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Abstract
a
Defenses such as Address Space Layout Random-

ization (ASLR), Data Execution Prevention (DEP),
and stack canaries have been circumvented by re-
cent exploits. As a result, security researchers have
turned towards Control Flow Integrity (CFI) to de-
fend systems. Previous attempts to achieve CFI have
tried to remain efficient and practical, but were ex-
ploitable. The NSA proposed a CFI system which in-
tegrates new hardware and program instrumentation.
The purpose of this research is to assess and im-
prove this proposal. In this paper, the system is ex-
ploited through the development of simple, vulnera-
ble programs. It is shown to be effective in mitigat-
ing Jump Oriented Programming (JOP) attacks through
an algorithm introduced as part of this work. Finally,
different approaches are proposed to improve upon
this system while their merits and issues are assessed.

1. Introduction

Modern program exploitation has become incredibly
complex and difficult [20]. Gone are the days of sim-
ply injecting and returning to shellcode at runtime [1].
This is due to recent mitigations such as DEP, stack ca-
naries, and ASLR [22, 32, 37, 38]. Almost every mod-
ern exploit utilizes some sort of memory leak to bypass
ASLR and stack guards, allowing a code-reuse attack to
be performed in order to obtain arbitrary code execution
[23]. These exploits have devastating results, leading to
the loss of millions of dollars and sensitive information
[6]. To combat sophisticated attackers and protect criti-
cal systems for good, CFI seems to be the only option.

Because a solution has not yet been achieved, new
systems to attain CFI are being developed [36]. CFI was
made as a response to all control flow hijacking attacks,
but recent proposals have specifically targeted return
oriented programming (ROP) [35]. In response, ROP
attacks have become evermore sophisticated [4, 7, 9].
The NSA has proposed a defense which adds three new

Landing Point Instructions (LPI) to the x86 instruction
set. These are the Call Landing Point (CLP), Jump
Landing Point (JLP), and Return Landing Point (RLP)
[25]. If the instruction following a direct or indirect
call, indirect jmp, or ret does not match the previous
instruction’s respective landing point, then the program
faults [25]. Additionally, the system includes a hardware
protected shadow stack to save valid return addresses
and totally eliminate ROP [25]. This addition is what
makes these defenses more secure than current imple-
mentations.

This research attempts to do three things. First, find
situations under which this form of CFI is exploitable.
Using these situations, develop a list of requirements
which are needed to exploit this system. Then, deter-
mine the feasibility of JOP attacks using instrumented
binaries to find valid dispatcher gadgets [5]. Finally,
suggestions to improve the system are given and eval-
uated. 1

To find situations in which the system is exploitable,
various simple C programs with obvious vulnerabilities
were written and assessed. Based on similarities be-
tween these programs and the methods used to perform
exploitation, the requirements for an exploit were estab-
lished. All tests were performed on 64-bit Kali Linux
2.0 run on an Intel(R) Core(TM) i5-4300M CPU @ 2.60
GHz which uses x86-64 assembly. An instrumented
libc.so.6 library was supplied by the NSA, as well as
two small, vulnerable programs. The provided programs
did not include those written in C++, so the possibility of
attacks on C++ programs was assessed by determining
if current exploitation methods would trip the defenses
[16, 34].

The exploits discovered resemble return-to-libc ex-
ploits in which arbitrary commands are issued by the
attacker, but a function pointer is overwritten instead of
a return address [26]. CFI is meant to work indepen-
dent of all other defense mechanisms besides DEP [2].
The NSA’s system is no different, so ASLR and stack
canaries are not considered while determining vulnera-

1This research was completed as part of the INSuRE program es-
tablished by the NSF.
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bilities [25]. It is important to realize that return-to-libc
attacks in which attackers invoke complete system calls
such as system("/bin/sh"), while powerful, are not
Turing complete [35]. Instead, an attacker can run arbi-
trary commands on a target machine which can achieve
the same goals as arbitrary computation. Note that the
exploits discovered do not use library functions to form
Turing complete computation or ROP chains [35].

