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Abstract 
Robots have penetrated many areas of daily life, 
including increased uses of humanoid robots in 
personal and organizational settings such as health 
care, eldercare, and service encounters with customers. 
Little research examines humanoid robots in these 
professional settings, even though the human–robot 
interaction (HRI) is particularly critical in such 
contexts. On the basis of a literature review and 
experience from several experimental studies, this 
article offers some guidance for designing HRI 
experiments with humanoid robots. In addition to 
detailing major challenges associated with designing 
HRI studies, this article suggests important next steps 
for experimental research with humanoid robots, as 
well as implications for further study. 
 
1. Introduction  

Humanoid robots increasingly appear in the daily 
contexts of people’s lives [1], assisting human users in 
various professional settings such as retailing and 
hospitality [2 3]. Nestlé has inserted hundreds of 
humanoid service robots onto shop floors to sell 
Nescafé in Japan, for example [4 5]. The idea “that 
robots could become an integral part of groups and 
teams has developed from a promising vision into a 
reality” [6]. Accordingly, human–robot interactions 
(HRI) attract considerable attention in the robotic 
research community in general and among researchers 
dedicated to humanoid robots in particular [7 8]. Most 
of this research relies on proxy technologies, such as 
robotic heads [9 10], animals [11], or pictures on 
screens [12], instead of actual humanoid robots. 
Studies also tend to address simple interactions (e.g., 
human responses to a robotic smile or movement), 
rather than more complex interactions, likely because 
of a lack of clarity about how to integrate humanoid 
robots into complex experiments marked by rich HRIs. 

 

Such relatively recent studies also highlight the 
growing need to investigate humanoid robots in 
personal and professional settings. Existing 
experimental studies rely on different approaches to 
their experimental designs, and no systematic method 
for integrating humanoid robots into experimental 
research has emerged. 

This article therefore draws on a design science 
perspective “to extend the boundaries of human or 
organizational capabilities by creating new and 
innovative artifacts” [13, p. 5]. Specifically, I attempt 
to provide guidance for researchers who plan to 
conduct experiments involving interactions between 
humanoid robots and humans, as well as at other 
information systems researchers who are interested in 
what might be learned from such experimental studies. 
This guidance is important to synthesize an existing 
body of research and stimulate critical thinking [14]. 
Specifically, it seeks to provide guidance regarding 
how to include a humanoid robot in an experimental 
design. 

Elaborating on this view could increase the impact 
of future experiments involving HRI and help 
researchers avoid the mistakes or gaps of prior 
literature. Thus, this article first provides a structured 
literature review and critical reflection of existing 
studies. Furthermore, particular examples are presented 
to illustrate successful uses of experiments to address 
important issues related to HRI. 

Such experiments can be designed to be both 
effective and efficient. Efficiency pertains to the 
process of the experiment; effectiveness implies 
sufficient internal and external validity, whereas “An 
experiment that lacks internal validity fails by 
providing a misleading indication of the relation 
between the dependent and independent variable, while 
an experiment that lacks external validity produces 
results that are (or at least should be) divorced from the 
motivation of the study” [15]. To design and conduct 
effective and efficient experiments that clarify HRI, 
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this study proposes that five critical steps must be 
considered, as shown in Figure 1. 

 

 
Figure 1. Multistep design model for experimental 
HRI research with humanoid robots 
 

Accordingly, the next section provides an overview 
of extant research on experimental HRI with humanoid 
robots and proposes a structure for a multistep research 
design, as followed herein (Figure 1). Next, this article 
offers suggestions for dealing with the challenges that 
arise in various steps of experimental HRI research. 
 
2. Experimental HRI Research with 
Humanoid Robots 

Table 1 depicts selected studies on HRI according 
to their multistep research designs (Figure 1). The first 
step, framing, constitutes a critical choice that 
experimenters must make prior to starting the 
experiment. Rueben et al. [16, p. 435] claim that “the 
frame surrounding a given interaction could have 
comparable or even larger effects on judgments about 
that interaction than the independent variables typically 
studied in HRI research.” Using framing criteria, prior 
research can be classified according to the scenario 
used (e.g., health care, household, hotel), information 
provided to participants (e.g., telling participants a 
fictional or the real purpose of the experiment), and the 
setting (laboratory, content-enriched laboratory, field). 
Most studies frame their experiments in specific, real-
world scenarios, such as health care, elder care, home, 
classrooms, or hotels. 

