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Abstract

Background: Competitive crowdsourced development
encourages online software developers to register for
tasks offered on the crowdsourcing platform and
implement them in a competitive mode. As a large
number of tasks are uploaded daily, the scenery
of competition is changing continuously. Without
appropriate decision support, online developers often
make task decisions in an ad hoc and intuitive manner.
Aims: To provide dynamic decision support for crowd
developers to select the task that fit best to their personal
learning versus earning objectives, taking into account
the actual competitiveness situation.
Method: We propose a recommendation system called
EX2 (“EX-Square”) that combines both explorative
(“learn”) and exploitative (“earn”) search for tasks,
based on a systematic analysis of workers preference
patterns, technologies hotness, and the projection of
winning chances. The implemented prototype allows
dynamic recommendations that reflect task updates and
competition dynamics at any given time.
Results: Based on evaluation from 4007 tasks monitored
over a period of 2 years, we show that EX2 can
explore and adjust task recommendations corresponding
to context changes, and individual learning preferences
of workers. A survey was also conducted with 14
actual crowd workers, showing that intelligent decision
support from EX2 is considered useful and valuable.
Conclusions: With support from EX2, workers benefit
from the tool from getting customized recommendations,
and the platform provider gets a higher chance to
better cover the breadth of technology needs in case
recommendations are taken.

1. Introduction

As an emerging paradigm, crowdsourced
software development (CSD) derives from general
crowdsourcing by utilizing an open call format to
recruit global online software workers to work on

software mini-tasks [1, 2]. The success of competitive
crowdsourced software development (CSD) depends
on a large crowd of trustworthy software workers who
are registering and submitting for their interested tasks
in exchange for financial gains. A general competitive
CSD process starts with task requesting companies
distributing tasks with prizes online, and then crowd
workers browsing and registering to work on selected
tasks, and submitting work products after completion.
Crowd submissions are evaluated by experts and
experienced developers, through a peer review process,
to check the code quality and document quality [1, 3].

In crowdsourcing platforms, significant number of
tasks are posted each week. Crowd workers need
to spend significant amount of time (several hours
per week) in reading individual task description and
selecting appropriate tasks to work on. By the high
complexity, the decisions to be made will be far from
being best possible. Intelligent task recommendation
can save developers time by recommending tasks
based on developers existing technical skills, recent
interests and current workload. Intelligent approaches
are needed to not only matching developers expertise
but also providing options for crowd workers to
explore new technologies with high demand and
buildup skills and knowledge in a more strategic
manner. Software engineering is a knowledge intensive
discipline [4]. Technologies are changing with quick
intensity. Learning is a means to accommodate to all
these changes. Learning is also a primary motivation
factor for participation in CSD [3] and other forms of
crowdsourcing [5, 6]. Baltassaare and Mirolli studied
Intrinsically Motivated Learning Systems [7]. They
found that greater exploration associates with higher
performance. Here, exploration, more generally, refers
to the act of searching for the purpose of discovery of
information and resources.

In this study, we propose a recommendation
approach that incorporates the individual Learn and
Earn preferences. These targets correspond to
exploration respectively exploitation search strategies
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among all the tasks offered. By Exploration, we mean
the selection of tasks requiring new technologies which
the worker did not try before. An Exploration strategy
can be employed by crowd workers to acquire skills
in unexplored technologies and platforms. Exploitation
refers to the selection of tasks requiring technologies
where a crowd worker previously worked with or has
significant expertise.

We focus on enabling workers decision making
based on a systematic analysis of workers preference
patterns in selecting tasks, relative hotness of
technologies required in task requirements, and
the projection of winning chances in consideration of
competitiveness. In this paper, compared to former
work [8], we have made new contributions in five
directions:

• Conceptual: Task Recommendation is based on a
balanced scoring of “Learn and Earn” preference
which is a new concept and of practical interest
for the case study company.

• Functionality: There is no longer focus just on
predictions, but also with actionable insights on
the ranking of recommendations in consideration
of the dynamically changing competitiveness.

• Scope: Recommendations can be made for all
tasks (not only ongoing ones) and for all workers
(even for new ones, having no experience record
yet).

• Implementation: The recommendation method
EX2 has a prototype implementation that was
used to generate recommendations for the actual
Topcoder workers that had signed up for our
survey.

