
Scrum in practice: an overview of Scrum adaptations

Michal Hron

Aarhus University

michal.hron@post.au.dk

Nikolaus Obwegeser

Aarhus University

nikolaus@mgmt.au.dk

Abstract

Agile software development practices have gained

widespread acceptance and application across all

industries. Scrum, as one of the most widely used

agile methods, has been adopted in countless

organizations. However, while there is an

understanding that practitioners rarely apply Scrum

“by the book”, only little research addresses the

actual adaptations and modifications that are made

to fit Scrum to real world requirements: whether it is

to solve methodological drawbacks, to fit the method

to specific contextual constraint, or to add additional

value to the method by augmentation or combination

with other tools and methods. To get an overview of

the proposed adaptations and their implications, this

study presents a systematic review of literature

reporting on challenges and motivations that lead to

modifications of the Scrum method. Based on 31

relevant studies we extract seven distinct motivations

for modifying Scrum, as well as six generic solution

strategies to adapt the method.

1. Introduction

In the context of software development, agile

development methods have been originally conceived

with small, co-located teams of software developer

generalists in mind. As agile development methods

grew in acceptance, they were introduced to a

multitude of different settings that depart from the

original, idealized picture, and thus the methods had

to be adapted to a variety of contexts. In addition,

practitioners are continuously raising their

expectations to what agile development approaches

can deliver. That is in particular with respect to

management-related activities such as estimation,

reporting, or alignment of software development

activities with business strategy.

One of the most popular agile development

frameworks is Scrum [45], due to its simplicity and

consequent versatility. In a yearly conducted “State

of Agile Report” [45], Scrum (and combinations of

Scrum with other techniques) consequently occupies

more than half of all agile techniques that are

reportedly in use.

In this study, we use Scrum as a window into the

agile world, based on its high level of diffusion and

practical acceptance. We aim to look for insights on

the application of Scrum in practice: what are

commonly faced limitations? What are typically

suggested alterations of Scrum to those

circumstances? Our goal is to get an overview of the

motivations as to why one would modify, or add to,

the Scrum method, as well as to understand the

commonly used solution strategies applied to perform

these modifications. Based on our analysis and

synthesis of existing modifications we are able to

provide a structured overview of the current body of

knowledge and propose promising suggestions for

future method development.

2. Background

Agile development is a development philosophy

standing as a counterpart to traditional, plan-based,

“waterfall” approaches [2]. In information systems

development (ISD), agility refers to “the continual

readiness of an ISD method to rapidly or inherently

create change, proactively or reactively embrace

change, and learn from change while contributing to

perceived customer value (economy, quality, and

simplicity), through its collective components and

relationships with its environment” [8:340]. The agile

approach is attempting to account for the inherent

unpredictability of the software development process

by taking an incremental approach to development,

minimizing planning, estimation, and other overhead

tasks, and establishing continuous communication

and interaction with the customer. Agile teams

continually ship working features in order to

maximize impact and reduce time-to-market of new

developments. While a plethora of agile ISD methods

have been proposed, agile development frameworks

and methods are typically not implementable without

being tailored to the unique circumstances of the

specific development environment [12, 13].

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50568
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 5445

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scrum was first introduced in 1997 [40], and has

since become the most widely applied agile software

development framework [45]. At its core, Scrum

splits development into iterations not longer than four

weeks (called sprints). At the end of each sprint, a

shippable product increment is delivered to the user.

For each new sprint, a sprint-planning meeting is

held, at which tasks for the sprint are selected by the

developers themselves in collaboration with other

stakeholders. In Scrum, the customer is represented

in the role of the product owner. Requirements are

captured in the form of user stories and are

aggregated in a prioritized product backlog. The

product backlog is a “living” document, as it is

updated continuously and thus reflecting the current

understanding of user needs.

In its original form, Scrum is designed for small

interdisciplinary teams of about six to nine

developers. An important property of any Scrum

team is self-organization: i.e., the team itself has the

authority to decide on strategies to achieve the

objectives of the sprint. To coordinate the daily work

and the adherence to the Scrum process, the role of

the Scrum master is required in every Scrum team.

Quick pace of work is maintained by daily stand-

up meetings, during which team members inform

each other about their progress and tasks for the day.

Learning is facilitated through so-called

retrospectives, which take place after each sprint and

provide room for reflection on the work practices of

the concluded sprint.

3. Related Work

In this study, we are interested in understanding

Scrum in practice—i.e., why and how Scrum was

adapted in real-world application. While some

previous review studies pursued similar goals, we

argue that the underlying research differs from prior

work in two main aspects: contextual focus (i.e.,

limitations to a particular setting) and breadth of

methods under investigation (i.e., agile methods in

general).