Prior research also features a variety of ways to 
present humanoid robots to participants. The 
possibilities vary from just showing a robot’s head on a 
computer screen to having the participant interact with 
the actual humanoid robot in person. 

Most studies are conducted in laboratory settings, 
which offer the advantages of minimizing the error 

factors that can arise in field studies. However, the 
external validity of these experiments is rather limited. 
As a compromise, researchers could rely on content-
enriched settings, such as the environment of an 
apartment [17] or a hotel lobby [7]. 

Extant research also has programmed robotic 
emotions and/or behaviors in various ways. For 
example, some studies show participants pictures of 
faces on a screen [18 19]. Relying on the notion by 
Rueben et al. [16] that framing strongly influences the 
outcomes of an experiment, the robotic avatar 
presented in a given interaction likely exerts strong 
effects on the outcome of the HRI. 

In terms of the definition of robotic autonomy, only 
one study has applied a completely autonomous mode 
in supporting the expressions of robotic emotions 
and/or behaviors [20]. Most studies adopt a semi-
autonomous mode, in which the robot follows a pre-
defined script and is operated by a human. Several 
studies apply a Wizard-of-Oz (WoZ) method, which 
“refers to a person (usually the experimenter, or 
confederate) remotely operating a robot, controlling 
any of a number of things, such as its movement, 
navigation, speech, gestures, etc.” [21, p. 119]. Non-
autonomous or semi-autonomous approaches, such as 
the WoZ method, have been criticized though (e.g., [22 
23 24]). One methodological critique notes that the 
robot actually functions like a proxy in what are 
actually human–human interactions [25]. 

Most studies rely on predefined, standardized 
dialogue for their experiments. Despite the frequent 
use of dialogues, few studies explicitly report how they 
validated the dialogues that they present during the 
experiment ([7]). 

Regarding the data sources, most studies rely on 
self-ratings [7 17 18 19 26 27 28 29 30 31 32 33 34]; 
see Table 1). Whereas self-ratings are useful to assess 
participants’ characteristics, the assessment of 
emotions or behaviors based on self-ratings may be 
biased. For example, when participants respond to 
several questions about the manipulation and their 
emotional states, before and after the experiment, this 
method could invoke the threat of a single-source bias. 
This is because the same source provides assessments 
of both the independent variable (manipulation check) 
and the dependent variable. 

Six studies contained in this literature review gather 
third-rater data. In these methods, the emotional and/or 
behavioral responses of participants are assessed by 
either an experimenter [31 32 35] or other independent 
raters [20 29 31 32 36]. Three studies use objective 
data (location tracking data [20], eye tracking data [26 
30]) to assess human responses to robots. Both third-
rater assessments and physiological data likely reduce 
common method bias [37 38]. 
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Table 1. Selected experimental HRI research with humanoid robots or robotic avatars 

 
The next five sections detail different challenges, 

captured by the multistep approach in Figure 1, as well 
as ways they might be addressed. Furthermore, this 
article provides concrete examples of dealing with 
these challenges. 

 
3. Framing 

A common challenge in operationalizing 
independent variables is deciding how to frame the 
experimental study. Framing is particularly important 
for experiments that focus on how participants make 
decisions using cognitive processes and knowledge 
developed in response to their real-world education, 
training, and experience. Without relatively realistic 
stimuli, participants may not rely on such cognitive 
processes or leverage their knowledge of interest. 

Two alternative, pertinent experimental settings 
might appropriately reflect professional situations in 
which humanoid robots and human users participate. 
The first is HRI during service encounters. As 
professional service providers, humanoid robots have 
manifold tasks, ranging from carrying customers’ items 
and providing transportation services to welcoming 
and checking in consumers or answering routine 
questions. For example, the Japanese travel agency 
HIS runs the Henn-na Hotel almost completely with 

robots, which function as receptionists, luggage 
carriers, and room service personnel [39]. 
Another important setting is participation by humanoid 
robots in groups or teams. The wide availability of 
affordable humanoid robots has increased their use in 
small teamwork settings in industry [22], as well as 
larger group settings at conferences [23]. More 
sophisticated robots also support complex teamwork 
projects across a wide range of settings, such as search-
and-rescue missions [24] or space exploration [25]. In 
a recent study, Gombolay and Sturla [5] compare the 
effectiveness of groups directed by humanoid robots 
against those directed by human supervisors. 
Surprisingly, participants in the robotic group reported 
higher satisfaction and achieved higher effectiveness 
scores than participants in the human-led group. 