Using the algorithm outlined in Bletsh et al., a new
algorithm was developed and a Python script was writ-
ten. It examines a series of plain text files which contain
gadgets of length 50 or less from the assembly code of
246 LPI instrumented Linux executables and libraries
[5, 24]. These files came from an instrumented version
of the Void Linux filesystem [17]. The script attempted
to search for a valid dispatcher gadget which acts as a
program counter for, and is an essential portion of, a JOP
attack [5, 10]. No valid dispatcher gadgets were found
in these code streams based on the algorithm, suggest-
ing that a JOP attack is improbable against this method
of defense.

Overall, this research contributes the following:
1. Multiple exploitable programs are written and ex-

plored in a 64-bit architecture. The similarities be-
tween the exploits in these programs is used to de-
velop a list of requirements needed for an attacker
to exploit a C program with the NSA’s proposed
mitigations in place. The possibility of attacks on
C++ programs is assessed by evaluating current ex-
ploitation methods.

2. An algorithm is developed to find valid dispatcher
gadgets in the code streams of 246 instrumented
Linux executables and libraries. A Python script is
written using this algorithm to show that no practi-
cal dispatcher gadgets exist in this framework.

3. Suggestions to improve the NSA’s defenses are
given and evaluated on their practicality and likely
performance overheads.

The rest of this paper is organized as follows. Sec-
tion 2 gives a short background on the x86-64 architec-
ture and the NSA’s proposed mitigations. Section 3 ex-
plores exploitation of programs within the confines of
the NSA’s mitigations. Section 4 gives a brief expla-
nation of JOP attacks, and goes over the algorithm and
script used to find dispatcher gadgets in the supplied
code streams. Section 5 will explore possible improve-
ments to the NSA’s solution. Section 6 concludes the
paper.

2. Background

In this section, the basic stack conventions of x86-64
assembly, as well as the jmp, call, and ret instructions,

are explained. Afterwards, the NSA’s proposed mitiga-
tions are explored.

2.1 x86-64 Basics

In x86-64 assembly the first 6 pointer and integer ar-
guments to a function are passed by registers [8]. RIP is
the instruction pointer, and RDI holds the first integer or
pointer argument to a function. For example, when the
function system("/bin/sh") is called, RIP will con-
tain the address of the first instruction of system() and
RDI will contain the address of the string "/bin/sh".
These two registers are incredibly important to an at-
tacker, as they allow him or her to control what function
is being executed and what the first argument to that
function is [26]. Of course, more registers need to be
controlled for functions with multiple arguments. Any
arguments beyond the first six are passed using the stack
which is a place in memory that stores local variables
and arguments to functions. A sample stack frame is
shown in Figure 1. Note that the address values in Fig-
ure 1 are arbitrary and are only used to show direction of
stack growth and the number of bytes at each address.

...

Argument 70x7FFFFF00

Return Address0x7FFFFF08

Previous RBP0x7FFFFF10

RBP

Local 10x7FFFFF18

RSP

...

Figure 1: Sample x64 Stack
Figure 1 also shows two other important registers,

the base pointer, RBP, and the stack pointer, RSP. In x86-
64 the stack grows downwards and RSP will always point
to the bottom of the stack. The base pointer points to the
address of the base pointer for the previous stack frame
and is used to reference local variables and arguments
for the current function. When the function from Fig-
ure 1 returns, the base pointer will be set to the previous
value of RBP, so that local variables and arguments for
that function are referenced properly. The final signifi-
cant part of the stack frame is the return address. When
the current function finishes, RIP is set to the value saved
in the return address.
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In x86-64, there are two instructions used to alter
code flow. These are the call and jmp instructions. A
jmp instruction sets RIP to a specific offset from its cur-
rent position. This instruction alters code flow without
changing the stack or any other registers. There are var-
ious types of jmp instructions which change RIP based
on certain conditions. Two notable types are indirect
jumps and direct jumps. Indirect jumps are made based
on the value in a memory location or register. This al-
lows a program to alter its code flow based on the state
of variables and user input. Direct jumps have a hard-
coded offset that they modify RIP with. This hardcoded
offset is determined at compile time.