• Evaluation: Empirical evaluation is based on both
a more comprehensive (more than two years of
observations) and more recent data set (ranging up
to March 31, 2017), and a user study with current
TopCoder workers.

The paper is structured into eight sections. Section 2
introduces two motivating examples; Section 3 presents
the modeling of the task recommendation problem;
Section 4 details the experimental evaluation design;
Section 5 reports empirical results; Section 6 discusses
the results; Section 7 summarizes related work. Finally,
Section 8 provides conclusions and an outlook to future
work.

2. Motivating example

The motivation for our study came from a brief
empirical analysis on task selection behaviors across

crowd workers with a diverse background. The
data analyzed for the motivational example include
TopCoder data from January 1, 2016, to December 31,
2016. We compare two types of workers including
expert workers and learning by doing workers.

2.1. How learning workers with no past
success history select their tasks?

Unlike expert workers, learning-focused workers
typically do not have any winning or submission success
in the Topcoder platform. However, this constitutes
an important pool of available (e.g. green, yellow
belt workers in [9]) workers in crowdsourcing market,
regarding experiencing competition, acquiring new
skills, and expertise buildup. As an illustrative example,
we look at the first-10 and last-10 tasks registered in
2016 by worker testXuSanping. She registered with
tasks from different technologies and platforms but did
not have any luck in succeeding a competition yet.
To experience crowd competition and improve existing
skills, she mostly registered with the tasks that required
technologies and platforms tried before (exploitation
behavior). She also explored new technologies in every
few months (exploration behavior). For example, she
started to register on tasks related to ReactJS technology
from May 2016. She initially selected a few tasks
where ReactJS was required with Node.js technology,
which she previously worked with. We also noticed that
since November 2016, she started to register on tasks
requiring Predix, which was a completely new platform
and technology to her.

2.2. How expert workers with significant
success record select their tasks?

Expert workers are primarily driven by winning
prizes in working on CSD platform. For example, the
expert worker seriyvolk83, 90% of the time selected
tasks from the web and mobile development domains
where he had the most expertise. The rest of the
time she selected tasks that required one or more
of the unexplored technologies. Analyzing the 70
registered tasks of this particular worker, we noticed
that he has significant expertise in Node.js, PostgreSQL,
REST, Swift, Xcode, iOS, API, JSON and JavaScript
technologies, with 80.9% winning rate and 87.3 %
submission success rate in tasks requiring one or more
of these technologies. To maximize his winning rate or
to earn, he selected 63 tasks from these areas and seven
from unexplored areas.
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Figure 1. Technology heat map from Topcoder [11]

(original image modified for better visibility)

2.3. Discussion

Investigating a few more instance workers from
the above two groups leads to similar observations
in workers task selection preferences. In general,
“learning”-focus or “earning”-focus corresponds
to different search strategies for developers in
looking for interested tasks to work on. In this
study, we characterize and name such strategies as
exploitation and exploration strategies, respectively.
More specifically, we conceive that “earning”-driven
workers mostly employ exploitation strategy to exploit
their areas of expertise. With occasionally trying to
acquire new skills by exploring new type of tasks;
and “learning”-focused less experienced workers or
newcomers frequently try to register tasks from multiple
domains or platforms to minimize their loss chance.

We argue that the recommendations systems
should take both the levels of exploration/exploitation
preference into account due to the following four
reasons. First, workers can benefit from more
personalized recommendation based on their past task
selection preference; Second, newcomers or workers
with limited experience can benefit from exploration
strategy; Third, as technologies often become obsolete
and new platforms/technologies frequently arrive,
crowd workers also need to spend time on acquiring new
technical skills; and Fourth, crowdsourcing platform
providers get a higher chance to better resource
coverage on the breadth of technology needs in case
recommendations are taken.

3. Recommendation system EX2

In this part, we describe the main idea of the
proposed task recommendation system EX2, which

searches for most relevant tasks for crowd workers,
guided by individual workers preferences between
Learn and Earn intention at any given time. While
Earn represents the traditional view of looking for tasks
that fit their existing expertise in the best way, the
Learn portion is different as looking for new and highly
requested technologies the worker is not yet familiar.
The two components of the search are combined with
a preference level of the worker towards the one or
the other strategy. The top task recommendations
are further supported by a projection of the winning
chances. In what follows, we describe the basic notation
and outline key parts of the recommendation system and
its implementation.

