

Legitimate Peripheral Participation in Hybrid FOSS Community Innovation

Susan Gasson
Drexel University

 sgasson@drexel.edu

Michelle Purcelle
Drexel University

mjw23@drexel.edu

Abstract

FOSS communities are increasingly employing a
hybrid model where free, open source software
development is combined with commercial customer
support to ensure community sustainability. This makes
it difficult for peripheral users, who are not part of the
core administrative or sponsoring organization to
participate meaningfully. The paper presents a study of
modes of Legitimate Peripheral Participation by users
who attempt to introduce product feature innovations
to hybrid FOSS communities. We identify eight modes
of virtual peripheral participation by users, exploring
the technology and social/community affordances, and
the performativity and participation effects that these
engender to move peripheral users towards core
membership.

1. Introduction

The emergence of hybrid Free, Open Source
Software (FOSS) communities with commercial and/or
institutionally-funded involvement has enabled for-
profit firms to exploit the potential of open-source
innovation. Most research into FOSS communities
assumes that individuals participate in “bazaar” model
software development, where software features are
developed in full view of the community, and where
product priorities are determined through a bottom-up,
democratic community process. This model guides
FOSS community organizing structures [3] and leads
communities to adopt a one-size-fits-all technology
platform to support FOSS community participation [7].

Hybrid FOSS communities combine free, open
source software development with commercial
customer support and sponsorship of product features,
to ensure community funding and sustainability. These
hybrid FOSS organizations engage users in a variety of
ways that do not involve software development [1]. In
this paper, we explore how the participation
architecture, defined as “the socio-technical
framework that extends participation opportunities to
external parties and integrates contributions” [14,

p.146], affects user participation and innovation in a
hybrid FOSS community. We develop a framework for
a participation architecture by considering how the
theory of Legitimate Peripheral Participation (LPP)
[10], a conceptual framework based on experiential
learning through joint participation in co-located
practice, can apply to participation in an online (not co-
located) community. We end by considering the
mediating effect of virtual participation by peripheral
users on FOSS social structures, technology-in-practice
[12], and community membership [10].

2. Conceptual underpinnings

2.1 Legitimate peripheral participation

Recent organizational studies have emphasized the
situated and intertwined nature of both learning and
practice, in the context of work. Lave & Wenger’s
theory of Legitimate Peripheral Participation (LPP)
provides a framework for situated learning in
Communities of Practice (CoPs). Expertise and
knowledge are situated in (located in a specific,
situational context) the internal logic, structural roles,
cultural values, norms and meanings of how-we-do-
things-here. LPP posits that community identity,
values, and expertise are propagated through sustained,
situated, joint practice. Newcomers start as peripheral
group members, who lack the contextual understanding
to interpret the meanings ascribed to work practices
and values. Community-related expertise is acquired
through a form of socially-situated apprenticeship,
where individuals participate in “legitimate” practices
(those that conform to the norms and values of the
community), under the guidance of experienced
community members. Through situated participation,
they internalize the cultural meaning of social roles and
norms, and the symbolic meaning of shared
representations of identity, such as a preference for
specific genres of communication. This allows them to
move towards core community membership. In
becoming a core member, they demonstrate not only
expertise, but also their participation in a shared
community identity [10].

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50464
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 4554

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sgasson@drexel.edu
mailto:mjw23@drexel.edu

So how might we apply LPP, a theory of action
predicated on shared participation in situated, co-
located practice to online community participation?
Lave argues that situatedness embodies the shared
understandings and practices that provide a community
with its unique identity. She observes that the
achievement of core CoP membership can be
constrained by limiting access to the full range of
activities available to participants in the community –
and that this limitation on access is common in the
division of labor involved in most organizational forms
[9]. To understand these constraints on peripheral
participation we need to explore the problems of access
to the practices and legitimacy of participation that
translate into core membership [9, 10].

2.2 A framework to evaluate participation
architecture

West and O’Mahony originated the term
participation architecture to denote the role played by
technical platforms in supporting crowdsourced, open
source software communities [14].Figure 1 shows our
conceptual framework, which is based on an analysis
of socio-technical affordances for online community
participation. We apply this framework to explore the
socio-technical affordances and effects underpinning
online legitimate peripheral participation.