In this architecture call instructions are very differ-
ent than jmp instructions. There are not various types of
call instructions based on conditions. A call instruc-
tion will always adjust code flow by invoking a specific
function. A call instruction also changes the stack. If a
call is issued, a new stack frame is created by pushing
the current RIP location onto the stack, and an uncondi-
tional jump is performed [8]. To grow the stack, RSP is
decremented. When a ret instruction is reached, RIP is
restored to the instruction just after the previous call.

2.2 Proposed Mitigations

As mentioned earlier, the NSA’s mitigations include
three new instructions to be added to the x86 framework.
These are clp, jlp, and rlp [25]. They have also pro-
posed a hardware protected shadow stack which saves
return addresses. Because of this, rlp was created sim-
ply for research and testing. It has no practical applica-
tion because of the shadow stack [25].

Each LPI acts as a check for any sort of indirect
branch or call. For example, if a program reaches a call
instruction, the destination of this call must be a clp
instruction. The destination of a jmp instruction must
be a jlp instruction. If these requirements are violated,
then the program faults, preventing continued code ex-
ecution. This method, known as instrumentation, is ef-
fective because it largely prevents unintended code se-
quences that an attacker can use to execute malicious
functionality [2].

Listing 1 shows some sample assembly code to
better demonstrate how LPIs work. Say RIP is at the in-
struction on line 3. It will perform the mov, then it will
make an indirect jump based on RAX. It must land on
a jlp instruction, or the program will fault. If the in-
struction on line 4 transfers execution to line 6, then the
program will perform the computations and call foo2.
This function begins with a clp instruction. If it did not,
the call on line 9 would cause the program to fault. foo2
then performs its arithmetic and returns. Because foo2

was called by the call on line 11, RIP will be set to the
rlp instruction on line 10. Again, rlp is there only for
research purposes to ensure that a ret instruction lands
where it should. It has no practical purpose given the
shadow stack.

1 foo1 :
2 c l p
3mov rax , [ r s p + 48]
4 jmp r a x
5 . . .
6 j l p
7 xor rax , r a x
8 and [ r s p + 4 8 ] , 0
9 c a l l foo2

10 r l p
11 foo2 :
12 c l p
13mov rax , 156
14 and rax , 20
15 r e t

Listing 1: Sample instrumented code
The shadow stack works by saving the return ad-

dress pushed on to the stack after a call instruction to
a special place in memory that is unaccessible by the
program. When a ret instruction is reached, the value
saved on the stack is checked against the value inside the
shadow stack. If the two values do not match, the pro-
gram faults. This prevents an attacker from altering code
flow by overwriting a return address or by performing a
ROP attack. ROP attacks rely on performing a small
number of instructions all ended with a ret instruction
[7, 9, 35]. As soon as one of these extraneous ret in-
structions is reached, the shadow stack will see that it is
invalid and terminate the program, thereby defeating all
ROP.

The NSA’s proposal mixes coarse-grained CFI with
fine-grained CFI. Fine-grained CFI attempts to match
actual code flow with that of the intended program per-
fectly [2]. This, however, comes with significant over-
head and is impractical using software alone [2]. Be-
cause of this, many implementations have attempted to
use coarse-grained CFI [11,31,41]. Coarse-grained CFI
sacrifices the completeness of the control-flow graph
to improve performance [14, 18]. These mitigations
have unfortunately been shown to be exploitable [18].
In the NSA’s proposal, the new instructions provide
course-grained CFI, while the shadow stack provides
fine-grained CFI.