3.1. Notation

For describing our proposed method, we need to
introduce some basic notation1

• tsim(s, s′) is the normalized (to [0,1]) textual
cosine similarity between two tasks s and s′
using the title and description of the tasks.
Here, the Apache Lucene implementation of
Term Frequency-Inverse Document Frequency
(TF-IDF) based similarity [10] is used. The
normalized value [0,1] is obtained considering all
task-task similarity scores.

• T(s) the set of technologies required for task s.
• P(s) is the set of platforms (e.g. Heroku, IBM

Bluemix) required for task s.
• h(q) is the hotness of a technology q required

for the task s. Hotness is defined on a five-point
scale from 1 (most popular) to 5 (least popular).
Figure 1 shows an example technology heatmap
from Topcoder [11]. The color-code reflects the
relative level of demand and supply in a particular
technology.

• SS(d, t) is the set of tasks for which worker d
successfully submitted during recent M months.

• SQ(d, t) is the set of tasks for which worker d
failed to submit (after registration) during recent
M months.

3.2. Earn measurement

We have defined a measure for the degree of
exploitation of worker d at time t when looking at task
s. This measure is formulated as Equation 1.

EARN(d, s, t) = ps(d, s, t)∗A(s)+(1−ps(d, s, t))∗B(s)
(1)

1Bold characters refer to sets instead of variables.
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In Equation 1, ps(d, s, t) expresses the submission
probability of task s for worker d at time t. The
probability is defined as the ratio between number of
submitted and number of registered tasks in the last M
months considering tasks requiring at least XS(d, t) ∩
T(s) technologies. The value of ps(d, s, t) lies in the
range of 0 to 1. The set XS(d, t)∩T(s) is the intersection
of the technologies required for task s and the set of
technologies that were needed in all the tasks where the
worker d successfully submitted in the last M months
(XS(d, t)).

EARN(d, s, t) is a linear combination combining
the technology usage in case of successful (A(s)) and
unsuccessful (B(s)) submission of tasks s. The precise
definition of both terms is given in Equations 2 and 3,
respectively. Therein, |Z| stands for the number of
elements of set Z. The higher the probability value
ps(d, s, t) (in Equation 1), the higher is the contribution
of past success (submission), and the lower is the input
of past failure.

What should be considered as recent information?
In this paper, we take the results and information of the
past M = 6 months tasks into account. If we would just
consider one or two months of historical data, then we
might miss essential information. Not all workers can
submit and win every month.

A(s) =
∑

s′∈SS(d,t)

|T (s′) ∩ T (s)|
|T (s)| ∗ |P (s′) ∩ P (s)|

|P (s)| ∗tsim(s, s′)

(2)

B(s) =
∑

s′∈SQ(d,t)

|T (s′) ∩ T (s)|
|T (s)| ∗ |P (s′) ∩ P (s)|

|P (s)| ∗tsim(s, s′)

(3)
The newcomers will have EARN(d, s, t)= 0 for all

new and ongoing tasks s, as the value of both A(s)
and B(s) will always be zero. For workers having one
or more registrations A(s) or B(s) can be greater than
0 only when each of |T (s′) ∩ T (s)|, |P (s′) ∩ P (s)|
and tsim(s, s′) are greater than zero in the concerned
equations. In this case, the value of EARN(d, s, t) will
be determined by A(s), B(s) and ps(d, s, t).

For non-newcomer workers with no past success (no
submission) at any of the registered tasks, ps(d, s, t) =
0 for all new and ongoing tasks s. What that means
is that the failed tasks (tasks in SQ(d, t) used in B(s))
will mainly contribute to the EARN(d, s, t) scores for
the new tasks. The higher the value of B(s), the higher
will be the value of EARN(d, s, t). For workers with
past success (at least one submission), both submitted
(tasks in SS(d, t)) and failed tasks (tasks in SQ(d, t))
will contribute to earn measurement, depending on the
value of the weighting factor ps(d, s, t), A(s) and B(s).

3.3. Learn measurement

We also define a measure for the learning portion
of the search function. The exploration score
LEARN(d, s, t) of worker d at time t for task s

is the weighted sum of the hotness of the required
technologies T (s) for task s.