Figure 1. A socio-technical framework for

online community participation architecture

2.2.1 Technical affordances. Affordances are the
possibilities for action offered by an object or
environment, for individuals with specific attributes
[6]. In their analysis of FOSS community technology
platforms, West and O’Mahony compared design
features of platforms to support sponsored vs.
autonomous (bazaar-model) FOSS communities. They

identified features that afforded community
transparency (the ability to follow and understand
production efforts) and accessibility (the degree to
which participants can influence production strategies)
to external community members [14]. As we wish to
study a different focus of collaboration (legitimate
peripheral participation), we sought dimensions of
technology affordance that would permit actors who
derive from various backgrounds, with different
experience, and who inhabit different social worlds to
collaborate [10]. We adopted the three dimensions of
technology affordance developed by Sun [13] to
evaluate the differential effects of technology across
national cultures: (i) instrumentality (toolness), (ii)
cultural meaning, and (iii) embedded community
knowledge (standards, procedures, rules). An online
technology platform provides different affordances to
its users, depending on their experience with similar
platforms and their expectations of how technology
should behave. Users occupying different community
roles will experience a different form of technology-in-
practice [12]. For example, an experienced product
user will search the feature-repository to see if a new
feature has been proposed previously (and why it was
rejected), whereas an inexperienced user will just post
a new feature request, receiving criticism for
replicating a prior request. So the technology-in-
practice affords a higher ease of feature submission to
experienced users than peripheral users. The different
affordances perceived by peripheral community
members create performativity effects that direct the
performance of, or access to community processes,
roles, and alliances as a result of the limited
technology-in-practice available to the participant [12].
The selection of FOSS technology platforms and their
configuration is targeted at experienced software
developers. The learning-curve means that they do not
have access to a technology-mediated processes used
in common by more experienced users. This presents
barriers to sustained participation and membership.

2.2.2 Socio-cultural affordances. We defined three
socio-cultural dimensions of an online participation
architecture from the LPP literature [9, 10]:
(i) Organizational structure and roles;
(ii) Joint processes of community practice, and
(iii) Cultural values and identity, as expressed through
shared genres of communication.

FOSS community roles are defined around an
“onion-model” layers of expertise, with core technical
community administrators planning software release
priorities, the most experienced technical developers
prioritizing new features because they understand
existing product capabilities and constraints,
sponsoring users and external developers in the next

Participation Effects
How social affordances affect

community visibility & reputation,
and how this affects access to

technology-mediated practices

Technology Affordances:
Instrumentality (toolness)
Cultural meaning of technology
Embedded community knowledge
(standards, procedures, rules)

Social Affordances:
Organization-structure & roles
Joint processes of community practice
Cultural values & identity (expressed
through genres of communication)

Performativity Effects
How the technology-in-practice
directs the performance of, or
access to community processes,
roles, and alliances.

Page 4555

layer influencing and feeding into these decisions, and
less established (more peripheral) developers and end-
users involved as volunteers to write code or explore
the feasibility of new features [2]. Users of the product
and recently-recruited software developers tend to be
assigned less central roles, simply because of the
technical knowledge required to understand product
change implications, although some privileged users,
who have become enculturated in community software
release practices and values, participate in the inner
layers. In addition to community administration roles
(which are fluid, as community members spend more
or less time participating over time), we also need to
understand how ideas for new features are adopted, to
become a priority for software development [3, 7]. A
peripheral user, paired with an experienced community
member can become knowledgeable about the product,
and enculturated in community roles, structures, and
practices, to the extent that they can participate
legitimately in the community [11]. But users need to
acquire situated knowledge of how to participate in the
processes of creating and diffusing ideas for
innovation. Whelan et al. found that two types of
intermediary role are involved when traditional firms
attempt to import ideas for innovation: idea scouts,
who connect external sources of ideas for innovation
with the internal network, and idea-connectors, who
can implement those ideas [15]. It may be that similar
roles are involved in achieving LPP in online
innovation communities.

Finally, the social roles, influence, and alignments
between various community players that result from
socio-cultural participation by a peripheral user result
in participation effects, that affect community visibility
& reputation, which in turn enable or constrain access
to technology-mediated practices, for example
belonging to a low-status group in the community
division of labor precludes access to some uses of the
technology platform, which constrains LPP [9].

3. Research site and method

Evergreen is an open library system community

that develops and maintains an open-source software
product to support libraries, mainly in the USA and
Canada. The software system helps library patrons find
materials, and helps libraries manage, catalog, and
circulate those materials. It is developed to be scalable
and robust across any size or complexity of collections.
The project uses Launchpad.net, an open software
platform that allows open source software communities
to manage bug reports, wishlist ideas, translations, and
blueprints for the future development of their products.
The Evergreen community open source project
employs a hybrid, deployment business model meaning

that while the code is free, users can pay for support
and professional services to maintain and customize
the software. The majority of development is done by
paid developers at software companies and some of the
user organizations. The Evergreen project would be
considered relatively small, compared to other FOSS
communities, based on lines of code and users. The
product is in use nationally across the USA [4].

The exploratory study reported here attempts to
understand how the socio-technical affordances of a
participation architecture for a hybrid-FOSS
community affects the ability of non-technical,
peripheral users to move towards core community
membership and participation. The study was
performed longitudinally, over the period Fall 2014 –
Fall 2017. We engaged in three types of data collection
and analysis, employed simultaneously:

Community ethnography. We engaged in
participant observation by engaging with various
community processes and groups. We conducted
frequent interviews with the core community
administrators, “bug wranglers” (non-peripheral
software developers or technical users), members of
the Advisory Board, end-users of the software product,
and non-core software developers. This allowed us to
become enculturated in community roles, practices,
and structures.

