

Securing Wearables through the Creation of a Personal Fog

Charles Walter

The University of Tulsa

 charlie-walter@utulsa.edu

Ian Riley

The University of Tulsa

 ian-riley@utulsa.edu

Rose F. Gamble

The University of Tulsa

 gamble@utulsa.edu

Abstract

Increased reliance on wearables using Bluetooth

requires additional security and privacy measures to

protect these devices and personal data, regardless of

device vendor. Most wearables lack the ability to

monitor their communication connections and protect

personal data without assistance. Attackers can force

wearables to disconnect from base stations. When a

wearable loses its connection to its base station, an

attacker can connect to the wearable to steal stored

personal data or await reconnection to the base station

to eavesdrop on communications. If the base station

inadvertently disconnects from the cloud serving a

security-aware app, it would be unable to respond to a

rapid change in the security of its current environment.

We design a personal fog incorporating wearables, a

base station, and the cloud that allows the wearable to

be situationally aware and manage inter- and intra-fog

communications, given local personal fogs with the

same app.

1. Introduction

Bluetooth devices, such as wearables, have become

ubiquitous in day-to-day life. With this ubiquity comes

a rush to get devices to market quickly, often at the

cost of good security and privacy standards. Many of

the devices currently available use the basic built-in

Bluetooth security. While this has been improved over

each new version of the Bluetooth security standard,

there are many known holes in the previous and current

standard [7] to necessitate a method of preventing an

attacker from gaining personal information from user

devices. Additionally, with an Ubertooth One [8], an

open-source hardware device capable of intercepting

Bluetooth transmission, and crackle [2], an open-

sourced software program which can decrypt Bluetooth

communication packets, an attacker can gain personal

data by intercepting device communications using the

built-in Bluetooth standards.

Without additional security features, many devices

are open to interference from malicious users. For

example, an attacker can force the disconnection of a

wearable from its base station. Once disconnected, the

attacker can intercept the pairing packets and gain a

user’s personal information without any alert to the

user. This method can be exploited to great effect if the

wearable is transmitting very sensitive data. If

wearables rely only on default Bluetooth standards,

they won’t be equipped to prevent attackers from using

this exploit. More advanced wearables, such as the

Apple Watch 2, can operate for some period without

connection to their base station. As these

advancements proliferate, they open additional attack

vectors for disconnected, but still operable, wearables.

If a base station connected to a wearable has a

method of recognizing its environments’ insecurity, it

would still have major issues in practical use. First, it

would need to rely heavily on users informing the

application that they are unsafe in their current

environment. This makes this solution far less effective

for users that do not have the expertise to properly

evaluate the risk present in their current environment.

However, users without the proper expertise could

rely on cloud-computed rules that dictate which

environments are unsafe. These rules could be

computed from data that is provided to our application

by users who are particularly security conscious. Even

with enough security conscious users, there are no

guarantees that users would be able to receive updates

to their application to utilize the new rules being

created as there are many situations where users would

have poor-to-no cloud-connectivity. In environments

where users cannot receive updated rules it is possible

that they would be transmitting personal data even

though their environment had already been deemed

unsafe by the cloud. Finally, as most current wearables

are unable to differentiate if a connected device is truly

secure, any information stored on the device could be

requested by an attacker who connected to a

disconnected wearable.

To increase the security of these devices, we need

wearables that are capable of better managing their

own Bluetooth connections without requiring direct

user involvement. Relieving the security and

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50583
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5564

situational awareness burden from the user requires

management facilities such as knowledge of the

devices to which it is currently connected, the ability to

establish new connections to other devices that are not

its base station, refuse incoming connections, and

terminate established connections. This additional

computing power on the edge (i.e. at the wearable)

would allow the introduction of these facilities to

increase personal security and privacy of wearable

operation and data.

Even with this added power at the edge, current

consumer wearables require unique APIs for use with

each device, requiring developers to create applications

with different code when a new device is introduced.

This makes it difficult to develop a generic solution

which will work on multiple devices, and necessitates

looking at the direction wearables are moving.

In this paper, we introduce a concept of a personal

fog computing system as part of the quantified self. It

requires elevating a wearable to a computational

device, which has already been shown to be feasible

with the Apple Watch 2. Adding computational power

to the edge via the wearable, a personal fog introduces

wearable autonomy for security protection. This

architecture contrasts with most of today’s wearables,

which solely rely on their base station.

