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Abstract 
 

An incessant rhythm of data breaches, data leaks, 
and privacy exposure highlights the need to improve 
control over potentially sensitive data. History has 
shown that neither public nor private sector 
organizations are immune. Lax data handling, 
incidental leakage, and adversarial breaches are all 
contributing factors. Prudent organizations should 
consider the sensitive nature of network security data. 
Logged events often contain data elements that are 
directly correlated with sensitive information about 
people and their activities -- often at the same level of 
detail as sensor data. Our intent is to produce a 
database which holds network security data 
representative of people's interaction with the network 
mid-points and end-points without the problems of 
identifiability. In this paper we discuss architectures 
and propose a system design that supports a risk based 
approach to privacy preserving data publication of 
network security data that enables network security data 
analytics research. 
 
 
1. Introduction  
 

Data-driven network security and information 
security efforts have decades long history. A deluge of 
logged events from network mid-points and end-points 
coupled with unprecedented temporal depth in data 
retention are driving an emerging market for automated 
Artificial Intelligence inspired cognitive security 
products. While network security data yields the most 
insight when it is aggregated from multiple vantage 
points in a network, aggregation is not without risk. 

Network security data often captures user’s behaviors 
with surprising detail. As noted by Wright et.al., 
aggregated transactional and association data takes on 
many of the same properties as sensor data[1]. This 
means aggregated network security data has many of the 
same privacy concerns presented by sensor data -- it has 
the potential to reveal life-patterns that identify 
individuals. While this is not generally a concern when 
the data is used for correct and secure operation of a 
network, it must be addressed if we intend to produce 
generalizable knowledge. In addition to information 
security threats we must consider threats to privacy. 
Even when the information security threat model for a 
network allows trusted system administrators access to 
aggregated security data for security-relevant purposes 
it has the potential for privacy-invasive misuse by the 
'honest-but-curious'. Additionally, aggregated data that 
provides 'sensor data' level observations could be of 
great interest to adversarial or malicious parties. 

Because network security data contains data 
elements that identify individuals and the end-point 
devices they interact with we cannot ethically produce 
generalizable knowledge unless we implement 
procedural and technical controls that reduce the risk of 
exposing confidential information. We must consider 
means to reduce privacy vulnerabilities and provide 
appropriate countermeasures. Judicious implementation 
of control mechanisms should reduce privacy risks 
when network security data is used to produce 
generalizable knowledge. 

Privacy and anonymization for data sets are encoded 
into United States (US) and European Union (EU) law. 
In the US much of this extends from legally mandated 
privacy requirements for census data where early 
privacy work focused on using statistical disclosure 
controls to limit

Additionally, there are broadly accepted ethical 
standards regarding collection and use of data about 
people and their behavior. A central ethical tenant is that 
data that can identify individuals should only be 
collected with the subject’s voluntary consent. 

Cyber physical systems and smart infrastructures 
further enforce the need to address privacy concerns in 
systems design. The end-points and mid-points 
participating in a network produce detailed logs of 
human interaction to help administrators operate and 
secure the services they provide. Sensor level data (i.e. 
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logged transaction and interaction data) is often 
essential to a systems operation but can reveal people's 
location, presence, patterns of resource usage, and 
mobility traces[1]. Sensor level data, like logged events 
collected for network security purposes, is particularly 
concerning because it resists naive labeling approaches 
(i.e. data is labeled for specific uses). People interacting 
with the network end-point and mid-points are 
frequently unaware their transactions and interactions 
are recorded. 

 
2. Network security data analytics 
 

Network Security Data Analytics (NSDA) is the 
application of data science approaches to the problem 
domain of network security. Data science can be viewed 
as a collaboration between experts in a specific problem 
domain, statisticians and computer scientists with the 
additional requirement of analytic infrastructure 
supporting big data techniques. The specific problem 
domain in this case is network security. The relationship 
of these disciplines with the problem domain and 
solution domain are shown in Figure 1.  
 

NSDA draws Artificial Intelligence (AI) inspired 
techniques such as Data Mining (DM), Machine 
Learning (ML), and Natural Language Processing 
(NLP) from the Computer Science (CS) and Statistics 
disciplines. It also requires an underlying Information 
Technology (IT) infrastructure capable of 'Big Data' 
techniques.  In section 0 we overview our operational 

model and existing NSDA system design. In section 0 
we discuss the threat model for our privacy concerns and 
in section 0 the data model and data elements with 
explicit privacy concerns. 

 
2.1. Operational model 
 

Here we frame the problem domain in the context of 
operational requirements and considerations in the 
operational model shown in Figure 2. The operational 
model is a five-phase intelligence cycle. In this paper we 
only cover the collection, processing and analysis 
phases which are implemented in our current system. 

