of 

their own personal network. 
 

4.3. Addressing confidentiality, integrity, and 

availability 
 

An important thing to note about our system is that 

only wearable’s original base station may inform it that 

it is safe again, because it has knowledge of properties 

unique to its personal fog, such as MAC addresses, a 

pre-shared unique ID of its personal fog, and a pre-

shared unique key known only to the base station and 

the device itself. While some of this information, such 

as the MAC address and basic device information, is 

publicly available through a Bluetooth information 

request, the specific ID of the personal fog service and 

the pre-shared key should only be known to trusted 

devices and, being 128 bits long, are essentially not 

guessable by an attacker. We maintain the same level 

of confidentiality of our original app with the fostering 

approach.  It increases the availability of our app data 

by dispersing the responsibility of informing base 

stations and wearable devices of an insecure 

environment. This way, should there be a 

disconnection from the cloud or a rapid change in the 

environment, our app is able to maintain its availability 

for local sharing. By restricting fostering to quieting a 

device, we ensure the integrity of our app data. It is not 

possible for an attacker to claim they are safe and 

prevent the app from recognizing an existing unsafe 

environment, as the app will continue to try to foster 

with other base stations in the area. 
 

5. Implementation 

 
To illustrate the communication protocol within a 

personal fog, we rely on the Bluetooth wearable 

testbed. This testbed, seen in Figure 6, is composed of 

three Raspberry Pi 3s, which can simulate currently 

available wearable devices using the Sense HAT add-

on, USB connection of sensors, and built-in Bluetooth 

capabilities. The testbed provides extra processing 

power and Wi-Fi communication capabilities above 

current wearable technology. This additional 

processing power means a Raspberry Pi can be a client 

or a server at any given time, which allows the 

Raspberry Pis to simulate both the wearable edge and 

the base station within a personal fog.  Using the 

Raspberry Pi as a simulated wearable, we avoid issues 

with proprietary APIs. By simulating the base station, 

we remove the need to port our application and 

experiments to different phones. The Raspberry Pi that 

is simulating the phone layer can communicate through 

Wi-Fi to the cloud, giving us a full simulation of each 

layer of our personal fog, as shown in Figure 2. 

We implemented our original app (from Section 3) 

onto the Raspberry Pis, which migrated it to the 

personal fog, using devices B and C in Figure 6 to act 

as wearable devices connected to device A, which acts 

as the phone or base station. To implement our app, we 

used the Pybluez python library to handle the 

Bluetooth communication between the devices. After 

validating the app functionality on the hardware, we 

then forced a communication disruption with a 
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command from either the cloud or the phone, 

designating device C to represent either the base 

station or a wearable device that is disconnected, 

depending on the fostering solution we target.  We 

assume from this point on that all devices are 

communicating from within our app using the same 

service ID and, when in the same personal fog, using a 

private personal fog service ID. 

 

 
Figure 6. Three Raspberry Pi 3s used to test 

our solution 
 

5.1. Fostering a wearable 
 

As described in Section 4.2, the personal fog we 

construct allows for three types of fostering – wearable 

fostering by a base station, base station fostering by 

another base station, and wearable fostering by another 

wearable. We first examine wearable fostering by a 

base station. When a wearable (recall that it is a 

Raspberry Pi on the personal fog edge in our 

architecture) disconnects from its original base station, 

it can seek to be fostered by another base station 

(another Raspberry Pi) to discover the current 

environment’s security state. It first sends an inquiry to 

all discoverable Bluetooth devices in range, asking for 

the services running on the devices. It may receive 

multiple responses, which when parsed identify valid 

base stations.  

The wearable attempts to connect to the one of the 

valid base stations by sending a connection request as 

shown in the sequence diagram in Figure 7. If the base 

station is its original one, it will attempt connection 

with that first. If this reconnection is unsuccessful, it 

will choose another valid base station that responded.  

Because of the fluidity of the environment, it only 

waits 5 seconds for a base station response before 

choosing a new one to foster with. If all choices are 

exhausted, it waits 1 minute before inquiring again. 

When a base station receives a connection request 

from a wearable, it accepts the connection to begin 

fostering. Fostering occurs when the base station 

signals the wearable that the environment is “unsafe”. 

After sending this message, the base station does not 

accept any data communication from the wearable 

other than what is shown in Figure 7 in the 

confirmation (reply) packet to maintain security within 

the base station. If the wearable attempts to send 

unexpected information, our app assumes it is an 

attacker attempting to gain access to the base station, 

which alerts its user regarding the unsafe environment, 

and quiets its personal fog.  

Once the wearable sends its confirmation packet, it 

disconnects and quiets itself, making it invisible to 

devices that have not already attempted a connection to 

it. It stores all sensor information it collects to be 

broadcast to its base station when it is properly 

reconnected. When quieted, our app on the wearable 

refuses all connection attempts that are not from its 

original base station, as described in Section 4.3.   

Fostering does not occur if the base station informs 

the wearable that the environment is “safe”. With this 

information, the wearable does not initially assume that 

it is truly in a secure environment because the base 

station could be used by an attacker. In this case, the 

wearable does not provide any personal information to 

the potential attacker, as the attacker does not know the 

service ID used by the fostered devices personal fog. 