A personal fog has additional benefits. Situational

awareness can be enhanced by creating a security app,

downloadable by a wearable, where nearby personal

fog networks can detect app advertisement and inform

another’s wearable when a social environment is

insecure. If a wearable becomes disconnected from its

base station, either inadvertently or maliciously, we

describe a method for temporarily fostering wearable

devices in nearby personal fogs that share the security

app. Fostering, in this scenario, means sending a single

packet to “quiet” a rogue wearable in an insecure

environment until it can reconnect to its base station.

The app also allows the home base station to quiet its

wearables. We demonstrate how this solution works by

implementing it in a small-scale testing environment

and simulating a large-scale application. We analyze

our application as it relates to the CIA triad of

confidentiality, integrity, and availability.

2. Background

Kattepur et al. [6] examined the use of fog

computing to improve battery life and network

communication speed of robots performing a

computationally intensive task. Using the fog, they

improved latency of communication by 77% when

sorting information and they achieved a 54%

improvement to battery life. This method shows the

improvements that are possible even with similar

processing power at each level of the fog, as the same

robots were used for all fog layers. They did not test

their solution in the real world, however, so it is

possible issues which could not be simulated may

occur when attempting to use this method.

Hong et al. [5] describe a generic fog system

allowing custom code to be loaded into general fog

machines based on their location via a simple appkey.

This system allows developers to deploy their systems

to fog devices which are already in the locations they

are targeting. This system would allow our solution to

adapt to security threats more quickly. However, their

only test of their system was in simulation.

Vaquero and Rodero-Merino [9] provide a useful

definition of what the fog really is. Their discussion on

what it means to be a fog is vital to the development of

the fog. They settled on a model needing ubiquitous

devices communicating with each other to perform

storage and processing automatically, rewarding users

who allow their devices to be part of this system. Yi et

al. [12] provided a survey of fog computing concepts,

applications, and potential issues in design and

implementation of a fog computing system based on

this definition.

Giang et al. [4] designed a flexible fog computing

model for use with VANETs. Because VANETs suffer

from high latency, using the fog by including

processing on the edge would limit the amount of data

which needs to be transmitted and, because of the

proximity to processing nodes, lowers the latency of

the communication between car and network. This

paper does not address the issue with a network where

nodes drop in and out.

There has been work on wearable devices in

situations which may require our automatic method of

quieting devices. Abie and Balasingham [1] focused on

the creation of a framework for Internet of Things

devices in the healthcare industry. Their system

focused on wearable sensors communicating with a

smartphone which would pass this data on to a

healthcare professional. This system would be a prime

target for attackers wishing to steal personal data and

would likely include many users who are not conscious

of Bluetooth security practices. This type of system

directly motivated this work.

3. Prior efforts

3.1. Original solution

Previously, we created an application specific to the

Apple iPhone that adapted the state of its Bluetooth

communications based on the perceived security of its

Page 5565

current environment [10]. The application collects as

much data as it can from the iPhone and its connected

wearables to determine if it is in an insecure

environment. Once informed of a potential threat, the

iPhone maintains a connection to the wearable but does

not send additional information or request information

from the wearable until it detected or is informed it is

in a secure environment. Maintaining the connection

without information sharing requires the sending of

exclusively empty packets. An example is shown in

Figure 1. In this case, the phone is in an insecure

environment only for communication with a Bluetooth

headset and was considered secure if the headset was

not connected, as seen in Figure 1a. Once the headset

was connected however, the phone recognized the

insecure environment and stopped sending data to the

now connected Bluetooth headset, as seen in Figure 1b.

This method is viable primarily because wearables

contain storage on the device to collect data when a

device is disconnected from its base station. Thus, the

application can stop sending data without losing any

important information the wearable might still collect.

Different wearables have different amounts of storage

for their data, but most can store more than two days’

worth of data before overwriting.

Figure 1. iPhone application a) before

adaptation and b) after adaptation

There were issues with this method. First, we chose

to work with the Apple iPhone, as it is seen by

developers as the most restrictive platform for app

development and it is widely used by consumers.

Porting the application to less restrictive OSs proved

difficult. For example, the Android framework does

not allow for specific knowledge of connected

Bluetooth devices at runtime, requiring workarounds to

learn what devices are connected.