3. Exploitation

Based on manual analysis of the text files contain-
ing gadgets for the instrumented binaries supplied by
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the NSA, it is clear that a traditional Call Oriented Pro-
graming (COP) or JOP attack would be incredibly dif-
ficult [5, 34]. ROP attacks are impossible because of
the shadow stack. Therefore, exploitable programs were
written to understand when the NSA’s system is ex-
ploitable. The first program was inspired by Yang Yu’s
presentation at Black Hat USA 2014 [40]. The presen-
tation involves a situation where an attacker has gained
arbitrary read write, meaning they can read and write
anywhere in memory. The attacker leverages this to run
arbitrary system commands by escaping the code sand-
boxing of Internet Explorer. This approach is different
than a traditional code-reuse attack, which revealed an
important requirement to exploit programs protected by
the NSA’s mitigations. The sample program is shown in
Listing 2.

To exploit the program in Listing 2, there are three
steps required. First, an address from the linked library
is read from memory using the format string vulnera-
bility in line 6. Using this memory leak, the address
of system is obtained. Then, the function pointer for
puts in the Global Offset Table (GOT) is overwritten
with the address of system in line 9. These two steps
are only necessary when ASLR is in use. According to
the NSA’s specifications, their mitigations are meant to
work even if ASLR is not being used [25]. Still, these
steps were included to show that getting around ASLR
is exactly the same with the NSA’s mitigations in place.

1 void foo ( ) {
2 p u t s ( i n p u t ) ;
3 }
4 main ( i n t argc , char ∗ a rgv [ ] ) {
5 void (∗ f p t r ) ( ) ;
6 char i n p u t [ 3 0 ] ;
7 char ∗ i n t r o = ” Give me your

i n p u t : ” ;
8 p u t s ( i n t r o ) ;
9 f g e t s ( i n p u t , 30) ;

10 p r i n t f ( i n p u t ) ;
11 void ∗ g o t a d d r = 0 x600b80 ;
12 f g e t s ( y o u r s t r , 30) ;
13 memcpy ( g o t a d d r , y o u r s t r , 6 ) ;
14 f p t r = foo ;
15 memcpy ( i n p u t , a rgv [ 2 ] ,
16 a t o i ( a rgv [ 1 ] ) ) ;
17 (∗ f p t r ) ( ) ;
18 }

Listing 2: Arbitrary Read-Write Program
The first argument for the call to puts in line 16 is

a buffer controlled by the attacker. If the attacker sup-
plies "/bin/sh" in this buffer, they can spawn a shell.
This code is exploitable and fits within the bounds of
the NSA’s mitigations except for one problem. It shows

how code flow can be changed by overwriting a func-
tion pointer, but does not show how an attacker could
control arguments to functions on their own. The call to
puts in foo already takes user input as its first and only
argument.

To get around this roadblock, the attacker must be
able to corrupt function arguments. An example of ex-
ploitable code that allows an attacker to do this is dis-
played in Listing 3.

To exploit this program, an attacker must simply
write the string "/bin//sh" to STDIN, followed by
some junk until they reach the integer pointer defined
on line 4 and the function pointer defined on line 3. The
integer pointer arg must be overwritten with the address
of the string "/bin//sh", and the function pointer fptr
must be overwritten by the address of system. This will
cause line 8 to implement system("/bin//sh"), thus
giving the attacker the opportunity to execute arbitrary
commands on the target system.

1 void foo ( ) ;
2 main ( i n t argc , char ∗ a rgv [ ] ) {
3 void (∗ f p t r ) ( ) ;
4 i n t ∗ a r g ;
5 char i n p u t [ 3 0 ] ;
6 f p t r = foo ;
7 s c a n f ( ”%s ” , i n p u t ) ;
8 (∗ f p t r ) ( a r g ) ;
9 }

10 void foo ( i n t ∗ a r g ) {
11 p r i n t f ( ”You a r e i n foo ” ) ;
12 }

Listing 3: Stack Corruption Program
While the executable in Listing 3 is tiny and simplis-

tic, similar attacks have occurred on larger programs.
Google Chrome was the victim of an attack where the
attacker had arbitrary read write access [20]. C++ pro-
grams such as Google Chrome, Microsoft Office, and
Adobe Acrobat are also prone to memory corruption
vulnerabilities. C++ executables would be protected un-
der the NSA’s CFI framework as well, so it is important
that their vulnerabilities are considered. This is because
they suffer from the same issues as C programs. Buffer
overflows, heap overflows, and use after free vulnerabil-
ities are all present in these programs. The introduction
of objects to C++ programs opens them up to a different
class of vulnerabilities where objects can be hijacked for
malicious purposes. This is due to the way their memory
is allocated on the heap.