In general, researchers should try to make the 
setting as realistic as possible, which in many cases 
means using an actual humanoid robot. The 
presentation of the robot must reflect the research goals 
and characteristics of the participants. Figure 2 depicts 
the two alternative sample settings, with a humanoid 
robot (Pepper) included in the experiment as a 
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customer service provider (A) or group work 
supervisor (B). 

 
(A) Robot as receptionist [6] 

 
(B) Robot as supervisor 

Figure 2. Experimental settings with the humanoid 
robot Pepper in different professional roles 

In an interaction such as the one depicted in Figure 
2A, the setting should be possible and realistic with 
regard to using a robot. For example, it might seem 
unrealistic to use a robot instead of a self-service 
technology at a check-in counter, because this service 
requires little interaction. Furthermore, humanoid 
robots generally function to replace humans, not other 
service technologies. Once the setting is chosen, the 
surroundings need to be as authentic as possible but 
also adjusted to the presence of the robot. In Figure 
2A, the robot stands next to, rather than behind, the 
reception desk, which enables the customer to see what 
the robot is displaying on its tablet or sign the tablet. In 
addition, the participant can clearly recognize the 
robot’s gestures and postures, which is important for 
the effectiveness of the manipulations (i.e., emotions). 

Figure 2B depicts a robot in a group setting, 
positioned in front of a group to provide directions to 
the group members and support the fulfillment of their 
task. In this experiment, the participants had to design 
a low-energy building and build a prototype with 
Lego®-bricks. The robot observed their group 
activities and provided regular feedback. 

 
 

4. Programming Robotic 
Emotions/Behaviors 

4.1 Conceptual Basis for Emotion and 
Behavioral Programming 

Robotic emotions and behaviors have become an 
increasingly important element of experimental HRI 
research but also one of the most critical challenges for 
these experiments. A fruitful way to identify authentic 
robotic emotions or behaviors is to adopt psychological 
theories as a conceptual basis. Psychological research 
identifies a range of emotions—anger, disgust, fear, 
joy, sorrow, and surprise—that define human–human 
interactions [40]. Subsequent research has proposed a 
circumplex model of emotions that encompasses two 
orthogonal dimensions [41 42]: the hedonic valence of 
pleasant versus unpleasant and arousal (i.e., low vs. 
high activation), as depicted in Figure 3. 

 
Figure 3. Circumplex model of emotions as a 

conceptual basis for programming robotic 
emotions [41] 

 
The circumplex model of emotions and behaviors 

has been well established in psychological research and 
applied in previous robotic research, such as when 
Breazeal [43] structured the basic emotional and 
behavioral expressions of the humanoid robot Kismet 
according to this model (Figure 4). 

During human–human interactions, emotions can 
be expressed by voice, face, gesture, and posture [44]. 
That is, emotions and behaviors typically are 
communicated among humans through vocal, facial, 
and bodily expressions [45]. In contrast, humanoid 
robots often are limited in the ways they can signal 
emotions. For example, neither the Pepper nor the 
NAO models can express facial expressions, though 
some robots, such as the Kismet [40], express manifold 
facial expressions. Therefore, depending on which 
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robot is used, different possibilities exist for 
programing emotions and behaviors to varying extents. 

 
Figure 4. Emotions of the Kismet robot according to 

the circumplex model of emotions [43] 
 

In terms of the robot’s verbal expressions, 
researchers might cause it to express emotions through 
certain voice pitches and words being said. In this case, 
it is important that the robot sounds natural, which can 
be challenging for tones such as laughter. In addition, a 
setting can quickly come to seem unnatural if the robot 
uses too many words. The choice of words, including 
their order and the speed of the robot’s verbal 
expressions, thus must be chosen carefully to ensure an 
effective manipulation. 

Sometimes researchers have the additional 
possibility of signifying emotions with the robot’s 
facial expressions. Many humanoid robots, such as 
NAO or Pepper, only offer simple, moderate facial 
features; their LED head features a graphical face. 
Experimenters generally can vary the robot’s eye color 
or head movements. The challenge is to program 
clearly recognizable emotions and behaviors. However, 
overemphasizing certain expressions can quickly 
become unnatural and even impede HRI or frighten 
participants. 