3.2. Adding the cloud

To provide a more variable ruleset for wearable

adaptation while in an insecure environment and

introduce crowd-sourcing to improve and hasten

wearable knowledge regarding such environments, we

extended our app to use cloud-based machine learning

algorithms to adjust to newly-forming insecure

environments [11]. This method allowed the app to

operate regardless of connection to the cloud, as all

rules would be stored on the device and updated when

a connection could be reestablished.

The app took a snapshot of its current state at

regular intervals. Snapshots included the connected

devices, all information available to the phone, either

from the wearable (e.g. heartrate) or from the phone

itself (e.g. time), and the current security state of the

environment. The snapshots were passed to our cloud-

based machine learning algorithm, which would use

existing snapshots to learn to identify potential

insecure environments. The results of this learning

were then translated into rules for use in our app.

Our approach stored all rules on a single cloud

service which was queried periodically to see if the

current environment was secure. This method was

accurate when predicting if an environment was

insecure and, with the low risk of Wi-Fi encryption

being broken for secure communication, making it a

good option for predicting if the phones current

environment is insecure.

While the use of a cloud-based machine learning

algorithm improved the speed at which newly insecure

environments were discovered, it still allowed for a

window of time where devices were susceptible. For

example, if an attacker is sniffing Bluetooth traffic in a

coffee shop, the cloud would not be able to truly adapt

to this problem quickly. It would only allow those who

told the app they were insecure to be secure until the

cloud was able to “catch up” and tell the other users.

Thus, an attacker can stay in one place and collect

information from users who believe they are secure

until the cloud is able to recognize the newly insecure

environment. Once discovered, the attacker is free to

move to a new location which is marked by the cloud

as secure and start eavesdropping on the

communications there.

Another issue with this extension was the inability

of our app to work for all Bluetooth devices. Because

many Bluetooth device manufacturers create custom

APIs for interacting with their devices, we were forced

to create custom code for each device tested. While it

was possible to prevent communication with these

devices, the lack of a generalized Bluetooth API

prevented us from creating an app that would work

with every Bluetooth device currently on the market.

Page 5566

3.3. Addressing confidentiality, integrity, and

availability

Our previous app focused on the confidentiality and

integrity of wearable data by preventing data which

may be intercepted from being transmitted in insecure

environments. In both our original solution and the

improved cloud-based solution, we maintained the

focus on confidentiality and integrity of the data by

protecting what was streamed from a wearable device

to its base station. The drawback is that the data is not

immediately available when the wearables are forced

to send empty packets.

4. Designing the personal fog

4.1. Increasing wearable computational power

Informing users of a potentially insecure

environment should be done as rapidly as possible,

especially when they are trusting an app to have this

knowledge. Relying solely on a cloud service based on

crowd sourcing means such an app would assume it

was secure until enough users determined they were

insecure for our cloud service to learn of a new

insecure environment. This type of service also

requires large numbers of users to be engaged in their

environment and recognize potential insecurities. In

addition, it requires constant connectivity to obtain

information from the cloud and to prevent an attacker

from accessing data stored on a “quieted” wearable.

To address these pitfalls while retaining the

benefits of the prior work, we extend our app,

including the cloud service usage, to a new

computation and communication model. Moving the

traditional quantified-self architecture to a personal fog

is illustrated in Figure 2. The difference in the models

appears slight, but the personal fog capitalizes on edge

computing to increase Bluetooth security and privacy.

The new model allows for rapid communication of

insecure environments while focusing on the privacy of

a user’s personal identifying information, moving some

of the burden of situational awareness from the user to

the wearable. By increasing the computational power

on the edge, the wearables can become aware of other

wearables using the app, as well as their state if

disconnected, either from the cloud or their base

station. This increased computational power also

allows the wearable to process data by checking

against XML rules provided by the app and stored on

the device based on the sensor capabilities of the

wearable. For example, if a wearable has access to

heartrate sensors, any rules related to heartrate will be

stored on the device and checked to ensure that, should

the wearable be in an insecure environment, it will not

transmit any personal information which may lead to

the user of the wearable being identified.

Figure 2. Left - current quantified-self model
Right - personal fog with wearables model

Where the traditional quantified-self has its edge

devices as the phones, wearable edge devices with

increased computing power can now process the data

collected from their own sensors before sending that

information to the phone. Unlike our previous work,

this allows the wearable to package its snapshot

information separately from the phone. The phone can

perform additional data processing on the stream of

information it is receiving, such as compressing the

snapshots from the wearable device or checking device

specific security rules, before sending to the cloud. As

before, the cloud will return information on the

predicted security of the phone and the wearables

environment, along with learned security rules for the

devices to follow. With that information, the phone can

secure itself, as before. However, with increased

wearable processing power, we can push security and

privacy information directly to the wearables, allowing

for finer grained adaptations at the edge.