LEARN(d, s, t) =
∑

i∈T (s)

w(i) ∗ h(i) (4)

For each technology i in T (s), the weight w(i) is
calculated as 1/(1 + o(i, d)), where o(i, d) indicates
the frequency of developer d participating in historical
tasks that require technology i during the last M months.
The more developer d used a required technology,
the less the technology will contribute in the learn
score of a task. For a task requiring unexplored
technologies only (i.e. o(i, d) = 0 for all i in
T (s)), the learn score is just the sum of the hotness
scores of the required technologies. For two tasks
requiring completely new technologies for a developer,
the tasks with more hot technologies will have better
learn score. For a newcomer worker, o(i, d) is equal
to 0 for all required technologies i in all ongoing tasks.
Therefore, depending on the technological expertise of
the non-newcomer workers, we may see o(i, d) = 0 for
all required technologies i for a few ongoing tasks.

3.4. Preference-based recommendations of
tasks

Computation of winning chance

We use pw(d, s, t) for the winning chance of worker
d on a new task s at time t. It is determined by
applying machine learning based on former tasks. In this
paper, at time t, we classified the winning chance using
Random Forest machine learning [12]. Random Forest
is an ensemble machine learning technique that applies
bagging on decision trees. When building models, it
samples the training records as well as the predictor
variables. It can also automatically determine which
predictor variables are important. The information
related to all completed tasks before time t as well as the
associated worker registrations, starting from 01 January
2015, are used to create training samples for learning.

Each training sample correctly represents a
task-worker pair, where the worker registered for the
task before time t and had an outcome (either won or
not-won). Each training sample is labeled with either of
the two values: Winner (if the associated worker won
the competition) and Non-Winner (if the related worker

Page 5607



failed to win the competition). Thus a model is built
towards solving a two class classification problem. The
dependent or class variable used in the model takes two
values: Winner and Non-Winner. Each test sample also
represents a task-worker pair, where the associated task
is an ongoing or a new task and the associated worker is
a worker for which the class variable value (Winner or
Non-Winner label) has to be predicted.

For each completed task i before time t, we create Ci

training samples, where Ci is the number of registered
workers for task i. If we have Tr tasks completed before
time t, the total training samples in the training set will
be

∑Tr

i=1 Ci. Without any filtering, training samples are
extremely unbalanced and contains more samples from
the non-winner class than the winner class. We followed
a sampling process to make the training set balanced by
reducing the samples from the non-winner class.

The non-winner training examples comes from two
different types of task-worker pairs (prior registration
information for the tasks completed before time t). In
one case, the workers could submit in the registered
tasks but failed to win the competition, while in the
other case, the workers had to quit the registered tasks
(no submission). The second case contributes majority
samples for the non-winner class and also for the entire
training data set. To make the training data set somewhat
balanced, we randomly selected only 1% of the training
samples from the second source. The samples from
the first case added to the training samples without any
filtering or selection. Once we have the training set
ready, we build the model for time t and make prediction
on the test samples.

Even though each training or test sample represents
a task-worker pair, it consists of three types of features:
task related features (the task represented in the
current sample), worker related features (the worker
represented in the current sample), and the competitor
related features (features related to the other workers
registered in the same task). Feature details can be
found in [13]. To summarize, for each test sample, the
model built at time t predicts whether the developer
d represented in the test sample will be a winner or a
non-winner in an ongoing or new task s associated with
the sample. Thus, the built model works at the worker
level. Rather than directly using the predicted label
for the worker on the task, we extract the predicted
probability associated with the Winner class. This
winning chance probability is used in Equation 5 as the
value of pw(d, s, t).

Ranking task recommendation

For performing search, we need to combine learning

and earning based on specific preference pref(d) of the
worker d. The score SCORE(d, s, t) of a task s for
developer d at time t is determined based on weighted
(and normalized) scores for exploration and exploitation
as given in Equation 5:

SCORE(d, s, t) = ((1− pref(d)) ∗ EARN ′(d, s, t)

+ pref(d) ∗ LEARN ′(d, s, t))

∗ pw(d, s, t) (5)