Previous literature reviews typically focus on

exploring adopted practices under one specific set of

circumstances, e.g., agile in the context of global

software development, or they follow one specific

motivation, e.g., incorporating user experience design

(UX) practices into agile development. As much as

they are narrower in the circumstance studied, they

are broader in the methodologies in question. They

typically look at agile software development globally

without limiting themselves to a specific

methodology.

In contrast, this literature review presents a map

of situations that motivated adjustments of a single

method—Scrum. Due to its widespread use and

dominant position among agile ISD methods, we

focused on adjustments made to Scrum. However, we

argue that Scrum may act as a window to the agile

development world, and that our findings therefore

may well be carefully related to other, similar

methods.

Among the previously conducted literature

studies, the following stand out: Hossain, Babar, and

Paik (2009) and Jalali and Wohlin (2010) have both

mapped agile practices in global software

engineering. They arrive at similar conclusions and

identify comparable practices employed to counter

those challenges. Such studies usually take the form

of methodology guidance and discussion of best

practices, which is consistent with our findings.

Duechting, Zimmermann, and Nebe (2007)

mapped studies concerned with combining software

product lines with agile software development

practices. They emphasized the explicit adherence to

the principles of the manifesto for agile software

development [2] and identify Scrum and XP

(eXtreme Programming) to be the most commonly

mentioned methodologies in relation to software

product lines.

To our best knowledge, a systematic review of the

general circumstances to which Scrum-based

development has been tailored is not available. This

work therefore aims to close this gap and presents an

overview of emerging themes identified in relevant

literature. Previous reviews can be situated into the

classification presented in this review.

4. Research Method

We followed the widely accepted literature

review guidelines outlined in [48]. As our research

focus was to examine the literature on adaptations or

modifications of Scrum, we defined several keywords

to capture relevant studies. In order to increase our

understanding of the subject matter and devise a

meaningful search strategy [4], we first read and

discussed a number of highly cited articles, in

combination with insights from related literature

reviews (as discussed earlier). We made sure to allow

for inclusion of both problem-driven as well as

solution-driven initiatives.

To discover relevant literature, we used the

Scopus database and followed an iterative process to

construct a replicable research query combining the

words “Scrum”, “agile”, and “software” as

mandatory elements, combined with a range of

optional terms targeted to find adaptations of Scrum

Page 5446

both in negative and positive terms. An overview of

our final search terms is given in Table 1.

The first search returned a relatively large number

of studies (1046). We excluded pure

discussion/opinion papers and literature reviews from

our analysis, but kept them for discussion and

additional insights. Moreover, we applied category-

based filter on Scopus, so that papers dealing with

sport, rugby, and medicine were not included.

Table 1: Keyword specification for literature

search (* = wildcard)

Main topic specification

Scrum, Software, Agile

Negative terms

limit*, drawback, shortcoming, challeng*,

concern*, downside*

Neutral terms

demand*, requirement*, need*, issue*, suit*,

accommodate*, modif*, tailor*, alter*, adapt*,

chang*

Positive terms

exten*, enhanc*, expand*, widen*, improve*,

focus*, revis*, fit*, scop*

To filter the search results, our main criteria were

quality and practical relevance [34]. An initial

screening of the literature indicated the need for a

quality cut-off, as many studies were of low scientific

quality and described trivial system implementations

with no relevant insights.

Table 2: Literature filter process

Raw results of the query: 1046

Filter:

 All articles before 2016

with 10 or more citations (83)

 All articles in 2016 (15)

 All articles in 2017 (7)

Remaining sample: 105 papers

After screening of title and abstracts: 61

Remaining after full reading:

31 (final sample)

Thus, we devised a three-step filter process (see

Table 2), depending on the time of publication and

the citation count at the time of our research. First,

articles published before 2016 with ten or more

citations were included. Second, papers published in

2016 with at least one citation were included. Third,

studies published in 2017 or in print were included

regardless of citation count to allow newly published

articles to be assessed. This resulted in a preliminary

sample of 105 papers, i.e. ~10 per cent of the initial

search results. To reduce the chance that relevant

papers were excluded by accident, we performed a

screening of 100 random articles out of 941 excluded

articles. None of the screened studies was included,

based on quality and relevance criteria.

Next, the remaining 105 studies were screened

based on titles and abstracts by both researchers

individually. Differences in coding were resolved by

discussion. When in doubt, the paper in question was

kept until the next, more thorough, round.

5. Descriptive results

In line with previous reviews, our sample shows

that the dominant part of the literature consists of

empirical papers. This includes industry reports by

practitioners as well as research reports by academics

who describe the development practices of selected

case organizations. Case study designs are by far the

most commonly employed research strategy. Rarely

did studies in our selection provide theoretical

backing for the proposed adjustments.

We included both journal articles and conference

papers in our review. The relatively high amount of

conference papers in our sample points to the

practical orientation as well as the emerging nature of

the topic. A negative consequence of this practical

orientation of the available literature is lowered

generalizability of the findings.