Another benefit of the personal fog concept is the

increased ability to ensure wearables can operate

securely in insecure environments by incorporating

wearable situational awareness and intelligence of their

current security state. If wearables are connected to

their base station when they enter an insecure

environment, the method previously used works to

control transmission. However, it poses a problem if

the wearable inadvertently disconnects from its base

station before entering an insecure environment. In this

case, the wearable would have no knowledge of its

environmental state and could allow an attacker to

connect and request data directly from the device.

Page 5567

Without information about its current state, the

disconnected, and more powerful, wearable could not

stop its communication. Our approach to resolve this

issue is to enable wearables to communicate with valid

base stations external to their initial fog, while still

maintaining privacy and adapting without divulging

any personal information. We label this interaction as

fostering fog devices and describe a design and

implementation of how it can be performed.

4.2. Fostering devices between fogs

Similar to VANETs [4], we establish dynamic

computational networks between personal fogs to

perform the fostering. We provide no guarantees that

specific connections will remain static or that the

topology of our fog networks will remain the same

over time. The objective is to implement a network that

is flexible while remaining true to the fog computing

paradigm. However, unlike many other applications of

the fog, our specific problem domain can contain a

multitude of fog networks each with unknown and

non-rigid topologies.

We have designed a set of protocols for fostering

that use nearby personal fog networks to better aid the

security of our app users by allowing, not only

temporary connections between either two nodes in the

same personal fog network, but also between two

nodes that do not share a personal fog network. The

temporary connections made by fostering last only

long enough to inform the disconnected node of a

potentially insecure environment before disconnecting,

ensuring no transfer of personally identifying

information between the nodes.

Our communication protocols create temporary

connections in one of three ways.

• Foster a disconnected wearable with nearby

base station

• Foster a base station disconnected from the

cloud with a nearby base station

• Allow two disconnected wearables in the same

fog to directly communicate

4.2.1. Wearable fostering. To secure wearable

devices that become disconnected from their base

station, as seen in Figure 3, we have designed a

protocol that would allow for connected personal fog

networks to temporarily foster another network’s

disconnected wearable device. Through this protocol,

base stations in each personal fog network can accept

incoming connection requests to foster a disconnected

wearable by advertising an app specific service known

to all devices running our app.

When a wearable becomes disconnected from its

base station, it first attempts to discover other base

stations in the area advertising the app service. If a

base station which is in an insecure environment

receives a fostering request, it will inform the wearable

of the state of the environment to which the wearable

will respond by adapting its state. The devices will

then disconnect.

Figure 3. Wearable fostering. Left shows an
unsafe personal fog (purple), right shows a

disconnected fog device (green) being
fostered

4.2.2. Base station fostering. If a base station is

having trouble connecting to the cloud for new

updates, it will attempt to establish a connection with

the base station of another personal fog network in the

vicinity, as seen in Figure 4. The disconnected base

station attempts to discover nearby base stations

advertising the app specific service. Once a connection

has been established, the base stations can share with

each other their knowledge about the environment and

adapt their state, as well as the state of their personal

fog. Such communication events could be triggered

through one base station receiving an update from the

cloud, from user input, or from another personal fog

network if one of the networks were to have multiple

external base station connections.

Figure 4. Fostering a base station. Left shows

an unsafe personal fog network (purple)
communicating this to an unaware network

(green) on right

With this same method, certain base stations can

have embedded app rules to be proactive and use the

advertised service to alert other nearby personal fog

networks that the environment is unsafe, for quicker

adaptation. Base stations are not required to reflect the

changes proposed by other personal fog networks, but

Page 5568

through this protocol each user can make more

informed decisions about the risk present to their own

wearable devices given the alerts received when using

our app.

4.2.3. Intra-fog fostering. Sibling wearables in a

single personal fog can connect to one another, as seen

in Figure 5 to share security awareness. Typically, all

wearables in a personal fog are connected to a base

station within that network. These base stations are

responsible for quieting the wearables in the network if

the environment is deemed to be unsafe (as discussed

in Section 3). However, if some of the wearables

become disconnected from their base station then it is

possible that they would not be properly quieted when

the other wearables are, which can increase

vulnerability to attack at both the wearable and the

personal fog.