Analysis of technology platform affordances. We
categorized the technology affordances provided by a
wide range of online resources for community support,
including community web-pages, the community
WIKI, IRC access, online resources created by special
interest groups, change request submission forms, idea
tracking interfaces, code repository interfaces, and
request or activity monitoring reports.

Trace ethnography. We categorized 3243
community bug reports to identify user-generated
feature or change requests. We performed a content
analysis on the activity logs associated with user
requests, analyzing 343 critical submissions and 183
high importance submissions. We performed a content
analysis on IRC log data for a period of eighteen
months, from Jan 2014 to June 2015, with more recent
record collection to identify patterns of user
participation over time. We followed user-generated
feature or change requests across channels and
technology records, then related the patterns to
interview and affordance analysis findings, to
understand how technology-mediated peripheral
participation was enacted.

Findings were synthesized across the three analyses
to reassemble the “vapor trails” of participation activity
[5, 8] and to develop the analytical framework shown
in Figure 1, which provided an epistemic object that
was clarified and elaborated as our findings emerged.

Page 4556

4. Findings

Our analysis identified five major enablers or

constraints on Legitimate Peripheral Participation
(LPP) as members in online FOSS communities. These
are discussed individually in this section.

4.1 Technology-mediated participation

New peripheral community members, both users

and developers, initially tended to engage with the
community by posting new feature requests using a
product “bug report.” Participants were instructed (in
the community WIKI) to propose their idea on the
mailing list or IRC, before posting a feature request, to
identify whether it had been discussed in the past,
whether it was being considered currently, and to
gauge support for the idea if neither was the case.
Feature changes were assigned a priority and a status
by one of 27 “bug wranglers,” the core development
community members. If priority was assigned as
Critical or High, the feature was likely to be discussed
and developed further; if it was assigned a priority of
Wishlist, it was likely to remain in limbo unless a core
developer took an interest in the feature.

While users were recommended to address their
request to the developer mailing list or IRC first, they
could submit the idea directly to the bug report tracker
for inclusion on the community wishlist. We found
very few instances of innovative feature requests
submitted in this way. The majority of new feature-
request bug reports were submitted by developers,
often following discussions with users. Because
developers were familiar with the software product,
they often defined new features as enhancements or
changes to existing features, rather than innovation. As
a result of this developer intermediation, it was
difficult for a user community member to establish
community visibility and the commensurate legitimacy
of participation for innovation that software developers
earned. Success in idea selection (for product
development) tended to occur when a user-idea was
discussed on the technical community IRC channel or
email list. These channels were more immediate than
the formal bug reports interface: ideas could be
elaborated, popular support garnered, and technical
developer support elicited. But peripheral users needed
to learn the formalisms and genres of discussion
employed in these channels. For example, IRC
involves a unique form of turn-taking and abbreviated
meanings, as shown in the following snippet, where a
peripheral participant needs to follow a discussion that
is taking place between four software developers and
four experienced organizational users, all diving into a
rapid-fire discussion of the potential for implementing

an “Awesome Box” in the software. (An Awesome
Box is an alternate returns box at your library. If you
checked out an item and you thought it was awesome,
you return it to the Awesome Box instead of the
regular returns box). The discussion veers from the
potential value to library users, to ways of
implementing this in the software product, to
mechanisms for implementing this in a physical
library, back to the software potential, then to how it
might be presented in the software user-interface.
C1: Some of our members have talked about doing the

awesome box.
I should find out if any have.

C2 : I know our libraries' patrons would love it
C4 : Actually, I could really see the value of doing that

and then having the catalog able to flag "awesome"
items in opac searches.

C2 : seems like a simple change from my naive
perspective

C3 : C4, how about an optional relevance component?
that'd be easy-peasy

C4 : especially if they could choose to do that for
"locally awesome" items.

 I would think so too.
C3 : (relatively speaking, obv ... it's still search)
C4 : right
C5 : We're going to do it. We just need a box.

Or...some place with a sign...or yeah. But we're
going to do it.

C6 : ditto C5
C1 : At least one of our members is doing the awesome

box already. <Link>
C5 : C11, that's where I saw it.
C10: Looks great. I may have to get to my workbench

this weekend.
C11: I've registered for an awesome box (the web

page), now I'm just thinking about ways to do the
patron "this is awesome" both in-library and in-
catalog. As well as treat awesomebox as a form of
added content in the catalog.

To participate in this discussion, a new user needs
to understand who is speaking (participant roles in the
community), acceptable ways to take turns in IRC
chats in this community channel, plus the esoteric form
of shorthand terminology in use, combining library and
software terms in a community-situated set of
meanings. That requires experiential learning.