C++ objects with virtual functions have virtual
pointers (vptrs) associated with them. A vptr is a
pointer which references an object’s virtual function ta-
ble (vtable). The vtable is a table of function pointers
for each of the functions an object can invoke. Listing
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4 shows a sample C++ object. This object represents a
note. The object holds its own length, the current mes-
sage of the note, and allows this message to be written
with the write() virtual function.

The object in Listing 4 will be allocated as shown in
Figure 2. An arbitrary write vulnerability could corrupt
the vptr. An attacker can hijack the vptr to point to a
function pointer of their choosing instead of the proper
vtable or overwrite a pointer in a vtable to gain control
of RIP. Overwriting a pointer in a vtable has the same ef-
fect as overwriting a function pointer. To take advantage
of overwriting the vptr, an attacker must set it to the lo-
cation of a pointer to a desired library function. Without
ASLR, it is easy to know where the function pointer’s
address is and the address of the desired library func-
tion. When the write() function is invoked after a cor-
ruption of the vptr, an arbitrary library function would
be called using the new text variable as an argument.
This vulnerability would not be protected against by the
proposed CFI system, as it allows function pointers to
be overwritten.

1 c l a s s Note {
2 p u b l i c :
3 unsigned i n t l e n g t h ;
4 char message [ 1 0 0 ] ;
5 v i r t u a l void w r i t e ( char ∗ n e w t e x t ) ;
6 } ;

Listing 4: Sample C++ object
The attack described above resembles a technique

known as control-flow jujutsu [16]. This attack corrupts
C++ objects saved on the heap that are used as argu-
ments to a function whose pointer is also overwritten.
This allows the attacker to execute arbitrary library func-
tions with arbitrary arguments [16]. This technique was
demonstrated on Apache, a large, popular program [16].

...

vptr

unsigned int length

char *message

...

Figure 2: Note Object Allocation
Counterfeit Object-Oriented Programing (COOP) is

also a technique that could be used to exploit a C++ pro-
gram under the NSA’s protections [34]. COOP creates

gadgets by stitching together various virtual functions
for different objects in large programs. Because virtual
functions are valid targets for execution, there would be
no violation of landing point instructions. Furthermore,
this attack technique does not overwrite any return ad-
dresses. By avoiding return addresses as an attack vec-
tor, this method would overcome the shadow stack pro-
tection proposed. Another substantial strength of COOP
is that it does not necessarily need to overwrite a func-
tion pointer. It can work simply be corrupting an array
of objects. Because the CFI system does not prevent the
corruption of memory as a whole, many types of over-
flows or arbitrary writes could create a counterfeit object
such as this. The system only defends against overwrit-
ing return addresses and stitching together attacks with
small gadgets.

The paper put out by the NSA makes the assertion
that “magic gadgets” which perform all of the necessary
computation for an exploit do not exist [25]. This is,
however, untrue. There are singular addresses in Win-
dows and Linux libraries that, when accessed, open up
a command shell or can be used to download malicious
DLLs [15,29]. Listing 5 displays one such gadget which
is available in libc.so.6.

There is only one requirement for this gadget to be
used on a normal system, [rsp + 0x50] = NULL. If
this is true, the gadget will invoke execve("/bin/sh",
NULL, NULL). With a shell open on the victim system
and an attacker can now execute arbitrary commands.