Collection is the gathering of raw data from the 
operational environment. For the purposes of NSDA 
this is the timestamped series of semi-structured data 
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produced by mid-point and end-point systems. Several 
data sources (shown in Figure 3) include: 
• End-point system events logged into syslog or 

Windows event logs 
• Alerts from Intrusion Detection Systems (IDS), 

Intrusion Prevention Systems (IPS), and Security 
Information and Event Management (SIEM) systems 

• Mid-point network flow data 
• Administrative compliance scan results 

In the collection phase operators must address the 
vantage point where data is collected (e.g. mid-point at 
a network boundary or at an end-point resource 
utilization). Additionally, they must address both 
veracity of data and reachability of the sensor. 

During processing and exploration, data is 
normalized for preliminary exploratory data analysis. 
Because log events and logs are produced in a wide 
variety of formats we need methods to Extract, 
Transform, and Load (ETL) data. Exploratory Data 
Analysis (EDA) can range from classical statistical 
methods to automated processing with data mining 
techniques.  Analyst often overlap ETL and EDA tasks 
and frequently lump the task set together as “data 
munging”. Some data munging tasks include: renaming 
variables, data type conversion, recoding data, merging 
data sets, inputting missing data and handling missing 
values. 

A primary concern in network security data analytics 
is accurate detection and reporting of anomalous 
conditions that have a negative impact on systems. 

Analysis and production has a range of temporal 
characterizations: 
• Retrospective explanatory analysis; what happened? 
• Concurrent situation awareness; what is happening? 
• Prospective predictive analysis; what will happen? 

The initial focus of our work was on aggregating 
disparate log data for retrospective analysis. To this end 
we designed and implemented a network security 
focused log aggregation and analysis (LAA) system 
shown in Figure 3. The system ingests a subset of the 
observational data from the operational network, 
normalizes data elements, and then stores normalized 
data in a document oriented store. The document store 
supports interactive data exploration via a web interface 
and batch extraction for analysis on external systems. 

We use High Performance Computing (HPC) 
clusters to run batch analytic tasks on data. The data is 
loaded into temporarily instantiated Apache Hadoop 
clusters (for storage) and Apache Spark (for analysis) 
similar to the method used in [2]. The Hadoop and Spark 
clusters are overlaid in the HPC cluster environment as 
batch jobs.  While the existing system is appropriate for 
network security focused research it does not address 
privacy requirements. This severely limits the use of 
observational data drawn from aggregated events. We 
must establish a threat model that evaluates privacy 
requirements and establish means to ensure an adequate 
level of privacy protection that supports analytic utility.  
The privacy requirements, technical controls and 
procedural controls must be documented in a research 
protocol. 
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2.2. Threat model 
 

Privacy, usability, and security are complementary 
and overlapping in some methodology. Even so they are 
arguably distinct disciplines with competing 
requirements. Network security systems are inherently 
privacy invasive and have the potential to restrict or 
impede usability -- even for authorized users. A network 
will not function without data attributes that can directly 
identify real world objects such as the people associated 
with user accounts and device identifiers. Additionally, 
the ability to produce actionable network security 
intelligence often requires identifying information for 
people and the mid-point and end-point systems they 
interact with. This naturally leads to tension between 
functional requirements for usability, information 
security, and privacy. For our system we seek to prevent 
casual re-identification of users by researchers. 

An identifier (ID) has several desirable 
characteristics such as no-reuse, immutability, one-to-
one correspondence with identified entity (e.g. person, 
place, or thing). A direct identifier is a data value that 
uniquely corresponds to a real world entity within in a 
defined domain. Additionally, we must consider other 
data elements that have the potential to re-identify when 
extrinsic information (or adversarial knowledge) is used 
to infer identity from other data characteristics. 
Formally, an indirect identifier or Quasi-Identifier 
(QID), is the minimum set of data elements 𝑄𝐼 =	<
𝑄&, 𝑄(, … , 𝑄* > that can be used to identify individual 
records when linked with an attacker’s knowledge 
which is extrinsic to the released data set. 

Privacy preservation must be considered because the 
ethical production of generalizable knowledge from 
data that incorporates human behaviors requires 
informed voluntary consent. We must at minimum de-
identify data records so that there is not one-to-one 
correspondence between an identifier and a real world 
person. In the case where informed voluntary consent is 
not possible and the data is from existing records direct 
identifiers must be de-identified in accordance with a 
research protocol. The de-identification for direct 
identifiers can be as simple as a re-encoding of the 
values. A key that maps between the direct identifier and 
its encoding can be maintained by trusted agents (e.g. 
the principle investigator or senior researchers). Our 
organizations Internal Review Board (IRB) specifies 
data elements that must be de-identified. A partial list of 
data element types that must be de-identified when they 
correspond to a real world person is shown in Table 1. 

 Personnel who routinely operate network systems 
can become familiar with information such as IP 
numbers, computer host names, and the people who use 
specific systems. This internalized background 

knowledge presents the possibility of casual, “over-the-
shoulder” re-identification. In our threat model the 
primary adversary is the researcher. Re-identification of 
people from de-identified study data must require non-
trivial effort. Because much of this research is 
conducted in concert with network operators we should 
take steps to prevent re-identification from data 
elements that are commonly associated with specific 
people. 