If researchers use a humanoid robot with a full 
body, bodily expressions offer a rich source for 
emotion and behavioral expressions. Here, researchers 
can rely on knowledge about bodily expressions by 
humans that are easy for other human participants to 
recognize. An important aspect relates to the attitudes 
of participants toward robots. Extant research indicates 
that humans have robot anxiety; they associate 
negative characteristics and behaviors or even threats 
with robots. Extensive movements by a humanoid 
robot during the experiment might foster such anxiety 
and perhaps impede the effectiveness of the 
experiment. 

 

4.2 Emotion Validation 
Regardless of how researchers choose to design the 

robot to express emotions, a validation test is 
necessary. In particular, the robot’s non-verbal and 
verbal expressions should be assessed by independent 
raters, such as a set of potential participants, who 
indicate which emotion they perceive the robot to have 
shown. The manipulation of these emotions should be 
adjusted until the validation test achieves an accuracy 
rate of greater than 80%. 

Stock and Merkle [7] use a stepwise approach to 
identify appropriate positions for NAO to express 
emotions through its output behavior [7, 8]. First, the 
design reflected extant literature in psychology [46] 
and robotic research that suggests various behavioral 
outputs of emotional expressions [47]. Second, a web 
search sought to identify 100 pictures for each of the 
five emotions. Using these pictures, the two most 
typical bodily expressions for happiness, surprise, 
anger, and frustration, as well as one neutral position, 
were programmed. Third, the programmed positions 
were presented to 234 students (18–43 years of age; 
67% men; 80% technical background), who had to rate 
the bodily expressions exhibited by NAO. They readily 
identified the bodily expressions for all four valenced 
emotions, whether pleasant (happiness 91%; positive 
surprise 95%) or unpleasant (anger 83%; frustration 
94%). In addition, the neutral emotion expression by 
the robot was recognized by 93% of these students. In 
the subsequent main experiment, each of the five 
emotions expressed by NAO’s body gestures was 
displayed during the HRI [29], as depicted in Figure 5. 

 
Figure 5. Emotion expressions by NAO robot during a 

human–robot interaction experiment 
 
5. Definition of Robotic Autonomy 

To define robotic autonomy, researchers face 
several challenges, and no resolution has been 
achieved. Most humanoid robots lack a well-developed 
voice recognition system, such that the robot often 
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cannot understand human participants’ verbal 
expressions. This issue might be especially challenging 
for experiments performed in loud settings, such as 
group or field tests. Robotic face recognition systems 
also are far from allowing robots to recognize or 
respond to humans’ facial expressions.  

Even if a robot has a sophisticated voice 
recognition system and can understand a human 
participant’s verbal expressions, a challenge remains 
with regard to prompting the robot to respond in a 
similar way during the experiment. This goal is 
important though, to ensure that human responses to 
the HRI are comparable. 

In terms of robot autonomy, three designs emerge 
from extant literature: The robot acts freely without 
any influence of an operator during the experiment 
(autonomous), robotic movements and/or phrasings are 
completely pre-programmed (non-autonomous), or the 
robot acts according to a pre-programmed structure but 
is partly controlled by an operator (semi-autonomous). 

When using the autonomous mode, researchers 
must realize that participants have a variety of ways to 
express their needs or articulate solutions to the task at 
hand. Therefore, the robot needs access to a rich, 
complex set of potential answers so that it can engage 
in natural conversation during the HRI. Cloud 
solutions, such as IBM’s Watson, have not achieved 
sufficient voice recognition speed or related robotic 
responses to ensure a natural conversion. A 
programmer thus would have to program all possible 
movements and/or phrasings into a pre-programmed 
HRI—a task that quickly grows more difficult as the 
experiment grows longer and more complicated. 