EARN ′(d, s, t) is the normalized score of
EARN(d, s, t), while LEARN ′(d, s, t) is the
normalized score of LEARN(d, s, t), The value of
EARN ′(d, s, t), LEARN ′(d, s, t), pw(d, s, t) and
pref(d) lies between 0 and 1. The higher the value of
pref(d), the stronger is the preference towards learning
(and vice versa). pref(d) can be elicited from each
worker with a recommendation tool. In this paper, we
normalized each metric value (e.g., EARN(d, s, t))
score) to lie between 0 and 1 by using the following
transformation:

Norm(x) = 1− Max(x)− x

Max(x)−Min(x)
(6)

In Equation 6, Min(x) and Max(x) are the
minimum and maximum of the observed values
considering same type of metric values of all tasks
currently available for recommendations for developer
d. For a newcomer worker, EARN ′(d, s, t) score is
zero for all ongoing and new tasks s. In this case, only
LEARN ′(d, s, t) and pw(d, s, t) will have impact in
the ranking score SCORE(d, s, t).

3.5. Problem formulation

Task recommendations are based on the
computations described above. For each pair of
< d, t > of worker d and time t, we generate a set of
up to 10 recommended tasks. These tasks are selected
to be the best regarding the score defined in Equation 5
among all tasks available.

Our problem is dynamic in nature in the sense that
new tasks are uploaded all the time, and some other
tasks are getting finished. Consequently, a proper
recommendation needs to be regularly updated. An
illustrative example of this changing context is given
in Figure 2. For a sample worker, recommended tasks
are listed for three consecutive times t1, t2, and t3. We
observe that: (i) the number of recommended tasks are
varying (ii) from one time to another, tasks might be
added or deleted, and (iii) the preference order of the
tasks might change as well between points in time.
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Figure 2. Illustrative example of changes in task

recommendations in dependence of time (three

sample days)

3.6. Solution approach

Our solution approach is based on two main
assumptions that (i) for each worker, we know her
preference values towards Learn and (ii) at any point
in time t, we know the active workers. In total, the
approach consists of six main steps:

Step 1: The system extracts all available completed
tasks, associated worker registrations and results of the
competitions from the crowd platform.
Step 2: The system identifies active crowd workers,
ongoing and new tasks from the crowd platform.
Step 3: For each worker, the task recommendation
system excludes all current and new tasks already
registered by the worker. Unlike [8], the system
only takes not yet registered tasks into account for
recommendation.
Step 4: For each active worker, the system computes
the learn score (Equation 4), earn score (Equation 1)
for each ongoing and new task selected in Step 3. The
machine learning component of the system also predicts
the winning chance of the worker on each task (see
Section 3.4 for further details).
Step 5: The system ranks the tasks for each worker
based on Equation 5.
Step 6: The top 10 recommendations are presented to
each worker.

In our current implementation of the prototype
tool [13], the top 10 tasks can be emailed to each of
the workers. This was also done for the developers who
participated in our survey. The tool is dynamic in the
way that it can re-run for recommendations after any

reasonable time interval (e.g., every hour, every day,
every week).

4. Empirical evaluation

4.1. Research questions

In the context of the dynamic task recommendation
system, we investigate four research questions:

• RQ1 (Understanding): How do different groups
of workers (defined by their tenure) behave
regarding the Learn and Earn objectives?
Why? This RQ serves as a justification for our
research. From the analysis of real-world data,
we want to understand the variation in the Learn
and Earn behavior of different groups of workers

• RQ2 (Gain in technology coverage): Can
the adoption of recommendation support the
diversification of workers towards overall
technology coverage?
Why? This RQ measures the impact of the
generated recommendations on improving
participation in tasks requiring hot technologies.

• RQ3 (Usefulness of recommendations)
How do actual crowd workers evaluate the
recommendations?
Why? External validation in an industrial context
is a critical means to judge the applicability and
usefulness of results.

4.2. Data collection

The whole empirical investigation done in this paper
is based on real-world data from the Topcoder platform.
Data collection was done for the period from January
01, 2015 to March 31, 2017. The crawler component of
the developed prototype tool has retrieved the historical
data from the Topcoder website with publicly available
API. In total, we analyzed 4007 development type tasks
and 14631 workers with 104222 registrations.