4.2 Participation through experiential learning

The co-construction of knowledge, where product

users sought out alliances with technical developers, to
explore and develop ideas prior to formal submission
was key to user success in having features or feature-
changes accepted. A confluence of influence is
required for a new feature request to succeed. It was
clear from our analysis that developers maintained a
clear mental model of system priorities and make

Page 4557

decisions based on the synergies between new feature
requests and planned work, as it was common to see a
new feature request related to other bug reports
(feature requests or product issues). Development
priorities were driven by the request importance (a
categorization applied by community administrators).
Because technical developers and product users did not
work together by default in developing ideas for new
or changed features, they had few opportunities to
develop a common language or shared priorities for
change. The onus was on users to acquire an
understanding of software conventions and
terminology, in order to present a persuasive use-case.
Socially-connected users were able to leverage their
connections via email, or – better, as this was the
regular hangout of core developers – via IRC
discussions to engage with intermediaries who could
assist them with reframing their request to attract
support. Engaging with a core developer via interactive
discussions in online discussion boards or an IRC
chatroom could lead to the feature or issue being
presented in a way that made it more relevant to core
administrators, as technical developers assisted the user
in framing a use-case that would communicate the
critical nature of a change request, in words a software
developer would understand.

If a persuasive case was made, change requests
would often be implemented as a result of an
administrator intervening because they agreed that the
feature was important. The key skill here was for the
user to frame a use-case that would be recognized as of
interest to the wider community, as shown in this
example, where a user convinces a community admin
that the product lacks a key feature by reframing the
purpose of an interface (the “aka” comment in the
following discussion):
User: The Verify Credentials Screen (aka Test

Password) should automatically check the
password when the Enter key is pressed.

Admin: [Explanation of how the software has been
fixed]. … This commit checks when the enter key is
pressed, and then blanks the password on
success. … Thanks for this useful usability
enhancement <User>!

In contrast, when an experienced cataloging
domain expert requests an innovative feature request,
the developer (a core committer), attempts to enroll
other cataloging experts to justify the request by
tagging it with “cataloging”:
User: It has always seemed like a good idea to me to

include the ISBN when it is available, in the
copy/item record. Often there are multiple ISBNs
on a bibliographic record; for hard copy,
paperback, electronic, Volume number, Part
number, etc. … Having this information could be
helpful in establishing replacement costs. It might

be used as part of the order process to tell a
vendor exactly what format and volume number
you wish to purchase. If indexed, it could be used
run precise reports of the volumes/copies were
owned by an Org Unit.

Developer: Not sure I entirely understand what's being
wished for here. I always thought ISBN was
specific to the record and all related copies
attached and not different per copy... Marking
incomplete wishlist pending further discussion by
catalogers who can help explain this procedure
and wishlist item.”

Tags: added: cataloging
The technology affordance of tagging does not

provide any performative effect, as a user has to
proactively search for and respond to feature requests
that are tagged as relevant to them. So no-one
responds. The user then add an explanation of how this
ISBN would help in library operations, but without the
social affordance of additional user support, the
developer does not accept the value of the use-case and
the feature request remains assigned a “wishlist”
priority, making it unlikely to be implemented.

4.3 Social apprenticeships and enculturation

When a peripheral user wanted to submit a new

feature or change request, they needed to learn that
their request was likely to languish with no fix in sight,
unless the change-request communicated what needed
to be done to a technical developer, who could identify
what needed to change, exploring how that section of
the code worked, and involving other developers to
understand problems, as shown in this feature-change
request log:
User: It appears in 2.0 and 2.1, the shelving locations

are not sorted alphabetically by default when you
go to Advanced Search - Search Filters - Shelving
Location.

Developer 1: I have a hunch this is related to <bug-
report-link> which discusses the sort order of a few
other interfaces [discusses evidence]…

Developer 2: I think you're right about it being id-based
by default. Something else to consider is that
you're supposed to be able to explicitly determine
the order of shelving locations. The search filter
doesn't appear to be aware of this (which should
get a separate bug report).

Developer 1: I did some more digging at this today.
Findings are frustrating! [discusses conflicting
evidence]

Developer 2: Hello <User>, My quick testing shows that
these results are simply coming out in "database
order", which can be considered more or less
undefined from our perspective. [detail deleted] I
would try adding: <patch code> in <filename>.

User: <Developer 2> - Thanks for the suggestion. It's
working perfectly! I've pushed it up to a Working
repo for further evaluation.

Page 4558

An experienced user understands that the activity
logs record interactions that took place because other
users and software developers proactively sought out
and supported a feature that they thought would be a
positive innovation, participated in developer
discussions of how the code worked over IRC,
collaborated in exploring and evaluating code changes
administered via github, and responded to
administrative calls for additional developers to get
involved in code exploration. Peripheral users could
only see the start and end of this process in the log-
records. They needed to learn how the need for change
was evaluated, how a status was assigned to a change,
how to involve developers to explore the change, who
would be able to understand and work on various areas
of the software, and how to ensure that the
investigation continued, rather than simply being
forgotten as other priorities arose. This presented a
steep learning curve that was most often overcome by
users participating in product evaluation, or engaging
in online discussions that led to them learning how the
software worked. Developers would invite users to
participate in software evaluation or exploration – but
for this, they needed to know that peripheral users
experienced in the application domain they were
attempting to explore were available for collaboration.
Users needed to make themselves visible.