Figure 1: Article types over time

While the first relevant papers we found were

published in 2006, the peak interest in this topic can

be observed in 2008 and later in 2012 (Figure 1).

The case studies were set in a variety of different

industries, with some emphasis on IT companies.

While most cases discussed smaller IT companies,

some large corporations were also represented, such

as PayPal [5], Ericsson [19], and Intel [12]. Other

studies focused on rather specialized areas or

industries, such as the cruise line industry [1] or

Page 5447

healthcare [16]. In terms of geographical dispersions,

most studies focus on Western Europe, the Nordic

regions, and the United States.

6. Motivation and proposed

adaptations

In lack of an existing organizing framework that

could support our analysis, we took inspiration from

the constant comparative method used in Grounded

theory [6], and engaged in a process of coding the

articles to generate an inductive frame from within

the data. To guide our analysis, we aimed for the

discovery of categories along the two main questions

that motivate our research: why was the method

modified (dimension: motivations) and how was the

method modified (dimension: solutions). Through

multiple iterative coding sessions in which both

authors participated, we iteratively developed

categories along these two dimensions. The coding

sessions were categorized by alternating discovery

and discussion parts, ultimately leading to our

categorization frame, as described below.

First, we identified 7 distinct types of motivation

for modifying Scrum from its original version:

distributed settings, combination with other

frameworks or methods, increased focus on UX and

usability, vertical scaling (i.e., embedding Scrum in

larger organizational aspects, such as strategic

planning), size scaling (i.e., Scrum for medium and

large projects), tools to use with Scrum, and Scrum in

a specific context. While some studies relate to more

than a single motivation for change, most of the

examined articles correspond to a single main

motivation in our categorization scheme. Second,

similar to the motivations for change, we were able to

identify 6 different solution strategies applied to

achieve the intended goal (as described in the next

Section).

Both categorization schemes are summarized in a

comprehensive matrix (see Table 3), which links the

motivations for change with the proposed solution

strategies.

To guide the reader through our findings, the

following section opens with a brief overview and

discussion of the types of modifications we found.

Thereafter, we iterate through the different

motivation categories in detail, to present and discuss

the relevant papers and their solution strategies.

6.1. Solution strategies

The following 6 solution strategies were found in

the literature:

 Combination: An intermixing of Scrum

elements with elements of other existing

processes/methods such as CMMI (Capability

Maturity Model Integration), Lean, or XP.

 Pre-development: This category is a special

case of the aforementioned “Procedures, artifacts,

roles” category. It refers to the introduction of

additional processes, artifacts, or roles that

specifically deal with tasks such as the definition of

technical architecture, articulating a product vision,

or creating milestones for development, before the

development itself is initiated.

 Method guidance: Notes, instructions, and

guidance on how to apply the method in specific

settings, contexts, or circumstances. This category

includes appeals to “by the book applications” of the

selected method, reminders of the principles of the

Manifesto for Agile Software Development [2], and

Table 3: Overview of motivations and solutions

right: solutions

down: motivations

co
m

bin
atio

n

pre
-

develo
pm

ent

m
eth

od

guid
ance

pr
oc

ed
ur

es
,

ar
tif

ac
ts
, r

ol
es

m
ulti

plic
ity

to
ols

distributed 0 0 6 2 5 0

combination 7 4 2 0 0 0

UX and usability 0 1 2 3 3 0

vertical scaling 0 0 0 3 3 0

size scaling 0 1 1 2 3 0

tools 0 0 0 1 0 2

context 0 0 1 2 0 0

Page 5448

even practical advice in the form of best practice

guidelines.

 Procedures, artifacts, roles: Change of

existing or introduction of new artifacts, roles, or

processes to the original Scrum method.

 Multiplicity: Multiplication of certain

aspects of Scrum (artifacts, processes, roles, or the

team itself). The multiplied elements of Scrum can be

used for different purposes. For instance, it can be

suggested to have two backlogs, one for development

and one for management.

 Tools: Proposals of tools that do not directly

modify Scrum but help accomplish certain task.

Such tools can often be seen as a kind of “plug-ins”

to the original method, and they may be applied

passively without directly changing the method in its

workings.

6.2. Motivations for change

6.2.1. Distributed Setting

Distributed settings

method guidance [3] [21] [27] [38] [36] [37]

procedures,

artifacts, roles

[21] [27]

multiplicity [21] [27] [38] [36] [37]

In today’s globally connected world, IS

development sometimes takes place across different

geographical locations, in so-called distributed teams;

this can range from teams scattered across continents

to teams which are in the same country (or even city).

In such setups, communication usually relies on

technology-mediation, i.e., the use of video

conferencing tools or similar technologies.