1 mov rax , QWORD PTR [ r i p +0 x2d34bd ]
2 l e a r s i , [ r s p +0x50 ]
3 l e a r d i , [ r i p +0 x9cb84 ] # ‘ / b i n / sh ’
4 mov rdx , QWORD PTR [ r a x ]
5 c a l l execve

Listing 5: Oneshot RCE Gadget
This same codestream is in the instrumented version

of libc.so.6 provided by the NSA. Fortunately, it is next
to useless for an attacker. This is because of LPIs. An
attacker cannot simply jump or create a call to the lo-
cation of memory 0xef9f4 bytes from the base address
of the library. Instead, they must first hit a CLP at the
beginning of the do system() function. The gadget can
only be reached for its intended purpose, open up a shell
for the system command that it is provided, run the com-
mand, and close the shell. Therefore, an attacker can
only use this code to their advantage by calling system
with the proper arguments. This requires control of at
least two registers, RIP and RDI. The attacker must also
know where system() resides in memory.

Based on the previously described attack vectors, a
list of requirements for an attacker to exploit a program
with the NSA’s mitigations was obtained:
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1. The attacker must overwrite a function pointer with
the address of the function they would like to exe-
cute.

2. They must overwrite the arguments for the over-
written function.

3. Their memory corruption must persist until the
overwritten function pointer is called.

4. If an attacker cannot do this and is attacking a C++
program, they must attempt corruption of objects
to perform a control-flow jujitsu or COOP attack.

While the NSA’s system is exploitable, it does suc-
cessfully mitigate against ROP and JOP attacks. ROP
attacks are eliminated by the shadow stack. Proof that
JOP is impractical is explored in the next section.

4. Finding Dispatcher Gadgets

Jump oriented programming is an exploitation tech-
nique that does not use ret instructions [5]. Instead,
each gadget ends in a jmp instruction [5]. To per-
form this kind of attack, a special gadget known as the
dispatcher gadget is used as the program counter [5].
This gadget iterates through different functional gadgets
to perform the desired computation [5]. An alternate
method of JOP added a layer of gadgets that ensure each
functional gadget returns control to the dispatcher gad-
get [10]. This method still requires a dispatcher gadget,
so it is equally affected by LPIs .

The dispatcher gadget is an essential part of a JOP
attack [5, 10]. This is because it stitches together each
functional gadget that performs some computation in-
teresting to the attacker. A functional gadget, by itself,
will do something simple like setting RAX to 0xA. An at-
tacker would do something like this to prepare for the
mprotect system call. To effectively use the mprotect
function, however, the registers RSI, RDI, and RDX must
also be set to specific values to create the proper argu-
ments. The dispatcher gadget puts each of these func-
tional gadgets together so that they can perform some
task useful to an attacker.

An ideal dispatcher gadget is visible in Listing 6.
As long as the attacker controls the memory referenced
by RAX, they could iterate through a number of func-
tional instructions to perform useful computation. The
addresses of the functional gadgets would need to be lo-
cated in the memory referenced by RAX for this attack to
work.

1 add RAX, 8
2 c a l l [RAX]

Listing 6: Sample Dispatcher Gadget
When JOP attacks were introduced, no instrumen-

tation was used on the target binaries [5]. This means
unintended code sequences were utilized in the attack.
In the NSA’s model, however, these unintended code se-
quences are far less prevalent. Focus was placed on try-
ing to find a good dispatcher gadget in the text files con-
taining gadgets from various libraries and executables
supplied by the NSA. To do this, the following heuristic
was used:

Algorithm 1: Dispatcher Gadget Discovery Algorithm
Input : Gadget G
Output: if G is valid

1 L← Last line in G
I← Instruction in L
O← Operand in I
if I is branch and O is modifiable then

2 R← O
for line in G do

3 if ( R is modified once ) and ( (CMP or TEST)
not in line ) then

4 C← Operand Changing R

5 for instruction in G do
6 if C is modified then
7 return invalid
8 end
9 end

10 return valid
11 end
12 end
13 else
14 return invalid
15 end

Algorithm 1 was implemented in a Python script to
find valid dispatcher gadgets from the text files supplied
by the NSA. The text files contained plaintext represen-
tations of all gadgets no more than 50 instructions in
length from all possible codestreams [24]. Algorithm 1
found no valid dispatcher gadgets in the 256 executables
scanned.