Figure 5. Intra-fog communication. Right

shows a wearable (purple) informing its fog
neighbor (green) it is unsafe

To prevent this situation, after a wearable has been

quieted from a base station outside its personal fog, it

subsequently attempts to establish a connection to its

sibling wearable devices to inform them of the change

in the environment. Wearable devices in each personal

fog network advertise a unique service known only to

members of that personal fog, restricting discovery.

Once a wearable device has been quieted, it can

attempt to discover other wearables which have not

been quieted through this advertising. This

communication technique is also useful if multiple

wearables in the same fog become disconnected

simultaneously and become fostered by different base

stations. Following this protocol, disconnected siblings

can work together to better secure the wearables of

their own personal network.

4.3. Addressing confidentiality, integrity, and

availability

An important thing to note about our system is that

only wearable’s original base station may inform it that

it is safe again, because it has knowledge of properties

unique to its personal fog, such as MAC addresses, a

pre-shared unique ID of its personal fog, and a pre-

shared unique key known only to the base station and

the device itself. While some of this information, such

as the MAC address and basic device information, is

publicly available through a Bluetooth information

request, the specific ID of the personal fog service and

the pre-shared key should only be known to trusted

devices and, being 128 bits long, are essentially not

guessable by an attacker. We maintain the same level

of confidentiality of our original app with the fostering

approach. It increases the availability of our app data

by dispersing the responsibility of informing base

stations and wearable devices of an insecure

environment. This way, should there be a

disconnection from the cloud or a rapid change in the

environment, our app is able to maintain its availability

for local sharing. By restricting fostering to quieting a

device, we ensure the integrity of our app data. It is not

possible for an attacker to claim they are safe and

prevent the app from recognizing an existing unsafe

environment, as the app will continue to try to foster

with other base stations in the area.

5. Implementation

To illustrate the communication protocol within a

personal fog, we rely on the Bluetooth wearable

testbed. This testbed, seen in Figure 6, is composed of

three Raspberry Pi 3s, which can simulate currently

available wearable devices using the Sense HAT add-

on, USB connection of sensors, and built-in Bluetooth

capabilities. The testbed provides extra processing

power and Wi-Fi communication capabilities above

current wearable technology. This additional

processing power means a Raspberry Pi can be a client

or a server at any given time, which allows the

Raspberry Pis to simulate both the wearable edge and

the base station within a personal fog. Using the

Raspberry Pi as a simulated wearable, we avoid issues

with proprietary APIs. By simulating the base station,

we remove the need to port our application and

experiments to different phones. The Raspberry Pi that

is simulating the phone layer can communicate through

Wi-Fi to the cloud, giving us a full simulation of each

layer of our personal fog, as shown in Figure 2.

We implemented our original app (from Section 3)

onto the Raspberry Pis, which migrated it to the

personal fog, using devices B and C in Figure 6 to act

as wearable devices connected to device A, which acts

as the phone or base station. To implement our app, we

used the Pybluez python library to handle the

Bluetooth communication between the devices. After

validating the app functionality on the hardware, we

then forced a communication disruption with a

Page 5569

command from either the cloud or the phone,

designating device C to represent either the base

station or a wearable device that is disconnected,

depending on the fostering solution we target. We

assume from this point on that all devices are

communicating from within our app using the same

service ID and, when in the same personal fog, using a

private personal fog service ID.

Figure 6. Three Raspberry Pi 3s used to test

our solution

5.1. Fostering a wearable

As described in Section 4.2, the personal fog we

construct allows for three types of fostering – wearable

fostering by a base station, base station fostering by

another base station, and wearable fostering by another

wearable. We first examine wearable fostering by a

base station. When a wearable (recall that it is a

Raspberry Pi on the personal fog edge in our

architecture) disconnects from its original base station,

it can seek to be fostered by another base station

(another Raspberry Pi) to discover the current

environment’s security state. It first sends an inquiry to

all discoverable Bluetooth devices in range, asking for

the services running on the devices. It may receive

multiple responses, which when parsed identify valid

base stations.

The wearable attempts to connect to the one of the

valid base stations by sending a connection request as

shown in the sequence diagram in Figure 7. If the base

station is its original one, it will attempt connection

with that first. If this reconnection is unsuccessful, it

will choose another valid base station that responded.