4.3. Study design

Analysis procedure to RQ1
In this analysis, we compare the Learn and Earn

behavior of three group of workers separated based on
their tenure. The analysis is conducted using 6-month
data over October 1, 2016, to March 31, 2017. Out of
the total 14631 workers, we initially considered only
those who had at least one registration in one month
of the 12-month period before March 31, 2017. This
led to 5885 workers. To effectively demonstrate Earn
behavior of workers, we need those workers who had
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at least a few registrations in the last 6-month period.
So, to answer RQ1, we considered only those who had
at least one registration in three months of the 6-month
period before March 31, 2017. This led to 357 workers.
From our analysis, we noticed that the median and
average number of task registrations per week (based on
357 workers) is 0.91 (almost 1) and 1.93, respectively
(see [13] for more analysis). Significant number of
development type tasks were posted on weekly basis
(10 to 35 tasks) and monthly basis (65 to 110 tasks)
over the analyzed six months.

Analysis procedure to RQ2
To answer this RQ, we generated recommendations

for the same 5885 workers in the Topcoder platform
on a weekly basis for the month of October 05, 2016
to March 28, 2017. For evaluation purpose, we used
a metric called Technology Coverage gain which is
defined as follows.

Definition: Technology coverage gain for a
technology in a certain period is defined as the
improvement in worker participation in that technology
assuming each worker had adopted top ranked (rank
1) recommended task all the time. In other words,
technology coverage gain is the percentage of workers
in the platform working with tasks requiring that
technology (following our task recommendation every
week) minus the percentage of workers who worked
with that. To compute this metric, we considered the
actual worker registration for each task in a month
and all the weekly generated recommendations in that
month.

Analysis procedure to RQ3
To evaluate the usefulness of EX2, we designed

and conducted a user survey, consisting of four steps.
First, in collaboration with TopCoder online developer
community, an invitation letter was sent out to solicit
participants. Second, our task recommendation system
automatically generated Top-10 new recommendation
for sign-up workers. Third, after reviewing the list
of recommended tasks, each participant completed a
feedback survey about the usefulness of the guidance
provided. Last, we analyzed the responses.

The user survey was conducted from March 25,
2017, to March 31, 2017. In this case, two Google forms
(sign-up form and feedback form) were designed and
used to collect data. For details of the forms, please
refer to [13]. For the period of data collection, 14
workers have signed up to participate in the study, and
we received 12 responses. Two of the workers were
newcomers.

Figure 3. Tenure wise average monthly normalized

Learn and Earn score for each group.

5. Empirical results

5.1. RQ1: Understanding the learning and
earning behavior

In Figure 3, we show the monthly average Learn and
Earn score for three groups of workers in box plots.
Therein, grouping is based on the number of months
(tenure) the workers are active in the Topcoder platform.
More specifically, there are three worker groups, i.e.
1-24 months, 24-48 months, and more than 48 months,
and each with 25, 25, and 307 workers respectively. The
vertical axis show the calculated monthly average learn
and earn scores ([0,1]).

It is evident from the figure that workers from
all groups spend time on learning and exploration.
Moreover, there is a decreasing trend in the average
learning scores. This result is quite intuitive considering
the different motivation patterns of the three groups. We
noticed that even the workers who have been active for
a long time (above 48 months) show both learning and
earning behavior with huge variation in monthly average
learn score. The monthly average Learn score ranges
from 0.12 to 0.55 within the workers in that group, while
monthly average Earn score ranges from 0.08 to 0.66.
The monthly average Learn and Earn score for workers
with 0-24-month tenure were in the range 0.17-0.60 and
0.08-0.56, respectively.

5.2. RQ2: Gain in technology coverage

In Figure 4, we report the overall hot technology
coverage gain for a period of six months. This gain
is defined as the sum of technology coverage gains for
all defined level 1 hot technologies. In this experiment,
we could not exactly measure who else were active in
a particular month other than the workers registering on
that month. To compute overall technology coverage,
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Figure 4. Total technology coverage gain after

recommendation adoption for level 1 technologies.