Algorithm 1 requires that the gadget end in a branch
instruction. The location branched to must be dependent
on a register or some location in memory because these
are both modifiable. This has to be the case, as the dis-
patcher gadget must change which functional gadget it
sets RIP to. If this is true, then the memory or register
used to make this jump should only be modified once, as
multiple changes require control of many different reg-
isters. This quickly makes the gadget impractical.

If these conditions are met, then the operand used to
modify the branching register or memory location is in-
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spected. If it is modified more than once in the gadget,
then the gadget is declared to be invalid. This is because
it would require control of at least three seperate regis-
ters or memory locations to use the gadget, making it
impractical. Also, there must be no TEST or CMP instruc-
tions in the gadget. These instructions mean that some
sort of condition must be met for the gadget to be used.
This makes the gadget far less flexible, as the attacker
must always insure the condition is met each time the
dispatcher gadget is run.

These conditions can easily be modified in the script
to find less desirable, potential dispatcher gadgets. It is,
however, incredibly unlikely that these gadgets would
be usable. This is especially true because each func-
tional gadget is very long, and has the potential to de-
stroy the registers or memory locations needed for the
dispatcher to work properly. Overall, the substantial
length of gadgets and the protection of the shadow stack
make this system significantly stronger than those which
have come before it[11, 12, 28, 31].

4.1 Algorithm Results

Upon running Algorithm 1 on the text files, no dis-
patcher gadgets meeting the criteria were found. The
code base searched was extensive, as it included all li-
braries and binaries present on an instrumented version
of Void Linux. If the requirement that there are no TEST
or CMP instructions in the gadget is removed, however,
1795 gadgets were found. This number is inflated to
a degree, as many of the gadgets are part of the same
codeflows. Many are found in longer or shorter ver-
sions. This is because the gadgets inspected included
all possible code flows that were of length 50 or less.
This change in the algorithm increases the number of
possible gadgets substantially, but they are much harder
to use as each requires the control of one or more addi-
tional registers. They also require that the proper state
of these registers is maintained when a functional gadget
is used. Given that functional gadgets will also contain
many unwanted instructions for the attacker, this would
be very difficult to achieve.

It is important to note that Algorithm 1 does not
prove a dispatcher gadget meeting these criteria can
never exist within this CFI system. It is possible to write
one within source code using inline assembly. It is also
possible that a usable gadget could occur based on the
specific executable. Given that all libraries and executa-
bles on the Void Linux operating system were tested,
this large codebase shows that it is unlikely that a use-
ful dispatcher gadget will ever occur naturally. Further-
more, it is likely that no clean dispatcher gadgets such
as the one found in Listing 6 will show up in a binary

without tampering.

5. Improving the Mitigations

As shown in Section 4, JOP attacks are impractical
with the proposed mitigations, and ROP is impossible
because of the shadow stack. Exploits can still be made,
as shown in Section 3. Therefore, the system must be
improved to be totally secure.

One possible solution would be instrumentation that
ensures no library functions are called which are not
used by the program at runtime. This sort of instru-
mentation could be used on legacy systems, as binaries
would simply be run through a program or an updated
kernel that provides the necessary changes. Based on
other forms of CFI, this would come with a high per-
formance overhead, making it less likely to be adopted
[11, 12, 30, 31]. Also, if a dangerous function like
system() is used by the program, this mitigation would
be ineffective.

Another solution would be a hardware enforced
shadow hash table which saves function pointers when
they are assigned. Function pointers are assigned at run-
time, and generally do not need to be modified after they
are assigned in most programs. Whenever a function
pointer is used, its value could be checked against the
values in the hash table. If the function pointer is found
to be invalid, then the program faults.

This change and the shadow stack completely pre-
vent an attacker from altering control flow by mali-
ciously changing a function pointer, a necessary step in
most code-reuse attacks [16]. This solution would be
fast, as it is implemented by hardware. It would, how-
ever, not change legacy hardware in any way. Older
systems would still be vulnerable. This is a significant
downside that must be considered.