New organizational users not only had to learn
who-does-what in the community, but also had to learn
a new language, in order to describe operational
problems with the software product in terms of how the
software was designed. A core developer noted:
“For an organization considering the software or
somebody who has been using the software but isn’t
deeply tied into some of the existing communication
channels or who doesn’t know some of the individuals
who’ve spearheaded a development, rather who they
are, my perception is that it could be much more of a
challenge for them to figure out how to get started with,
you know, with taking their idea and getting somebody
to write the code for it, to write the documentation for it,
and to get it folded it into the software.”

A major way of providing a community social
apprenticeship was via the special interest groups
formed around specialist areas of library
administration, including Cataloging, Acquisitions,
Reports, and Academic Library management. These
user-groups met regularly for the purpose of sharing
information, discussing bugs and identifying ways to
improve software. Special interest groups therefore
played an important role in enculturating new
peripheral participants, as they offer users the
opportunity to engage in technical as well as social
learning. There were no formal membership
requirements for participation, but as these groups met
virtually, except for the yearly conference, there was

both technical and social learning involved in
participating. Users needed to be informed when and
on which IRC channel the meeting will occur – finding
this information required local knowledge and a
technical understanding of how the technology worked.
But users reported that these meetings helped a lot, in
obtaining advice on who to discuss issues with, or how
to defined and frame a feature change request.

4.4 Establishing social capital

Obtaining social capital required community

legitimacy, the ability to be recognized as possessing
expertize in a valued knowledge domain. The
legitimacy of peripheral user participation was
undermined when decision-making focused on
technical, rather than user issues. We found this to be
frequently the case, as technical developers
outnumbered product users in IRC discussions. The
user justification of a new feature – even when
supported by multiple users - was frequently subsumed
to developers’ interest in the difficulty of changing
specific areas of code. One user, when asked about
difficulties participating in online debate, discussed
how he had trouble responding to a developer asking
why he wanted a feature, “It’s been a month - I haven’t
given feedback because I didn’t know how to put in words.”

Some peripheral users did appear to establish a
legitimate (valued) reputation for expertise in the
community, by two socially-afforded mechanisms:
(i) they led a special interest group or community
outreach group that core admins and developers
recognized as central to the product user-base, or (ii)
they proactively sought out and partnered with core
technical developers. Technical developers in
particular noticed – and built social networks with –
users who were interested and available for
collaboration in exploring software operation.

In moving towards the core, the highest-status,
most trusted community members attain release
commit privileges. A commit, or product-revision, is a
finalized change to a software code file (or set of files).
This allows them to assign software code for a new
feature, feature-enhancement, or bug-fix to be
integrated into a specific release of the software. To be
assigned commit privileges is the ultimate in legitimate
peripheral participation: the peripheral member
becomes a core community member. Technical
developers could build social capital by obtaining a
reputation for expertise in other communities, then
collaborating with core commit developers in the
Evergreen community to enhance their reputation. But
the hurdles that users needed to surmount appeared
much higher, as their legitimacy was difficult to
establish in a community focused on demonstrated

Page 4559

technical expertise. We only encountered one
community member who had joined the community as
a peripheral user and advanced to having release
commit privileges. This individual had some software
development experience when they joined, had been
proactive in special interest group coordination, and
had collaborated widely with technical developers. The
announcement that they had achieved the role of core
committer emphasized their technical contributions,
discussing their community and user coordination
work as secondary to their technical expertise.

4.5 Establishing social network support

Users perceived a need to develop a social network

of technical developers who would advocate for their
ideas and provide support for idea selection. Technical
developers also saw the benefit in establishing social
network connections with users to discuss ideas for
innovation and extended their network with product
users who were invited to comment on, and evaluate
feature changes, even when they had not originated
those changes. Experienced community user-
participants described the exchange of favors in as a
way of enrolling software developers in collaborative
idea exploration, although they noted its limits:
“Going behind the scenes and working to get things
done on a favor basis - that happens a fair bit and it is
usually for fairly small things. I have some good friends
among the developers in the community. I’ve actually
gotten them to work on a number of things for me over
the years on you know a quid pro quo basis. Well, we
weren’t doing actual exchanges one for one, but you
know, I help them out they help me out, but that’s not
going to get me 40 hours of coding time.”

Generating popular support was an important factor
in having a change request implemented, so special
interest groups were important in ensuring that issues
relating to various library specializations were
coordinated and legitimated within the developer
community. But interest group members remained
“outsiders” to the core technical developer community,
who spoke a different language and employed different
values in evaluating outcomes. They and their concerns
were easily delegitimized as community influencers.