Table 1. Percent of crowd workers having registered

for hot technology tasks without (actual) and with

(assumed following) recommendation
Technology February 2017 March 2017

Without With Diff. Without With Diff.
android 3.7 0.0 -3.7 8.5 8.0 -0.5
angular.js 26.8 69.9 43.1 18.2 76.2 58.0
api 14.0 12.1 -1.9 2.8 9.4 6.6
css 19.9 33.9 14.0 21.2 35.7 14.4
html 10.0 27.0 17.0 11.5 54.8 43.3
html5 15.9 29.8 13.9 16.0 27.2 11.2
ios 1.8 0.0 -1.8 0.0 0.0 0.0
java 27.6 49.1 21.5 20.9 54.6 33.7
javascript 29.3 45.6 16.2 24.8 68.0 43.1
jquery 5.2 1.6 -3.6 0.0 0.0 0.0
json 8.0 43.5 35.6 6.1 12.2 6.2
mongodb 0.2 12.2 12.1 0.0 0.0 0.0
node.js 23.2 47.6 24.4 16.3 42.8 26.6
Total 186.8 242.6

we made an assumption regarding active workers. We
assume that a worker needs to have at least one
registration history in the prior month or in the current
month, to be considered as active. However, there can
be more active workers in a platform than the workers
registering in either of the two subsequent months.

Figure 4 shows that we achieved significant increase
in the level 1 hot technologies regardless of the learning
preference values of the workers. For November
2016, January 2017 and February 2017 when learning
preference value was reasonably low (varied from 0.02
to 0.40), we observed 200% and above technology
coverage gain for each month. Even when learning
preference value was very low (0.02 or 0.05) for
all workers in the platform (for December 2016 and
March 2017), we had 80 to 250% gain, as through
recommendations we could reach more workers than
the workers who registered in tasks requiring those hot
technologies.

In Table 1, we show the results regarding the increase
or decrease in the number of workers after following
recommendations for the very recent period of February
and March, 2017. For most of the technologies,
following recommendations results in a higher number
of workers registering in these tasks, thereby reducing
the probability of task cancellation due to qualified
submissions.

When we performed the similar type of analysis
assuming that 40% and 60% crowd workers (instead
of all workers) accepted the top ranked (rank 1)
recommended task, monthly average technology gain
was around 20% and 90%, respectively. The more
crowd worker accepts the top recommendation on a
weekly basis, the higher the monthly average technology
gain. In addition, the more active workers in a
platform, the higher the chances of accepting the top
recommendation. Interested readers can see [13] for
more analysis on monthly technology gain.

5.3. RQ3: Usefulness of recommendations

According to feedback from the participated crowd
workers, here is a summary of evaluation results:

1. 10 out of 12 (83.4%) believe that: It makes sense
to employ the differentiation between exploitation
and exploration in task recommendation. The
other 2 responses are neutral. Average score:
4.25/5.

2. 7 out of 12 (58.3%) believe that: The
Top-10 recommendations are useful for selecting
up-coming tasks, with 2 neutral responses, and 2
negative responses. The average score is 3.41/5.

3. 9 out of 12 (75%) workers believe that: Projection
of the winning chance supports my decision on
task selection, with 1 neutral and 2 negative
responses. The average score is 3.83/5.

4. 9 out of 12 (75%) believe that: A weekly update
helps me to accommodate changes in the tasks
available in the environment, with 2 neutrals and
1 negative responses. The average score is 3.9/5.

5. 7 out of 12 (58.3%) workers believe that: A daily
update helps me to accommodate changes in the
tasks available in the environment, with 2 neutral
and 3 negative responses. Average score is 3.66/5.

The feedback to the two open ended questions
provides much more informative suggestions on the
numerical ratings. Here are some encouraging remarks
regarding the usefulness of the recommendation system:

1. “Suggested list matches my interests, so the
recommended list is good.”

2. “The recommended challenges help me keep
updated with the technologies and the new trend.”

3. “I have registered one challenge (the first one in
the recommendation list) because I’m working on
the Hercules XRE series challenges.”
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4. “Seems fit to me.”

Two workers provided negative responses for
questions Q2 to Q4. In the two open end questions, one
indicated that I register in almost every challenge to at
least checkout what’s going on even when not planning
to submit, which suggests an additional task selecting
pattern on gathering information. Additionally, few
research directions were suggested by participants. such
as reviewer position recommendation, and incorporating
special community identity factor of TCO eligibility.

6. Discussion

6.1. Implications for workers and platform

A tremendous amount of variability accompanies
individual performance on software crowdsourcing
mini-tasks. To support dynamic worker decision
making, it is essential to capture and benefit from
appropriate manipulation of such variations. The
proposed EX2 method addresses the measurement of
varying amount of technical requirements w.r.t. skill
and abilities of individual workers using two scores, i.e.
Earn score and Learn score.