When using the non-autonomous or semi-
autonomous mode, extant research frequently relies on 
the WoZ method ([10]). To apply this method, 
researchers tell participants that the humanoid robot 
acts autonomously, but in reality, the robot is (partly or 
completely) operated by a human, hidden behind a 
curtain or wall. Figure 6 depicts some sample 
applications for the WoZ method. A Wizard can be 
employed to guarantee some standardized repertoire of 
movements, gestures, or phrases, given by the robot. 
This standardization is important for enabling 
comparisons of HRI across a set of experiments. The 
Wizard also can make the robot respond seemingly 
spontaneously to unexpected movements or phrases 
issued by the human participants. In this case, a 
human–human interaction is taking place through a 
robot. But researchers need to take care to avoid this 
scenario of a human–human conversation occurring 
through a robot. Furthermore, ethical concerns arise, in 
terms of social deception ([23]). Extant literature 
suggests several criteria that should be reported 
explicitly in research papers, to avoid the 

disadvantages of the WoZ method ([23 48]). If these 
criteria are met, the WoZ method can offer important 
advantages, in terms of experimental effectiveness. 

First, robotic behaviors can be standardized across 
experiments, which helps ensure the internal and 
external validity of the findings. Otherwise, the 
experimental procedure could be interrupted by 
random mistakes by the robot. Second, the robot can 
respond quickly to verbal or non-verbal expressions by 
the participant that might not have been considered 
prior to the experiment. In turn, the natural flow of 
conversation during the experiment improves. 

With a semi-autonomous method, researchers 
would combine the autonomous mode and the WoZ 
method in an experiment, to ensure validity and 
dialogue that barely differs across each experiment. In 
this case, it is important to pre-program the answers 
that the Wizard may use in the conversation. If 
necessary, the Wizard can add small comments, in 
response to the participant, but the central conversation 
and word use by the robot will stay the same. 

 

 

 
Figure 6. The Wizard of Oz method in various 

experimental settings 
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6. Dialogue Coding 
For dialogue coding, coders must deal with several, 

previously unpredictable challenges to create a natural 
flow in the HRI, especially if the robot is speaking 
autonomously. After the dialogue coding, researchers 
should run preliminary tests and improve the coding 
and dialogue for the main experiment. During the 
process of coding the dialogue, several key aspects 
need to be considered, as detailed next.  
 
6.1 Varying Answers 

The answers and words expressed by the robot 
must vary for the interaction to feel natural, especially 
for simple phrases such as “yes,” “no,” “you’re 
welcome,” or “thanks”—that is, words that are 
repeated several times in conversation throughout the 
experiment. Instead of using one version to say the 
same thing over and over again, researchers should 
invoke variations. Otherwise, the conversation starts to 
sound unnatural, which impedes experimental 
effectiveness. In addition, variation allows human 
participants to respond in a more natural manner. 
 
6.2 Starting the Interaction 

When entering the experimental setting, 
participants might focus strongly on the robot or expect 
the robot to start the interaction. The robot then needs 
to be able to start the interaction without requiring a 
long pause, which would create an awkward situation. 
This goal is easier to achieve with a semi-autonomous 
or non-autonomous method, but even then, 
experimenters and Wizards must act quickly. A good 
way to start the interaction is to have the robot ask the 
participant a couple of (warm-up) questions, such that 
the participant becomes familiar with the situation and 
the robot. This introduction is important; for most 
participants, it is their first time interacting with a 
robot. Encouraging the participant to answer a couple 
of questions often sparks a natural conversation. 
 
6.3 Repetition and Stops 

Regardless of the degree of autonomy, the robot 
should always be able to repeat everything it says and, 
in some cases, rephrase things. This ability is essential 
for a natural conversation and to prevent awkward 
pauses. Not being able to understand everything the 
robot says can lead participants to feel uncomfortable 
or even frighten them. In addition, the robot must be 
able to stop and explain things better, such as when 
asked a question by the participant. This element of a 
natural interaction also helps prevent an awkward 
situation in which the participant asks a question and 
the robot fails to acknowledge it, and instead just keeps 
going with what it was saying before. 

 
6.4 Prosody 

The need to understand the robot well leads to the 
next challenge, namely, getting the robot to speak at 
the right pace and pitch, with pauses in the right places. 
Experimenters should listen to the programmed 
dialogue over and over, until it sounds natural and the 
robot can be understood easily. If the robot strings 
together several sentences at once, coders should add 
pauses after every two or three sentences. A human 
might not include these pauses while talking, but they 
help participants in HRI. The length of these pauses 
should be long enough for the participant to process the 
information but not so long that the participant starts 
talking in between. Poor adjustments of these pauses 
could lead participants to feel uncomfortable, which 
could impede the effectiveness of the experiment. 
 