Special interest groups learned to mobilize a critical
mass of social network support in order for a change
request to be implemented. We identified three types of
user role coming into play in this mobilization: idea
improvers explore and add detail to feature ideas, idea-
supporters provide support for an idea in community
voting and idea discussions (important when many
technical developers lack the context to understand
how important a proposed change is, to the user
community), and group memory managers provide

insights into the rationale underpinning core product
features and prior changes implemented. But the ability
for special interest groups to mobilize support relied on
their having an organizing platform. This was
recognized by the Acquisitions interest group, who
wished to establish a separate mailing list as their
members felt uncomfortable discussing product
suggestions and ideas on the general community
mailing list. These were often poorly understood when
initially proposed – interest group members wanted the
opportunity to discuss, explore, and develop new ideas
with other Acquisitions Librarians, before subjecting
these to scrutiny by technical developers. But the core
technical developers did not want the additional
administrative load of monitoring a separate mailing
list. It took many months of behind-the-scenes
negotiation for a SIG mailing list to finally be
configured and made available to them.

4.6 Providing funding and product code effort

The availability of resources for technical (code)

development is a key consideration in explaining
which features are selected for implementation. Table
1 summarizes our analysis of a sample (approx. half)
of change requests submitted during a twelve month
time period. In our sample period, 79 ideas were
presented with code and 89 were presented without
code. 77% of the ideas submitted with code were
implemented and planned for a fixed product release.
By contrast, only 9% of the ideas submitted without
code were implemented. In a hybrid community that
combines volunteer effort with the work of developers
paid by member library organizations, those users or
organizations who could fund or otherwise ensure
effort for technical code development experienced a
disproportionate influence in determining feature
selection priorities for release.

Table 1. Request success with/without code
 Not

implemented
Implemented in
fixed release

With code 18 (23%) 61 (77%)
Without code 81 (91%) 8 (9%)

As a result of the central role played by code
submission, many technology developers spent part of
their working hours developing code for change
requests, or worked on these in their spare time, even
when this was not authorized by their employer. The
software support company formalized this, to ensure
innovation, rather than just bug fixing:
“Every month … we have something we call community
day where all the employees of XYZ are meant to work
on projects that are just simply purely for the benefit of
the community ... an opportunity to look into tackling the

Page 4560

some of the wishlist items or long standing bugs that
ordinarily wouldn’t be on our radar either because they
don’t directly affect our customers or because the thing
in question is big enough where we would be looking for
development funding to do it.”

5. Discussion of findings

The findings above explore a variety of enablers

and constraints on Legitimate Peripheral Participation
(LPP) in a hybrid-FOSS community. Lave & Wenger
note that we can identify some common processes
inherent in the evolution of structures, roles, and
processes that underpin the enactment of a community
of practice [10]. Employing the conceptual model of
Figure 1, we identified eight modes of LPP. Table 2
explores the following elements of each mode:
Mode of participation: how the peripheral user engages
with the online community participation architecture;
Technology affordances: how the user experiences the
technology-in-practice, in this mode of participation;
Performativity effects: How the technology-in-practice
directs the performance of, or access to community
processes, roles, and alliances;
Social affordances: Roles, processes, and interactions
user can access in this mode of participation;
Participation effects: How social alliances affect
community reputation & idea visibility, and how this
affects access to technology-mediated joint practices;
LPP outcome: effect on legitimacy and peripherality of
member participation.

Modes 1 and 2 of socio-technical participation
demonstrate the social mechanism that differentiates
success from failure in participating at the periphery, to
submit a product innovation request. Participating in
informal discussions with other users and with
software developers results in the inherent
performativity of using these channels for this purpose:
the idea is explored in detail resulting in a persuasive
use-case that sensitizes software developers to the
value of making this change. These effects allows the
user to make progress in moving towards the core of
the community: their idea is legitimized and they gain
community visibility. As a result of this form of
participation the socio-technical platform presents a
different form of technology-in-practice [12] to users
who simply submit a formal change request than users
who first explore the change implications through
community discussions.

Modes 3 and 4 summarize ways of participating in
social community engagement, by joining or leading a
special interest group (or other user group). Three roles
for innovation brokering were identified, in contrast to
the two roles identified in prior studies [15]: Idea
improvers, who develop and explore suggestions for

innovation to expand and improve on these, Idea-
supporters who provide social and community support
to increase community awareness of an innovation, and
Group memory managers, who provide an application
domain specific repository that allows the group to
understand change rationale against prior changes.

Modes 5 and 6 contrast modes of experiential
learning. The first allows the co-construction of
knowledge by means of discussions that explore ways
of altering the product to meet a need for change. This
allows a peripheral user to become enculturated in
software development practices and provides them
with access to a social network of technical developer
contacts, with whom they can exchange favors and
explore how to implement ideas. The second co-
constructs knowledge by the user participating in
software development, under the guidance of a more
experienced technical developer. This provides the user
with software expert status, gaining social capital that
moves them towards the core and legitimizing their
interactions with core technical developers.