Using Scrum in distributed settings usually

requires some degree of multiplicity. The Scrum

team is often split into several Scrum teams in

different locations. In the reviewed literature, the

newly formed teams were always split according to

specific features (feature-driven), which is in line

with the original design of Scrum, rather than being

built around a single capability (such as front-end or

back-end development). While Scrum teams are

usually multiplied in the different locations, the

supporting architecture does not need to be

redundant. For example, Lee and Yong (2010) report

on a team which maintained a global platform with

shared backlogs accessed by multiple local teams

[27]. A similar practice of a shared backlog is

reported in [3][3].

For successful application of Scrum in distributed

settings, research emphasizes the need for proper

implementation of the method with close adherence

to the principles of the manifesto for agile software

development [2]. This is well captured by Paasivaara,

Lassenius, and Heikkilä (2012), who quote a manager

saying “I think that the first thing is that if you decide

to do it, then you need to do it properly. You cannot

start using Scrum or agile half-way, [because] then

you won’t be able to take out the benefits” [39].

The importance of understanding and adhering to

the basic agile practices is a reoccurring theme in the

literature on distributed settings. For example,

Berczuk (2007) urges practitioners to “ensure that all

team members understand and embrace the values of

your agile method” [3]. The same paper is also in

favor of co-locating the developers together at least

for the first sprint, to ensure the development of some

form of a trust relationship among the teams.

A number of previous studies focus exclusively

on global software engineering [23]. Further, the

conceptual framework proposed by [21] offers a

number of strategies and practices to mitigate 7

common risks of distributed agile software

development, such as using online Wiki’s for key

document sharing to mitigate the lack of group

awareness, or ensuring a suitable set of

communication tools for the available network

infrastructure.

6.2.2. Combination

Combination

combination [9] [12] [18] [29] [31] [43]

[50]

pre-development [9] [18] [22] [50]

method guidance [22] [47]

Combining Scrum with other methodologies is a

topic receiving a significant attention in the literature.

Some studies argue for an underlying goal behind

their combination efforts (i.e., increased efficiency),

others simply aim to assess the possibility of their co-

existence while identifying potential synergies that

can be gained through meaningful combination [31].

 Most notable sources of inspiration were the

CMMI framework, XP, and Lean development.

Elements brought into Scrum frequently provide pre-

development activities—such as specification of

high-level technical infrastructure —and generally

equipped Scrum with more rigidity.

For example, Diaz, Garbajosa, and Calvo-

Manzano (2009) find that CMMI level 2 aligns well

with Scrum, and that this combination produces

positive synergies even for small businesses [9]. A

similar conslusion is reached for mature

organizations with CMMI level 5 certification [22].

A more comprehensive mapping study between

Scrum and the CMMI model is provided in [29].

Page 5449

Studies examining Scrum with CMMI were also

mapped by a separate literature review [35].

Generally, CMMI is found to be beneficial for

requirements elicitation, budgeting, and risk

management, in addition to providing a signaling

value of the certification. If implemented right, it

allows to “balance agility and discipline” [29] of both

methods.

In their study, Van Waardenburg and Van Vliet (

2013) report on possible mitigation strategies to deal

with the challenges of co-existing plan-driven and

agile methods in organizations [50]. They identify the

two main factors as "Increased IT Landscape

complexity" and "Lack of Business involvement" as a

result to the co-existence, and discuss several

strategies (contingents) to address these aspects.

Harvie and Agah (2016) include pre-development

processes in their flavor of Scrum by drawing

inspiration from military theory [18]. They develop a

mechanism to support a more formal approach

towards managing backlogs, which relies on a so-

called “product end state document” that serves as a

prioritization guide.

As an overview, Wang, Conboy, and Cawley

(2012) provide a review of thirty experience reports

about attempts to combine agile and Lean software

development, identifying six unique types: non-

purposeful combinations; agile within, Lean out-

reach; Lean facilitating agile adoption; Lean within

agile; from agile to Lean; and synchronization of

agile and Lean [47].

6.2.3. UX and Usability

UX and Usability

pre-development [44]

method guidance [11] [25]

procedures, artifacts,

roles

[11] [25] [44]

multiplicity [5] [11] [41]

Studies discussing the incorporation of user

experience design often suggest establishing two

Scrum teams: one for developers and one for

designers. Budwig, Jeong, and Kelkar (2009)

recommend to “organize the UX team into a separate

Scrum team, with its own product backlog and

product owner” [5]. They further suggest that the

Scrum team proceeds with the work for one or two

Scrum iterations ahead of development. For this

purpose, the Scrum roles need to be adjusted to

accommodate the design tasks, resulting in new roles

such as Usability Product Owner in the so-called “U-

Scrum” methodology [41].

A risk of separating the designers and

programmers is reduced contact between the two

teams and the users. It is important for “team

members responsible for Usability and UX [to] have

face-to-face communication with the actual users at

least once during each sprint.” [25]. Ferreira, Sharp,

and Robinson (2011) report on challenges of the

communication process between development and

design teams, highlighting the differences between

the different work sub-cultures [11]. Finally, an

experience report by Ungar and White (2008)

presents the design practice of a design workshop, in

which the stakeholders (developers, managers,

customer) are brought together to work on low-

fidelity prototypes to clearly establish a shared vision

before the development itself is commenced [44].