Because of the fluidity of the environment, it only

waits 5 seconds for a base station response before

choosing a new one to foster with. If all choices are

exhausted, it waits 1 minute before inquiring again.

When a base station receives a connection request

from a wearable, it accepts the connection to begin

fostering. Fostering occurs when the base station

signals the wearable that the environment is “unsafe”.

After sending this message, the base station does not

accept any data communication from the wearable

other than what is shown in Figure 7 in the

confirmation (reply) packet to maintain security within

the base station. If the wearable attempts to send

unexpected information, our app assumes it is an

attacker attempting to gain access to the base station,

which alerts its user regarding the unsafe environment,

and quiets its personal fog.

Once the wearable sends its confirmation packet, it

disconnects and quiets itself, making it invisible to

devices that have not already attempted a connection to

it. It stores all sensor information it collects to be

broadcast to its base station when it is properly

reconnected. When quieted, our app on the wearable

refuses all connection attempts that are not from its

original base station, as described in Section 4.3.

Fostering does not occur if the base station informs

the wearable that the environment is “safe”. With this

information, the wearable does not initially assume that

it is truly in a secure environment because the base

station could be used by an attacker. In this case, the

wearable does not provide any personal information to

the potential attacker, as the attacker does not know the

service ID used by the fostered devices personal fog.

Instead, the wearable attempts to connect to other valid

base stations. If no base station identified in the first

inquiry informs the wearable that it is unsafe, the

wearable remains active and accepts communication

from devices which attempt connection using the

service ID unique to its personal fog, which we

describe in Section 5.3.

To validate this solution, we set up a personal fog

containing device B (Figure 6) as a wearable device

and device A as the base station for one user. Device C

represents another user’s wearable which lost contact

with its base station. Once device C recognizes its

disconnection, it attempts find a base station to foster

with. When a base station is found, it attempts to

connect. Upon connection, A informs C that the state

of the current environment is unsafe. C stops all

transmission and remains in a state awaiting

reconnection. A second experiment has A inform C

that the state of the current environment is safe. Since

there are no other base stations available, C does not

send information to A and remains actively collecting

data until it can transmit it to its base station.

Page 5570

Figure 7. Wearable fostering protocol when environment is unsafe

5.2. Fostering a base station

In some instances, wearables may remain

connected to their base station, but the base station

might not be informed that their environment is

“unsafe.” This might be due to a missed update from

the cloud or an attacker changing environments.

To better secure personal devices and utilize local

expertise, base stations from separate fog networks can

connect to each other, as a form of fostering, to inform

one another of perceived changes in the environment.

For example, if a security conscious user, located in

a coffee shop, noticed a potential attacker or threat, a

user employing our app will designate himself as

unsafe, thus shutting off the communication of

personal data within his or her personal fog network.

However, other personal fog networks in the area

managed by less aware users, which run the app, might

not be immediately privy to the potential threat.

Fostering introduces the awareness to share this

knowledge through the temporary connection of base

stations in distinct personal fogs.

Once a base station has switched to “unsafe” mode

and communicated the state to its personal fog, it runs

an inquiry to discover other base stations in the area.

Responding base stations treat this unsafe base station

as a wearable and accept a connection, expecting to

foster the device. Our unsafe base station sends

“unsafe” to the fostering base station, as shown in

Figure 7. Because the external base station is not

expecting information in a confirmation packet it

assumes it is unsafe and informs the user, currently

with a pop-up notification, that it may be in an insecure

environment. The user is then given the choice to

ignore the situation and continue sending and receiving

personal information from their personal fog or to heed

the warning and quiet its personal fog devices.

To validate this solution, we shifted the device C

(Figure 6) into a base station configuration and

connected a Bluetooth speaker playing music to it. We

then set the primary fog devices, A and B, into an

insecure environment. The primary fog immediately

attempted to connect to device C and sent an unsafe

message. Upon receipt, we heeded the warning and

stopped communication, causing our Bluetooth speaker

to stop receiving music while remaining connected.

5.3. Intra-fog synchronization

Fostering wearables and fostering base stations

provide two scenarios where devices from two

independent fog networks might establish inter-fog

communications to share security information about

the environment. Once inter-fog fostering has occurred

for a wearable and it has quieted itself due to an

“unsafe” message, intra-fog fostering can be used to

propagate its knowledge to the wearables within its

original personal fog. Intra-fog synchronization, or

wearable to wearable fostering, is needed if the base

station of personal fog in question has not received the

unsafe information or a wearable receives an “unsafe”

message through fostering after being disconnected

from the base station.