 Modes 7 and 8 provide the means for a peripheral
participant user to exert power and influence in this
form of hybrid community. Providing funding or effort
for software development influences the likelihood that
a user innovation will be selected for implementation.
Demonstrating software development expertise,
combined with application domain expertise
demonstrated in technology-mediated interpersonal
interactions over a sustained period of time leads to the
peripheral participant being accepted into the core of
community members responsible for strategic decision-
making and community administration.

We conclude that a peripheral community member
experiences a different technology-in-practice [12] to
that experienced by core technical developers, by and
for whom the technology was originally selected and
configured. The technical affordances offered to
peripheral users as a result constrain their access to
practices that accomplish LPP in community practices.
This in turn introduces performativity effects that direct
the activity and impact of individuals, groups, or
alliances. To break this “vicious cycle” of constraints,
peripheral users need to be proactive in seeking out
more experienced users or technical software
developers, who will collaborate in shared practices to
enculturate the user, to co-develop ideas and frame
persuasive use-cases, and to engage the peripheral user
in experiential learning, creating participation effects
that raise the reputation of a peripheral user and
improve visibility of their ideas, enabling them to
engage in the co-development of software features, that
advance them towards core community membership.

Page 4561

Table 2. Effects of various forms of participation on socio-technical participation architecture-in-
practice and on outcomes affecting legitimate peripheral participation

Modes of
peripheral
participation

Tech. affordances
(technology-in-
practice)

Performativity
effects of
technology use

Socio-cultural
affordances

Participation
effects of social
apprenticeship

LPP outcome

1. New peripheral
user does not
follow advice to
discuss idea
before submission

Bug reporting tool
offers structured
idea submission
and evaluation
(status & priority)

None for user –
idea disappears
into technology
black box that
communicates
no progress

Admin reviews
change requests
- only selected if
user aligns
feature with
comm. interests

None for user, as
admin selects and
monitors
implementation
independent of
user.

Little or no user
learning or
community
visibility

2. User discusses
idea on
community IRC
channel or email
list

Steep learning
curve on IRC as
user understands
turn-taking &
genre of text
communication

Idea is explored
across software
developers.
Discussion
sensitizes others
to value of
change

Need s/w dev.
collaborator to
co-create
persuasive use-
case

Aligns a network-
of-practice: a set of
developers who
coordinate
development
activity via online
tech. platform

Idea is legitimized,
and user gains some
visibility in
community (social
capital)

3. Users
collaborate
around shared
interests in
special interest
group (SIG)

Collaboration with
other users in
virtual meetings.
Coordination
power depends on
ability to
legitimize access
to exclusive space

Ideas evaluated
by application
domain experts;
Ideas gain
comm. support;
Users develop
community
social network

Idea improvers
develop ideas
Idea-supporters
vote for idea;
Group memory
managers recall
rationale of
changes

Persuasive use-
case is developed
for idea;
Influence & social
support provided
SIG retains
memory of change
rationale

User enculturated in
socio-cultural
community norms
& practices;
User gains social
network of
application domain
experts

4. User leads or
takes prominent
role in SIG or
outreach

Persistence of trace
records indicate
role in SIG

Provides user
visibility to tech.
developers

Provides social
capital to user
with s/w
developers

Legitimates user as
influential
decision-maker in
community

Moves user away
from periphery
towards core

5. User engages
in experiential
learning by
collaborating with
software dev.
discussions

IRC permits rapid
feedback; email
list posts provide
diffusion of ideas

User is exposed
to suggestions &
questions that
develop/clarify
persuasive use-
case

Need s/w dev. or
admin sponsor to
allocate effort to
idea
implementation

Allows user to
participate in s/w
devt. practices
Progresses change
request towards
implementation

User enculturated in
s/w development,
practices;
User gains social
network of tech.
developer contacts

6. User acquires
software
development
expertise through
experiential
learning

Steep learning
curve as user must
engage via github
& code tools to
participate

Tech. tools for
s/w development
become ready-
to-hand;
automatic in use

User allowed to
participate in
near-to-core
activities, (code
development. &
testing)

User gains access
to s/w
development tech.
platform; allows
user to modify
software code

User acquires
software expert
status & engages
with core
developers

7. User provides
funding or effort
for software code
development

Attracts attention,
improving chance
that idea will be
selected for release

Raises status &
priority of
feature request
or change idea

Admins
prioritize
changes that
already have
devt. effort

Feature is more
likely to progress
rapidly & be
scheduled for
release

Raises legitimacy of
user as someone
who can provide
funding or effort

8. User demon-
strates software
expertise & prod.
knowledge via
interactions

User gains code
access and
modification
privileges

User can
influence feature
adoption by
providing
sample code

User recognized
as application
domain and
software domain
expert

User participates in
organizing product
releases; Ultimately
user awarded core
commit privileges