This is an example for a possible pre-development

activity.

The proposed methodology adjustments come

with many practical implementation tips. Such

method guidance tidbits include recommendations

such as “Define measurable goals for Usability” and

“Define the responsibility for Usability and UX for

all roles” [25].

6.2.4. Vertical Scaling

Vertical Scaling

procedures,

artifacts, roles

[19] [30] [46]

multiplicity [19] [30] [46]

Scrum, in its original form, offers tools for

management of requirements only on the lowest

level. Higher levels of software product management

such as road mapping [49] and establishing a

connection to a firm’s overall strategy are not

covered by Scrum. For small teams, it is possibly to

duplicate the Scrum process for product management,

with the product manager maintaining their own

backlog [46]. In larger development efforts, the

multiplicity of elements can be nested in Scrum-of-

Scrums like architectures [30]. A comprehensive

methodology adjustment has been proposed by

Vlaanderen et al. (2011), demonstrating a process for

translating strategic requirements into features, epics,

and stories of agile development process in a large

organization with a multitude of Scrum-inspired

teams [46]. New artifacts (e.g., a “one-pager” that

specifies a feature) are introduced. The methodology

also describes new roles (e.g., Chief Product Owner)

and processes (e.g., process development).

6.2.5. Size Scaling

Size Scaling

pre-development [32]

method guidance [39]

procedures, [19] [32]

Page 5450

artifacts, roles

multiplicity [39] [19] [32]

Agile development is best suited to small teams,

but the complexity of some software products

mandates a large number of developers. Papers in this

stream offer solutions to managing agile development

when the number of developers exceeds what is

recommended for a single agile team.

When a multitude of teams is established, they are

then often arranged in a “nested” setting, sometimes

referred to as Scrum-of Scrums. Infrastructure for

team communication across teams usually mirrors the

basic Scrum, except that instead of individuals, team

representatives are participating on the meetings.

When such teams have too many participants, they

risk a lack of common interest and knowledge across

teams [39]. A recommended practice is therefore to

hold Scrum-of–Scrum meetings with fewer

participants with joint interests [39].

An alternative framework for organization of

large-scale development is the CAFFEA (Continuous

Architecting Framework For Embedded software and

Agile) framework [32]. In CAFFEA, dedicated roles

are created for architecture development and

governance. Teams are cross-functional and arranged

alongside specific features. The framework puts

emphasis on achieving architectural consistency in

large-scale software development efforts employing

agile methodologies.

6.2.6. Tools

Tools

procedures,

artifacts, roles

[7]

tools [28] [42]

Several papers are motivated by the need for

techniques that do not directly modify the Scrum

methodology, but can be used in conjunction with

existing Scrum elements to achieve a specific task.

Papers in this category are motivated by a need to

develop a tool and deliver that tool as a solution.

“Tools” is therefore listed as both as a motivation for

change as well as a solution.

For example, to improve requirements

scheduling, Li et al. (2010) develop a linear

programming model and showcase a prototypical

application for release planning. The authors show

that their scheduling model can be applied for Scrum

projects, and may increase planning efficiency among

multiple sprints and teams.

From a financial planning perspective, Sulaiman,

Barton, and Blackburn (2006) develop AgileEVM – a

set of formulae to calculate Earned Value

Management (EVM) parameters for agile projects

[42].

In Codabux and Williams (2013), a taxonomy of

technical debt is developed based on qualitative

research [7]. The authors suggest refactoring,

repackaging, and reengineering as activities to reduce

technical debt. Suggested practices include the

establishment of teams who focus solely on reducing

technical debt, as well as dedicating 20% of

development time towards the reduction of technical

debt.

6.2.7. Context

Context

method guidance [24]

procedures,

artifacts, roles

[16] [14]

Recently, some authors began to describe cases of

the introduction of Scrum to non-traditional contexts.

For example, Könnölä et al. (2016) report on

successful adoption of Scrum to embedded system

development [24]. They provide method guidance

highlighting the specific needs of this context, such

as longer iteration cycle of hardware development

compared to software development. They find that

agile development for embedded systems yields

numerous benefits, such as clearer dependencies of

individual modules among each other.

Fitzgerald et al. (2013) present a heavily modified

version of Scrum for environments characterized by

heavy regulation, introducing an exhaustive set of

new processes, artifacts, and roles.

Finally, Gary et al. (2011) offers a case study on a

specific development effort of an open source tool for

the healthcare industry. Similarly, this case study also

recommends modifying Scrum by adding new

processes, roles, and artifacts.

7. Discussion, implications and

future research

This study maps a variety of ways in which

Scrum has been modified to better fit commonly

encountered circumstances. The modifications are

categorized into several generic solution strategies,

each of which carries certain risks and challenges.