To avoid this downside, there could be compiler
changes that place function pointers in read only mem-
ory. This technique, known as memory safety, has been
used in many newly proposed protections [3, 11, 19]. It
is also used in many Linux applications which can make
vtables and GOT function pointers read only[39]. Over-
all, some of these protections can be imposed with mini-
mal overhead if they adopt slightly weaker policies [19].
The main issue with compiler changes is the fact that
legacy applications would need to be recompiled and
would possibly be broken. While the overhead can be
reduced, the slowdown would still be significant com-
pared to a hardware enforced form of security.

COOP is a difficult challenge because it does not
necessarily require a function pointer to be overwritten
in order to work [34]. Therefore, most mitigations that
are currently being developed cannot defend against it.
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There is only one proposed mitigation that can defend
against COOP [13]. Crane et al. propose a defense
that randomizes all areas of memory, making it much
more difficult for an attacker to know where danger-
ous functions like system and corruptible objects reside
[13]. Furthermore, they introduce trap pages in memory
that, when accessed, cause a program to fault and reran-
domize itself. This technique, however, does have a
counter [27]. Oikonomopoulos et al. proposed a method
to get around this mitigation by allocating large chunks
of memory which allow an attacker to accurately guess
where other important data resides [27]. This removes
the safety brought by fully randomizing memory.

The ability to map individual bytes as read-only
rather than entire pages could defend function pointers
and vptrs. This solution would require major changes to
compilers or current hardware. The performance over-
head for a solution such as this would likely be severe,
so it could only be practically achieved with new hard-
ware and updated kernels that can take advantage of this
feature. It falls into the same bag as the shadow hash
table and cannot secure legacy systems.

It seems as though hardware based solutions should
be used in newer systems, and software solutions must
be used with legacy systems. Legacy systems are still
vulnerable, but instrumentation can make them much
more challenging to exploit. Updated hardware can cre-
ate fast, efficient programs for the future which are to-
tally secure.

6. Conclusion

In this paper, situations were shown in which the
NSA’s mitigations are vulnerable. These types of ex-
ploits have been demonstrated on large, commercially
used programs [16, 34]. Furthermore, JOP attacks are
shown to be improbable with these mitigations in place.
Finally, possible solutions to prevent the exploits that
could be used against this system have been proposed
and assessed.

There are many avenues available for further re-
search. For the proposed technology, creating large, in-
strumented versions of programs such as Mozilla Fire-
fox that are written in C++ would be beneficial to pro-
vide proof of concept exploits of the discussed vulnera-
bilities on realistic systems. Furthermore, developing a
prototype for the new CPU would allow overhead due to
the shadow stack and LPIs to be assessed. While JOP
and COP are similar, they are not the same [5, 33]. De-
veloping an algorithm similar to Algorithm 1 would al-
low the validity of a pure COP attack to be assessed.

Moving beyond the new hardware to CFI as a whole,
there is much work to be done. There are practical ver-

sions of course-grained CFI on modern operating sys-
tems, namely EMET on Windows 10 [21]. While this
software is an improvement upon current security, this
type of loose CFI was shown to be exploitable years ago
[9].

The security community does not yet have a suffi-
cient answer for COOP [34]. Current proposals for CFI
fail to consider this kind of attack and are more focused
on ROP [11, 12, 28, 31]. There are randomization meth-
ods that make COOP much more difficult, but not im-
possible [13,27]. COOP presents a novel challenge as it
does not present any characteristics that would be easily
detectable by CFI.

The future of memory corruption vulnerabilities is
not all doom an gloom. Brilliant defenses such as
ASLR, stack canaries, and DEP have made the task
of writing exploits incredibly difficult. Currently, it
takes substantial amounts of time and effort to develop
the skills necessary for exploitation of large, commonly
used programs. To end the current cat and mouse game
plaguing this domain, new solutions need to provide
guarantees which create unexploitable software while
keeping overhead to a reasonable level.
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