Instead, the wearable attempts to connect to other valid 

base stations. If no base station identified in the first 

inquiry informs the wearable that it is unsafe, the 

wearable remains active and accepts communication 

from devices which attempt connection using the 

service ID unique to its personal fog, which we 

describe in Section 5.3. 

To validate this solution, we set up a personal fog 

containing device B (Figure 6) as a wearable device 

and device A as the base station for one user. Device C 

represents another user’s wearable which lost contact 

with its base station. Once device C recognizes its 

disconnection, it attempts find a base station to foster 

with. When a base station is found, it attempts to 

connect. Upon connection, A informs C that the state 

of the current environment is unsafe. C stops all 

transmission and remains in a state awaiting 

reconnection. A second experiment has A inform C 

that the state of the current environment is safe. Since 

there are no other base stations available, C does not 

send information to A and remains actively collecting 

data until it can transmit it to its base station.  
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Figure 7. Wearable fostering protocol when environment is unsafe 

 

 

5.2. Fostering a base station 
 

In some instances, wearables may remain 

connected to their base station, but the base station 

might not be informed that their environment is 

“unsafe.” This might be due to a missed update from 

the cloud or an attacker changing environments. 

To better secure personal devices and utilize local 

expertise, base stations from separate fog networks can 

connect to each other, as a form of fostering, to inform 

one another of perceived changes in the environment. 

For example, if a security conscious user, located in 

a coffee shop, noticed a potential attacker or threat, a 

user employing our app will designate himself as 

unsafe, thus shutting off the communication of 

personal data within his or her personal fog network. 

However, other personal fog networks in the area 

managed by less aware users, which run the app, might 

not be immediately privy to the potential threat. 

Fostering introduces the awareness to share this 

knowledge through the temporary connection of base 

stations in distinct personal fogs.  

Once a base station has switched to “unsafe” mode 

and communicated the state to its personal fog, it runs 

an inquiry to discover other base stations in the area. 

Responding base stations treat this unsafe base station 

as a wearable and accept a connection, expecting to 

foster the device. Our unsafe base station sends 

“unsafe” to the fostering base station, as shown in 

Figure 7. Because the external base station is not 

expecting information in a confirmation packet it 

assumes it is unsafe and informs the user, currently 

with a pop-up notification, that it may be in an insecure 

environment. The user is then given the choice to 

ignore the situation and continue sending and receiving 

personal information from their personal fog or to heed 

the warning and quiet its personal fog devices.  

To validate this solution, we shifted the device C 

(Figure 6) into a base station configuration and 

connected a Bluetooth speaker playing music to it. We 

then set the primary fog devices, A and B, into an 

insecure environment. The primary fog immediately 

attempted to connect to device C and sent an unsafe 

message. Upon receipt, we heeded the warning and 

stopped communication, causing our Bluetooth speaker 

to stop receiving music while remaining connected. 

 

5.3. Intra-fog synchronization 
 

Fostering wearables and fostering base stations 

provide two scenarios where devices from two 

independent fog networks might establish inter-fog 

communications to share security information about 

the environment. Once inter-fog fostering has occurred 

for a wearable and it has quieted itself due to an 

“unsafe” message, intra-fog fostering can be used to 

propagate its knowledge to the wearables within its 

original personal fog.  Intra-fog synchronization, or 

wearable to wearable fostering, is needed if the base 

station of personal fog in question has not received the 

unsafe information or a wearable receives an “unsafe” 

message through fostering after being disconnected 

from the base station.  

For this type of fostering, the previously fostered 

wearable with the “unsafe” knowledge performs an 
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inquiry specifically looking for wearables with the 

private service ID known only to members of its 

personal fog. It connects to all wearables that respond 

and sends them the "unsafe” message. This protocol is 

different from what is shown in Figure 7 because the 

wearable sending the inquiry is also the wearable 

sending the “unsafe” message. In this case, the 

receiving wearable reacts as if it is receiving the 

message from a fostering base station. Thus, it quiets 

itself and disconnects.  

To maliciously use the intra-fog communication 

method, an attacker would need to know the private 

fog service ID. As this ID is not shared publicly, it is 

unlikely they will be able to access it. If the attacker 

somehow manages to gain access to this private ID, 

they are only able to quiet the wearables of the 

personal fog, preventing any personal information from 

being obtained by the attacker.  

To validate intra-fog communication on the 

architecture, we set our three Raspberry Pis (Figure 6) 

up as one fog with two wearables, B and C, with A, as 

a base station connected to a Bluetooth speaker. Once 

device A became insecure, it connected to one of the 

wearable devices, in this case device B, and told them 

it was insecure. Device B immediately became 

insecure and attempted to connect to device C which 

was in its fog. After connecting on the service unique 

to its fog, it told the device C it was unsafe and device 

C stopped all communication. After changing the 

service on device A so it was seen as a member of the 

fog belonging to devices B and C, we told them they 

were secure again and all devices began functioning 

normally.  