7.1. Scrum in practice

This literature review confirms that Scrum’s

software development principles are widely

applicable and beneficial in various, often non-

traditional settings.

Page 5451

As the literature suggests however, the

development methodology and techniques have to be

tailored to specific needs of the given circumstances

[33]. In many cases, this requires a modification of

existing and/or introduction of new roles, processes,

and artifacts. However, organizations need to

carefully orchestrate new elements to fit with the

existing method, as they risk diluting the benefits that

an adoption of agile principles promised in the first

place. For example, the suggestion of a “product end

state document” in [18] may be at odds with the

principle of welcoming changing requirements, a

core element of the agile manifesto [2].

 Another commonly used approach to adapt to

changing work practices is the multiplication of the

whole method in the form of multiple Scrum teams.

Extant literature suggests that this strategy can be

useful for many purposes apart from geographically

distributed development settings, such as large but

co-located project teams, or feature driven Scrum

teams that focus on UX and usability topics in

parallel to a development team. To reap the benefits

of a multiplied Scrum setup, research emphasizes the

need to establish well working interfaces between the

teams [25], as well as to develop a common work

culture [11].

While tailoring of Scrum may take one of many

potential forms, extant research stresses the

importance of the basic principles that guide agile

software development [2]. Interestingly, our review

shows that both knowledge of and adherence to those

principles become even more important with

increasing distance from the originally intended

setting of small, collocated, self-managed software

development teams [3, 39]. Those principles are

likely to be better internalized by highly mature

teams who have worked in agile manner for some

time. Consequently, adopting a modified Scrum

development approach by a newly formed or

distributed team may be a risky endeavor.

Interestingly, the combination of Scrum with

other frameworks or methods is usually not driven by

a limitation of Scrum, but rather a “desire to explore”

the potential of infusing some level of agility into—

often large and rigid—traditional organizations [18,

31]. Thus, these studies often do not represent a

modification of Scrum, but rather an extension of

other frameworks (i.e., CMMI) with elements from

Scrum. Conversely, the current body of knowledge

largely lacks insights into how some of the

commonly mentioned challenges for the application

of agile methods (i.e., large-scale projects or

distributed development) may be solved through

systematic “borrowing” from, or combination with,

other frameworks.

7.2. Methodological considerations

Our descriptive results show that the majority of

the available literature is driven by practitioner

interest and activities, thus often taking the form of

case studies. Consequently, little research provides

sound theoretical backing or links the researched

practices to extant theory. Further, due to the

predominant single case study design, many reported

findings lack statistical generalizability, but provide

grounds for analytical generalization [26]. To allow

for comparative analyses and increased external

validity, we recommend future research to employ

multiple case study designs [51]. Moreover, many

studies do not follow the academic practice of

iterative, cumulative knowledge development, i.e.,

insufficiently relate their research to the existing

knowledge base. Thus, our study may also serve as a

frame for more structured future research,

encouraging a cumulative research tradition.

8. Conclusion and limitations

The use of agile methods has become a

widespread practice for software development teams.

As one of the most widely implemented agile

methods, Scrum has been the focus of a number of

adaptations and modifications. In this study, we

provide an in-depth review and synthesis of academic

literature proposing changes to Scrum. By analyzing

31 relevant studies, we extract seven distinct

motivations for method modifications: distributed

settings, combination with other methods, increased

requirements for UX and usability, vertical scaling,

size scaling, tools, and adaption to different contexts.

Additionally, we could identify six generic strategies

of how these goals can be achieved: through

combination, pre-development, method guidance,

introduction of new procedures/artifacts/roles,

multiplicity of some method elements, or by

developing specific tools. Combined, we present a

model of common drivers for method improvement

and the respective solutions strategies pursued.

We conclude with some limitations of this study.

While we conducted a systematic literature search

based on key words, we most likely missed a

proportion of relevant literature in particular in terms

of publications not listed in the Scopus database. In

addition, the use of citations as a quality threshold

should be considered with caution. Citations may

also signal political biases, alliances and omissions,

and be biased towards seminal studies representing

“concept labels” [17]. They can also be interpreted as

a reflection of the different power relations that

Page 5452

surround a field [15]. Finally, we acknowledge that

our review is limited to academic contributions, and

thus turns a blind eye towards potentially relevant

publications in various non-indexed practitioner

outlets, such as blog-posts, discussion forums, and

the like.

9. References

[1] Batra, D., Xia, W., van der Meer, D., and Dutta, K.

Balancing agile and structured development approaches to

successfully manage large distributed software projects: A

case study from the cruise line industry. Communications

of the Association for Information Systems 27, 1 (2010),

379–394.

[2] Beck, K., Beedle, M., Bennekum, A. Van, et al.

Manifesto for Agile Software Development. The Agile

Alliance 2009, 2001, 2006. http://agilemanifesto.org/.