Additionally, a common criticism faced by
many recommendation systems is the bias towards
experienced individuals because the lack of proper
mechanism to handle newcomers with limited or
no prior information in the learning history. Such
difficulty can be inherently dealt with through the Learn
(Exploration) dimension in the EX2 method.

From platform perspectives, such preference-driven
task recommendation is important for different reasons.
In the short term, it ensures attraction of expert workers;
and in the long run, it guides the healthy growth of
resource pool w.r.t. the new and emerging technologies.
Even though crowd workers try to acquire skills in new
technologies, they may or may not pay attention to hot/
demanding technologies.

6.2. Threats to validity

Threats to construct validity: Learning preference value
can take various values within the range 0 to 1. Also,
different workers can also have different preferences
over time. Thus, the chosen preference values might not
be the representative values.

Technology heat map can vary over time. It usually
does not drastically change over one year period, may
take several years. In this study, rather than varying the
map over time, we used the single technology heat map
already determined by the Topcoder platform. However,
in future, we will design metrics to periodically and

dynamically re-evaluate hotness of various technologies
based on market demand.
Threats to external validity: The used data set is
collected from Topcoder. The learning preference
values, expertise and interest of the pool of crowd
workers and tasks posted in the Topcoder platform
can be quite different from those of other competitive
platforms. Thus, the conclusion that we made might
not generalize to other platforms, but the learn and earn
based recommendation system and its impact generalize
to other competitive crowdsourcing platforms.

7. Related work

7.1. Crowd worker motivation and behavior

Different studies on motivation patterns of
crowdsourcing workers reported that monetary award is
one of the top motivating factors to attract and involve
potential workers in task competition in crowdsourcing
market [1, 2, 6, 14, 15]. The award amount typically
correlates the degree of task complexity and required
competition levels as well as task priority in the project
development [6, 14]. Learning is another primary
motivation factor in crowdsourcing [3, 5, 6]. For
newcomers or learners, it takes the time to improve
and turn into an active worker. Therefore, most of
them focus on registering and gaining experience
by competing with peers and learning from reviews.
Kaufmann and Schulze [15] identified some additional
motivational factors, such as community identity.

7.2. Resource optimization

Assigning human resource to software development
tasks has been studied intensively [11]. The questions
to be answered in general are “Who will work
on what?” and “When to work on what?”. A
variety of techniques has been proposed for addressing
these questions, primarily for proprietary software
development. Finding the best assignment strategy in
consideration of conflicting objectives have been studied
in [16, 17, 18].

In CSD task assignment, existing studies focus
on learning worker expertise and skills from history
and match to factors or criteria extracted from task
requirements. For example, Mao et al. proposed
a content-based classification approach to recommend
both winning workers and participatory workers for new
tasks [19]. Zhu et al. employed conditional random
field method to develop a learning to rank framework to
recommend developers matching specific criteria such
as skill and location in task requirements [20]. Abhinav
et al. proposed a freelancer recommendation framework
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for interdependent tasks based on multi-dimensional
assessment metrics and various machine learning
models [21]. The results of the above research
provides decision support to competitive or hiring
based platforms or task requesters in those platforms.
Unlike former approaches, this work intends to assist
crowd workers in decision making. The work in [8]
suffers from starvation problem (workers with no past
success likely not to receive any task recommendation)
due to the employed ranking algorithm, while this
work can recommend and rank tasks for any worker.
Unlike [8], this approach employs binary classification
with different set of features to predict winning chance
of each worker on each task.

8. Conclusion and future work

Dynamic decision support in software
crowdsourcing market is critical to meet individual
worker preferences, ensure task success, as well
as balance resource utilization. Existing methods
overlook the role of workers learning preference in
recommending which tasks to work on.

In this study, we proposed the EX2 method
that defines and utilizes Learn and Earn measures
when quantifying and recommending target goals of
developers on crowdsourcing tasks. The method
was implemented as a dynamic task recommendation
system, which can produce regular (e.g., near real-time,
weekly, daily) recommendations. The proposed method
and tool implementation are evaluated both on a
historical dataset and through a user study with 14 crowd
workers from the TopCoder online community. The
evaluation results show very positive feedback.
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