 

5.4. Addressing confidentiality, integrity, and 

availability 
 

By design, our fostering app maintains our original 

apps focus on confidentiality. We maintain the 

integrity of the wearable date using our fostering 

approach by only acting on unsafe messages and 

disconnecting from a fostering device after only one 

message. Our app remains available to those around it 

through the base stations at all times, but will not allow 

an attacker to gain any information because of the 

instant disconnection. In addition, data and knowledge 

of unsafe environments increases availability than in 

the prior solution.  

 

6. Evaluation 
 

While we can demonstrate a working prototype, we 

need to show that a real-world application is possible 

moving forward.  To do this, we need to show that, for 

a given area, we can ensure that all or most devices 

running our application can foster their wearables, if 

needed, with at least one other device. To test how this 

would work in a real-world environment, we created a 

simulation which allowed users with Bluetooth 

wearables to move around a pre-set environment. We 

allowed modification of the Bluetooth communication 

range, the number of users of our app, the size of the 

area the users were in, and the speed at which users 

could move.  

We tested this method on three different sized 

locations, 10001000 ft., 500500 ft., and 250250 ft., 

with 10, 30, 50, and 100 users in the area with the app. 

We define a time-step as every 2 seconds and assume 

that each user can move a maximum of 25 ft. per time 

step, which puts us at the maximum speed of 8.5 miles 

per hour. This speed is about average running pace of 

an adult. This speed does not flood the network with 

data, a concern in a crowded environment sending 

information to the cloud via Wi-Fi, but is also fast 

enough that we are able to ensure that we do not miss 

any connections that may be made between moving 

devices. We also assume a Bluetooth range of 50 ft., 

which is well within consistent Bluetooth 

communication range, which can range from less than 

33 ft. all the way up to 328 ft., with most devices 

hitting between 33 and 60 ft. [3]. Each simulation was 

run for a total of 40 seconds, or 20 time-steps. We ran 

each setting 100 times to average out any 

inconsistencies that may occur in individual runs.  

The results of this simulation can be seen in Table 

1. As we should expect, the more crowded a general 

area is, the more often all nodes are able to connect to 

at least one other node within 40 seconds. This 

connection shares only one thing, if the fog is in a 

secure environment or not. No other personal 

information is shared between devices or fogs.  

It is important to note that each of the sizes we 

tested is larger than an average coffee shop. This 

shows that, even for a relatively low number of users, 

our application is viable for almost any traditional 

retail location. In fact, our smallest tested size, 

250250 ft., is more square footage than an acre of 

land. Even with this huge size, we still only had 4.7% 

of devices fail to connect to another device over 100 

runs of our simulation with as few as 10 users. 

 

Table 1. Percentage of nodes which failed to 
connect to at least one other node 

10 30 50 100

250 4.7 0.333333 0.04 0

500 32.7 5.5 1.5 0.18

1000 72.5 38.03333 21 5.3

Size of 

Location

% of Nodes Never 

Connected

Number of Users
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 7. Conclusion and future work  

 
In this paper, we extended our previous work 

regarding Bluetooth privacy and security in insecure 

environments by introducing the concept of a personal 

fog to respond to potential security or privacy threats 

more quickly. Additionally, we introduced the concept 

of fostering fogs to allow for expert opinions of 

insecure environments, allowing co-located users of 

our application to respond to newly developing threats 

more quickly. Finally, we showed our application is 

feasible on wearable devices which have control of 

Bluetooth communication by testing our application on 

a testbed built using Raspberry Pi 3s, and showed the 

feasibility of our app in the wild at various user 

densities. 

This app still has room for improvement. Primarily, 

it is still possible for an attacker to prevent a large 

group of users from communicating with their 

wearable devices by using our app and claiming they 

are insecure. While this is not a problem from a data 

interception standpoint, it could cause users to stop 

trusting our app if they are always being told they are 

unsafe. Additionally, our app does require an existing 

user base with at least some users being security 

conscious enough to recognize unsafe environments 

where an attacker may be eavesdropping. Without a 

somewhat large initial security conscious user base, it 

is possible for an attacker to flood the system with 

“safe” signals at a given location and ensure our app 

would never recognize the insecurity of that location.  

Moving forward, we plan to continue working with 

the concept of a personal fog with wearable devices, 

their base station, and the cloud to provide increased 

data security and privacy in insecure environments. We 

plan to examine our fog system with wearable devices 

which connect to additional sensors. This behavior is 

already being seen in consumer devices, such as the 

Apple Watch and AirPods.  

There is also a need for greater analysis of our 

fostering method to ensure that no additional security 

threats are introduced, including an attacker being able 

to lower battery life of wearable devices through 

attacking a device with this app running on it. As there 

is currently not a formal definition of trust in relation 

to Bluetooth device communication, this research 

would greatly benefit from a study examining this. As 

Bluetooth is always improving, this research will need 

to be updated with newer versions of the Bluetooth 

standard to ensure that no new security holes are 

created. This includes looking into security issues 

arising from Bluetooth 5G. Finally, there is a need to 

examine possible security attacks on wearable devices 

more deeply and how our method can be used to 

provide additional security and privacy to a user. 
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