[3] Berczuk, S. Back to basics: The role of agile principles

in success with an distributed scrum team. Proceedings -

AGILE 2007, (2007), 382–387.

[4] vom Brocke, J., Simons, A., Riemer, K., Niehaves, B.,

Plattfaut, R., and Cleven, A. Standing on the shoulders of

giants: Challenges and recommendations of literature

search in information systems research. Communications of

the Association for Information Systems 37, 1 (2015), 205–

224.

[5] Budwig, M., Jeong, S., and Kelkar, K. When user

experience met agile. Proceedings of the 27th international

conference extended abstracts on Human factors in

computing systems - CHI EA ’09, (2009), 3075.

[6] Charmaz, K. Constructing grounded theory: a practical

guide through qualitative analysis. 2006.

[7] Codabux, Z. and Williams, B. Managing technical debt:

An industrial case study. 2013 4th International Workshop

on Managing Technical Debt (MTD), (2013), 8–15.

[8] Conboy, K. Agility from First Principles:

Reconstructing the Concept of Agility in Information

Systems Development. Information Systems Research 20, 3

(2009), 329–354.

[9] Diaz, J., Garbajosa, J., and Calvo-Manzano, J.A.

Mapping CMMI level 2 to scrum practices: An experience

report. Communications in Computer and Information

Science 42, (2009), 93–104.

[10] Duechting, M., Zimmermann, D., and Nebe, K.

Incorporating user centered requirement engineering into

agile software development. Proceedings of the HCII 2007,

(2007), 58–67.

[11] Ferreira, J., Sharp, H., and Robinson, H. User

experience design and agile development: Managing

cooperation through articulation work. Software - Practice

and Experience 41, 9 (2011), 963–974.

[12] Fitzgerald, B., Hartnett, G., and Conboy, K.

Customising agile methods to software practices at Intel

Shannon. European Journal of Information Systems 15, 2

(2006), 200–213.

[13] Fitzgerald, B., Russo, N., and Stolterman, E.

Information Systems Development: Methods in Action.

2002.

[14] Fitzgerald, B., Stol, K.J., O’Sullivan, R., and O’Brien,

D. Scaling agile methods to regulated environments: An

industry case study. Proceedings - International

Conference on Software Engineering, (2013), 863–872.

[15] Foucault, M. What is an Author? Contributions in

Philosophy, (2001).

[16] Gary, K., Enquobahrie, A., Ibanez, L., et al. Agile

methods for open source safety-critical software. Software -

Practice and Experience 41, 9 (2011), 945–962.

[17] Hansen, S., Lyytinen, K., and Markus, M. The Legacy

of “Power and Politics” in Disciplinary Discourse: A

Citation Analysis. ICIS 2006 Proceedings, (2006).

[18] Harvie, D.P. and Agah, A. Targeted Scrum: Applying

Mission Command to Agile Software Development. IEEE

Transactions on Software Engineering 42, 5 (2016), 476–

489.

[19] Heikkilä, V.T., Paasivaara, M., Lasssenius, C.,

Damian, D., and Engblom, C. Managing the requirements

flow from strategy to release in large-scale agile

development: a case study at Ericsson. Empirical Software

Engineering, (2017), 1–45.

[20] Hossain, E., Babar, M.A., and Paik, H. Using Scrum in

Global Software Development: A Systematic Literature

Review. 2009 Fourth IEEE International Conference on

Global Software Engineering, (2009), 175–184.

[21] Hossain, E., Babar, M.A., Paik, H., and Verner, J. Risk

Identification and Mitigation Processes for Using Scrum in

Global Software Development: A Conceptual Framework.

2009 16th Asia-Pacific Software Engineering Conference,

(2009), 457–464.

[22] Jakobsen, C.R. and Johnson, K.A. Mature agile with a

twist of CMMI. Proceedings - Agile 2008 Conference,

(2008), 212–217.

[23] Jalali, S. and Wohlin, C. Agile practices in global

software engineering - A systematic map. Proceedings -

5th International Conference on Global Software

Engineering, ICGSE 2010, (2010), 45–54.

[24] Könnölä, K., Suomi, S., Mäkilä, T., Jokela, T.,

Rantala, V., and Lehtonen, T. Agile methods in embedded

system development: Multiple-case study of three industrial

cases. Journal of Systems and Software 118, (2016), 134–

150.

[25] Larusdottir, M., Gulliksen, J., and Cajander, Å. A

license to kill – Improving UCSD in Agile development.

Journal of Systems and Software 123, (2017), 214–222.

[26] Lee, A.S. and Baskerville, R.L. Generalizing

Generalizability in Information Systems Research.

Information Systems Research 14, 3 (2003).

[27] Lee, S. and Yong, H.-S. Distributed agile: project

management in a global environment. Empirical Software

Engineering 15, 2 (2010), 204–217.