For this type of fostering, the previously fostered

wearable with the “unsafe” knowledge performs an

Page 5571

inquiry specifically looking for wearables with the

private service ID known only to members of its

personal fog. It connects to all wearables that respond

and sends them the "unsafe” message. This protocol is

different from what is shown in Figure 7 because the

wearable sending the inquiry is also the wearable

sending the “unsafe” message. In this case, the

receiving wearable reacts as if it is receiving the

message from a fostering base station. Thus, it quiets

itself and disconnects.

To maliciously use the intra-fog communication

method, an attacker would need to know the private

fog service ID. As this ID is not shared publicly, it is

unlikely they will be able to access it. If the attacker

somehow manages to gain access to this private ID,

they are only able to quiet the wearables of the

personal fog, preventing any personal information from

being obtained by the attacker.

To validate intra-fog communication on the

architecture, we set our three Raspberry Pis (Figure 6)

up as one fog with two wearables, B and C, with A, as

a base station connected to a Bluetooth speaker. Once

device A became insecure, it connected to one of the

wearable devices, in this case device B, and told them

it was insecure. Device B immediately became

insecure and attempted to connect to device C which

was in its fog. After connecting on the service unique

to its fog, it told the device C it was unsafe and device

C stopped all communication. After changing the

service on device A so it was seen as a member of the

fog belonging to devices B and C, we told them they

were secure again and all devices began functioning

normally.

5.4. Addressing confidentiality, integrity, and

availability

By design, our fostering app maintains our original

apps focus on confidentiality. We maintain the

integrity of the wearable date using our fostering

approach by only acting on unsafe messages and

disconnecting from a fostering device after only one

message. Our app remains available to those around it

through the base stations at all times, but will not allow

an attacker to gain any information because of the

instant disconnection. In addition, data and knowledge

of unsafe environments increases availability than in

the prior solution.

6. Evaluation

While we can demonstrate a working prototype, we

need to show that a real-world application is possible

moving forward. To do this, we need to show that, for

a given area, we can ensure that all or most devices

running our application can foster their wearables, if

needed, with at least one other device. To test how this

would work in a real-world environment, we created a

simulation which allowed users with Bluetooth

wearables to move around a pre-set environment. We

allowed modification of the Bluetooth communication

range, the number of users of our app, the size of the

area the users were in, and the speed at which users

could move.

We tested this method on three different sized

locations, 10001000 ft., 500500 ft., and 250250 ft.,

with 10, 30, 50, and 100 users in the area with the app.

We define a time-step as every 2 seconds and assume

that each user can move a maximum of 25 ft. per time

step, which puts us at the maximum speed of 8.5 miles

per hour. This speed is about average running pace of

an adult. This speed does not flood the network with

data, a concern in a crowded environment sending

information to the cloud via Wi-Fi, but is also fast

enough that we are able to ensure that we do not miss

any connections that may be made between moving

devices. We also assume a Bluetooth range of 50 ft.,

which is well within consistent Bluetooth

communication range, which can range from less than

33 ft. all the way up to 328 ft., with most devices

hitting between 33 and 60 ft. [3]. Each simulation was

run for a total of 40 seconds, or 20 time-steps. We ran

each setting 100 times to average out any

inconsistencies that may occur in individual runs.

The results of this simulation can be seen in Table

1. As we should expect, the more crowded a general

area is, the more often all nodes are able to connect to

at least one other node within 40 seconds. This

connection shares only one thing, if the fog is in a

secure environment or not. No other personal

information is shared between devices or fogs.

It is important to note that each of the sizes we

tested is larger than an average coffee shop. This

shows that, even for a relatively low number of users,

our application is viable for almost any traditional

retail location. In fact, our smallest tested size,

250250 ft., is more square footage than an acre of

land. Even with this huge size, we still only had 4.7%

of devices fail to connect to another device over 100

runs of our simulation with as few as 10 users.