7. Selection of Data Sources 

Participants can provide various measures. This 
section differentiates among self-rating, third-rater 
assessments, and physiological measures. 

 
7.1 Self-Ratings 

To improve the validity of self-ratings, researchers 
need to ask participants to answer spontaneously, to 
avoid socially desired answers. In addition, researchers 
should use established psychological measures for the 
participants. 

In some cases, such as for participants diagnosed 
with autism or small children, self-ratings are difficult 
or impossible to use. Thus, experimental research 
increasingly relies on third-rater or physiological data. 
 
7.2 Third-Rater Assessments 

When employing independent raters, Bartel [41] 
suggests using at least three independent raters, who 
can assess emotional and behavioral responses in 
experimental settings by watching video recordings. 
Extant research recommends a two-way rating 
approach that requires each rater to provide a score for 
each measure [37 38]. Raters should initially jointly 
reach consensus about their assessments. Then they 
can perform independent ratings of participants’ 
behaviors during the experiment, with no consultation 
about the ratings throughout the rating process [49]. 
 
7.3 Physiological Measures 

Issues with other forms of data create a need for 
additional measurements to validate ratings by 
participants or experimenters. Human responses to 
HRIs can be measured with psychological or 
physiological indicators. To take such measures, 
researchers have several options, depending on what 
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they want to measure and at which level of detail. 
Laboratory studies often rely on questionnaires to 
measure participants’ psychological reactions, such as 
the Positive and Negative Affect Scale [30] or 
stationary devices that measure participants’ 
physiological responses. Physiological responses, and 
in particular heart rate (HR) and heart rate variability 
(HRV), are good indicators of participants’ arousal 
[50]. 

An important decision relates to the use of 
stationary versus mobile physiological measurement 
devices. Despite the advantages of stationary 
physiological measurements, such as good accuracy 
and software with comprehensive functionality [51], 
their application is typically restricted to controlled 
laboratory settings in which the participants cannot 
move freely. In contrast, wearable devices allow for 
mobile physiological measurements. These devices are 
small and need little space [52]; they mostly rely on 
photoplethysmography sensors to measure 
cardiovascular indicators [52]. For experiments with 
HRIs, wearables are promising; they are easy to handle 
and do not restrict the movements of the participants. 
In turn, for data analysis, it is important to compare the 
measures during the experiment with measures taken 
before the experiment (baseline measure).  
 
8. Discussion 

Following these steps to design experimental 
research with robots can increase the internal and 
external validity of research in several respects. 

First, realistic stimuli and experimental designs 
motivate participants to behave in authentic ways and 
avoid socially desired behaviors. Second, clearly 
programmed and empirically tested robotic emotions 
and/or behaviors help avoid confounding effects. In 
particular, confounding effects due to a lack of 
differentiation between the control group and 
experimental group can be avoided. The extent to 
which this step needs to be applied depends on the 
experiment. Third, a clearly defined dialogue limits 
experimenter bias, particularly when the behaviors of 
the humanoid robot are defined by a concrete script of 
verbal expressions and standardized with the WoZ 
method. Fourth, data from multiple sources reduce the 
risk of a single-source bias. 

This research also provides insights for testing 
hypotheses about HRI in professional settings. Further 
research should apply this multistep model to develop 
experiments with humanoid robots in various 
professional roles, such as team member, subordinate, 
or even supervisor in organizations, as well as frontline 
personnel at the boundary with customers. 

An important action, prior to starting the main 
experiment, is a pilot test. With a set of pilot 

experiments, researchers can increase internal and 
external validity through the sufficient execution of the 
multistep approach (Figure 1). For example, they can 
test whether the experimental framing is adequate, 
realistic, and logically consistent and if the chosen 
autonomy mode supports the experimental procedure 
sufficiently. 

This article focuses on humanoid robots in 
professional settings, but moving forward, research 
could apply this multistep model to investigate 
personal robots. In contrast with professional settings, 
personal robots serve humans in private spheres. 

In addition, I attempt to provide guidance for 
experimental research with humanoid robots. The 
suggestions should be considered with care for other 
research designs; their relevance may be restricted for 
non-humanoid robots, such as industrial forms. 

By presenting this multistep approach for 
experimental research with humanoid robots, this 
article seeks to increase the impact of future HRI 
experiments and help other researchers avoid the 
mistakes of prior literature. 
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