[28] Li, C., van den Akker, M., Brinkkemper, S., and

Diepen, G. An integrated approach for requirement

selection and scheduling in software release planning.

Requirements Engineering 15, 4 (2010), 375–396.

[29] Łukasiewicz, K. and Miler, J. Improving agility and

discipline of software development with the Scrum and

CMMI. IET Software 6, 5 (2012), 416.

[30] Laanti, M. Implementing program model with agile

principles in a large software development organization.

Proceedings - International Computer Software and

Applications Conference, (2008), 1383–1391.

Page 5453

[31] Marcal, A.S.C., Freitas, B.C.C., Soares, F.S.F.,

Furtado, M.E.S., Maciel, T.M., and Belchior, A.D.

Blending Scrum practices and CMMI project management

process areas. Innovations in Systems and Software

Engineering 4, 1 (2008), 17–29.

[32] Martini, A. and Bosch, J. A multiple case study of

continuous architecting in large agile companies: current

gaps and the CAFFEA framework. Proceedings - 2016

13th Working IEEE/IFIP Conference on Software

Architecture, WICSA 2016, (2016), 1–10.

[33] Obwegeser, N. Entrepreneurial IS development: why

techniques matter and methods don’t. In M. Kurosu, ed.,

Human-Computer Interaction: Users and Contexts.

Springer, 2015, 218–225.

[34] Okoli, C. and Schabram, K. A Guide to Conducting a

Systematic Literature Review of Information Systems

Research. Working Papers on Information Systems 10, 26

(2010), 1–51.

[35] Palomino, M., Dávila, A., Melendez, K., and Pessoa,

M. Agile practices adoption in CMMI organizations: A

systematic literature review. Advances in Intelligent

Systems and Computing, (2017), 57–67.

[36] Paasivaara, M., Durasiewicz, S., and Lassenius, C.

Distributed agile development: Using Scrum in a large

project. Proceedings - 2008 3rd IEEE International

Conference Global Software Engineering, ICGSE 2008,

(2008), 87–95.

[37] Paasivaara, M., Durasiewicz, S., and Lassenius, C.

Using scrum in a globally distributed project: A case study.

Software Process Improvement and Practice 13, 6 (2008),

527–544.

[38] Paasivaara, M., Durasiewicz, S., and Lassenius, C.

Using Scrum in Distributed Agile Development: A

Multiple Case Study. 2009 Fourth IEEE International

Conference on Global Software Engineering, (2009), 195–

204.

[39] Paasivaara, M., Lassenius, C., and Heikkilä, V.T.

Inter-team coordination in large-scale globally distributed

scrum. Proceedings of the ACM-IEEE international

symposium on Empirical software engineering and

measurement - ESEM ’12, (2012), 235.

[40] Schwaber, K. SCRUM Development Process. In

Business Object Design and Implementation. 1997, 117–

134.

[41] Singh, M. U-SCRUM: An agile methodology for

promoting usability. Proceedings - Agile 2008 Conference,

(2008), 555–560.

[42] Sulaiman, T., Barton, B., and Blackburn, T.

AgileEVM-earned value management in Scrum Projects.

Proceedings of the Agile Conference, Minneapolis (MN),

USA, 23-28 July, 2006, (2006), 10 pp.-pp.16.

[43] Sutherland, J., Jakobsen, C.R., and Johnson, K. Scrum

and CMMI level 5: The magic potion for code warriors.

Proceedings - AGILE 2007, (2007), 272–277.

[44] Ungar, J. and White, J. Agile user centered design.

Proceeding of the twenty-sixth annual CHI conference

extended abstracts on Human factors in computing systems

- CHI ’08, (2008), 2167.

[45] VersionOne. 11th State of Agile Report. 2017.

[46] Vlaanderen, K., Jansen, S., Brinkkemper, S., and

Jaspers, E. The agile requirements refinery: Applying

SCRUM principles to software product management.

Information and Software Technology 53, 1 (2011), 58–70.

[47] Wang, X., Conboy, K., and Cawley, O. “Leagile”

software development: An experience report analysis of the

application of Lean approaches in agile software

development. Journal of Systems and Software 85, 6

(2012), 1287–1299.

[48] Webster, J. and Watson, R.T. Analyzing the Past to

Prepare for the Future : Writing a Literature Review

ANALYZING THE PAST TO PREPARE FOR THE

FUTURE : WRITING A. MIS Quarterly 26, 2 (2002), 13–

23.

[49] van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R.,

Versendaal, J., and Bijlsma, L. Towards a Reference

Framework for Software Product Management. RE’06:

14th IEEE International Requirements Engineering

Conference, (2006), 319–322.

[50] Van Waardenburg, G. and Van Vliet, H. When agile

meets the enterprise. Information and Software Technology

55, 12 (2013), 2154–2171.

[51] Yin, R.K. Case Study Research: Design and Methods.

Sage Publications, 2009.

Page 5454