Table 1. Percentage of nodes which failed to
connect to at least one other node

10 30 50 100

250 4.7 0.333333 0.04 0

500 32.7 5.5 1.5 0.18

1000 72.5 38.03333 21 5.3

Size of

Location

% of Nodes Never

Connected

Number of Users

Page 5572

 7. Conclusion and future work

In this paper, we extended our previous work

regarding Bluetooth privacy and security in insecure

environments by introducing the concept of a personal

fog to respond to potential security or privacy threats

more quickly. Additionally, we introduced the concept

of fostering fogs to allow for expert opinions of

insecure environments, allowing co-located users of

our application to respond to newly developing threats

more quickly. Finally, we showed our application is

feasible on wearable devices which have control of

Bluetooth communication by testing our application on

a testbed built using Raspberry Pi 3s, and showed the

feasibility of our app in the wild at various user

densities.

This app still has room for improvement. Primarily,

it is still possible for an attacker to prevent a large

group of users from communicating with their

wearable devices by using our app and claiming they

are insecure. While this is not a problem from a data

interception standpoint, it could cause users to stop

trusting our app if they are always being told they are

unsafe. Additionally, our app does require an existing

user base with at least some users being security

conscious enough to recognize unsafe environments

where an attacker may be eavesdropping. Without a

somewhat large initial security conscious user base, it

is possible for an attacker to flood the system with

“safe” signals at a given location and ensure our app

would never recognize the insecurity of that location.

Moving forward, we plan to continue working with

the concept of a personal fog with wearable devices,

their base station, and the cloud to provide increased

data security and privacy in insecure environments. We

plan to examine our fog system with wearable devices

which connect to additional sensors. This behavior is

already being seen in consumer devices, such as the

Apple Watch and AirPods.

There is also a need for greater analysis of our

fostering method to ensure that no additional security

threats are introduced, including an attacker being able

to lower battery life of wearable devices through

attacking a device with this app running on it. As there

is currently not a formal definition of trust in relation

to Bluetooth device communication, this research

would greatly benefit from a study examining this. As

Bluetooth is always improving, this research will need

to be updated with newer versions of the Bluetooth

standard to ensure that no new security holes are

created. This includes looking into security issues

arising from Bluetooth 5G. Finally, there is a need to

examine possible security attacks on wearable devices

more deeply and how our method can be used to

provide additional security and privacy to a user.

8. References

[1] Abie, H. and Balasingham, I., “Risk-Based Adaptive

Security for Smart IoT in eHealth,” Proceedings of the 7th

International Conference on Body Area Networks, 2012.

[2] “crackle, crack Bluetooth Smart (BLE) encryption”

Accessed 2017. http://lacklustre.net/projects/crackle/

[3] “Dispelling Common Bluetooth Misconceptions”

Accessed 2017. https://www.sans.edu/cyber-

research/security-laboratory/article/bluetooth

[4] Giang, N.K., Leung, V.C.M, and Lea, R., “On

Developing Smart Transportation Applications in Fog

Computing Paradigm”, ACM DIVANet, Malta, 2016.

[5] Hong, Y., Lillethun, D., Ramachandran, U., Ottenwälder,

B., and Koldehofe, B., “Mobile Fog: A Programming Model

for Large-Scale Applications on the Internet of Things,”

Proceedings of the 2nd ACM SIGCOMM Workshop on

Mobile Cloud Computing. 2013.

[6] Kattepur, A., Dohare, H., Mushunuri, V., Rath, H.K., and

Simha, A., “Resource Constrained Offloading in Fog

Computing,” Proceedings of the 1st Workshop on

Middleware for Edge Clouds & Cloudlets - MECC 16, 2016.

[7] NIST, “Guide to Bluetooth Security Revision 2” 2017.

[8] “Project Ubertooth,” Accessed 2017.

http://ubertooth.sourceforge.net/

[9] Vaquero, L.M. and Rodero-Merino, L., “Finding your

Way in the Fog,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 5, pp. 27–32, Oct. 2014.

[10] Walter, C., Hale, M.L., and Gamble, R.F. “Imposing

Security Awareness on Wearables”, Proceedings of the 2nd

International Workshop on Software Engineering for Smart

Cyber-Physical Systems, p. 29-35, 2016.

[11] Walter, C., Riley, I., He, X., Robards, E., and Gamble,

R.F., “Toward Predicting Secure Environments for Wearable

Devices,” Proceedings of the 50th Hawaii International

Conference on System Sciences, 2017.

[12] Yi, S., Li, C., and Li, Q., “A Survey of Fog Computing,”

Proceedings of the 2015 Workshop on Mobile Big Data -

Mobidata 15, 2015.

Page 5573