User gains social
capital and
ultimately gains
core community
membership

Page 4562

6. Conclusions

In this study, we explored the inclusivity of the

socio-technical participation architecture underpinning
a hybrid-FOSS community. Our conceptual framework
and its application may be distinguished from the
majority of FOSS community studies, as it is analyzed
from the perspective of how a peripheral, non-technical
product user can participate. The majority of studies in
the FOSS literature adopt the perspective of software
developers – which is rational, considering that these
are software communities. But this literature tells us
little about how innovation may be encouraged by
supporting the participation of peripheral users. Our
study attempts to accomplish that aim, within the space
limitations imposed by a conference paper. We
presented a socio-technical framework for online
community participation architecture in Figure 1 and
demonstrated the application of the framework
underpinning the model in exploring eight modes of
virtual LPP in Table 2.

We conclude that LPP in hybrid-FOSS
communities involves engagement with socio-technical
enculturation, social community engagement,
experiential learning that involves the co-construction
of knowledge, and social legitimation. These processes
culminate in the participant’s assimilation of the
community identity, enacting community forms, roles,
and procedures as part of their membership [10], but
also impacting these through a sequence of
participation effects and performativity effects.

Our framework for analysis, developed partly from
the synthesis of findings, has implications for research
and practice. Clarifying the affordances that must be
supported by the combination of technical and social
online community participation architectures – and
understanding their impact on the performativity of
technology-in-practice and the participation effects
achieved through providing access to mechanisms for
social participation – are key to successful community
participation by peripheral users.

7. References

[1] Carillo, K. and Bernard, J.-G., "How Many Penguins Can
Hide Under an Umbrella? An Examination of How Lay
Conceptions Conceal the Contexts of Free/Open Source
Software", Thirty Sixth International Conference on
Information Systems, 2015

[2] Crowston, K., Wei, K., Howison, J., and Wiggins, A.,
"Free/Libre open-source software development: What we

know and what we do not know", ACM Computing Surveys
(CSUR), 44(2), 2012, pp. 7:1 - 7:35.

[3] Crowston, K. and Shamshurin, I., "Core-Periphery
Communication and the Success of Free/Libre Open Source
Software Projects", Journal of Internet Services and
Applications, 8(10), 2017, pp. 1-11.

[4] Evergreen-Project, "About Us",https://evergreen-
ils.org/about-us/, accessed Sept. 4, 2017.

[5] Geiger, R.S. and Ribes, D., "Trace Ethnography:
Following Coordination through Documentary Practices",
Proceedings of the 44th Hawaii International Conference on
System Sciences, 2011

[6] Gibson, J.J., "The Theory of Affordances", in R. Shaw
and J. Bransford, (eds.): Perceiving, Acting, and Knowing,
Lawrence Erlsbaum Associates, Hillsdale, NJ, 1977

[7] Howison, J. and Crowston, K., "Collaboration Through
Open Superposition: A Theory Of The Open Source Way",
MIS Quarterly, 38(1), 2014, pp. 29-50.

[8] Latour, B., Reassembling the Social, Oxford University
Press, Oxford UK, 2005.

[9] Lave, J., "Situating Learning In Communities of
Practice", in L.B. Resnick, J.M. Levine, and S.D. Teasley,
(eds.): Perspectives on Socially Shared Cognition, American
Psychological Association, Washington DC, 1991, pp. 63-82.
[10] Lave, J. and Wenger, E., Situated Learning: Legitimate
Peripheral Participation, Cambridge University Press,
Cambridge UK, 1991.

[11] Majchrzak, A. and Malhotra, A., "Towards an
information systems perspective and research agenda on
crowdsourcing for innovation", Journal of Strategic
Information Systems 22 (2013), 22(4), 2013, pp. 257–268.

[12] Orlikowski, W., "Using Technology and Constituting
Structures: A Practice Lens For Studying Technology In
Organizations", Organization Science, 11(4), 2000, pp. 404-
428.

[13] Sun, H., Cross-Cultural Technology Design, Oxford
University Press, Oxford UK, 2012.

[14] West, J. and O’Mahony, S., "The role of participation
architecture in growing sponsored open source
communities", Industry and Innovation, 15(2), 2008, pp.
145–168.

[15] Whelan, E., Golden, W., and Donnellan, B., "Digitising
the R&D social network: revisiting the technological
gatekeeper", Information Systems Journal, 23(3), 2013, pp.
197-218.

Page 4563

	3. Research site and method
	4. Findings
	4.1 Technology-mediated participation
	4.2 Participation through experiential learning
	4.3 Social apprenticeships and enculturation
	4.4 Establishing social capital
	4.5 Establishing social network support
	4.6 Providing funding and product code effort

	5. Discussion of findings
	6. Conclusions
	7. References