 
Table 1: Direct Identifiers 

 
Data Element Types Examples 
Names Persons name, Employer’s 

name, Relative’s names 
Dates Birthdate, Date of death, 

Appointments 
Addresses Home or work addresses, 

Relative’s addresses 
Account numbers Telephone numbers, Social 

Security numbers, Member 
account numbers 

Features Voiceprints, Fingerprints, 
Full face photos and 
comparable images 

 
2.3. Data model 
 

Networked mid-points and end-points produce 
observational data with data elements in many syntactic 
formats. Several of the data sources are shown in Figure 
3 in the left hand column labeled collection. Below we 
discuss a subset of data elements available from the 
operational network which have explicit privacy 
concerns. Many other data elements are available in the 
observational data collected for network and systems 
operations. Some potentially identifying data elements 
that are fundamental to our research are usernames, 
media access codes, and internet protocol numbers. 

While IRB-specified data elements should not 
intentionally be collected in observational network 
security data we consider user account names to be 
equivalent to a member account number. User account 
names and e-mail addresses are assigned when the user 
is enrolled into the administrative domain. While 
account names and e-mail addresses are not required to 
uniquely correspond with a real person it is not 
uncommon for people to select account names similar to 
their actual names. Regardless, because the account 
names (and e-mail addresses derived from account 
names) can be closely associated with specific people 
we treat them as confidential like member account 
numbers. 

A username, or user account name, is used for 
authentication and authorization to use end-point and 
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mid-point systems within a local administrative domain. 
It is typical for an administrative domain to require a 
standard for the format of a username [3], [4]. As an 
example, a personal identifier (PID) could be 
constrained to a syntactic structure with specific 
requirements: it must be between 3-8 characters, it must 
start with a letter (not a number) and must only contain 
letters and numbers (no spaces or special characters).  

Usernames can lead to unintended confidentiality 
exposure. It is not uncommon for a person to use 
multiple services from different vendors but use the 
same username (or very similar username) among 
different systems, resulting in traceability and 
linkability between services [5]–[7]. Also, it is not 
uncommon for usernames to support localized language 
encodings which can reveal a person’s language 
preferences[8]. Unprotected user names have also been 
shown to have sex categorization which can reveal 
gender of the person associated with the username[9].  

A Media Access Control (MAC) address, is a unique 
identifier assigned to a network interface device to 
enable communication at the data link layer. MAC 
addresses come in several formats. Both 48-bit and 64-
bit are commonly used in contemporary network 
standards like Ethernet, 802.11 wireless networks and 
Bluetooth [10], [11]. The IEEE Guidelines on use of 
organizationally unique identifiers explain the 
breakdown of the address space between the 
Organizationally Unique Identifier (OUI) and Network 
Interface Controller (NIC) specific[12]. While the intent 
of a MAC is to provide a unique identifier for each NIC 
we do not consider a MAC to be a strict identifier. One 
reason is that it is possible to override the hardware 
MAC in software configurations meaning there can be 
reuse of a MAC. Other causes of reuse are: network 
interface hardware can be moved between computers, 
perhaps for maintenance or repair, and between 
organizations. Additionally, an end-point device can be 
shared and used by several people breaking strict one-
to-one correspondence. Although we do not consider a 
MAC address to be a direct identifier we handle it as a 
quasi-identifier with one field. 

Like MAC addresses we treat Internet Protocol (IP) 
numbers as a quasi-identifier with one field. It is not a 
direct identifier because it can be reused. It can be re-
assigned alternate end-points. Also, globally routable IP 
numbers are a salable commodity -- ownership of the IP 
number can change over time. Some roles involved in 
IPs include: owner, custodian/operator, and end user. 
Additionally, some IP ranges are used for link-local 
(non-routable) connectivity. Another complicating 
factor is that there is not guaranteed one-to-one 
correspondence between an end-point (host computer) 
and an IP. A single end-point device can have multiple 
network interfaces, each assigned an IP number. 

IP assignment can be static or dynamic. A statically 
assigned IP number is a temporary indirect syntactic 
identifier. We describe it as temporary because its 
period of stability (in terms of owner, custodian, and 
user) is typically long term. We consider dynamically 
assigned IPs ephemeral because it is used for relatively 
short periods of time. Dynamic IPs can be acquired by 
an end-point device through several methods: Dynamic 
Configuration of IPv4 Link-Local Addresses or 
Automatic Private IP Addressing (APIPA)[13] IPv6 
Stateless Address Autoconfiguration (SLAAC)[14], or 
Dynamic Host Control Protocol (DHCP)[15], [16]. 

 
3. Architectures 
 

While there is a large body of relevant research that 
has produced privacy enhancing methodology a 
comprehensive survey and comparative analysis is 
beyond the scope of this work.  General approaches to 
privacy preservation can be described in several 
dimensions. Here we frame architectural approaches 
within in the context of an intelligence cycle, which is 
the bases of our operational model, and informally 
discuss some of the operational tradeoffs of each 
approach. We group approaches to privacy preservation 
by the systems trust boundary: access controlled sharing 
within a protected enclave, privacy preserving data 
publication, privacy preserving analysis, and statistical 
data controls. Another dimension is data state, which is 
commonly categorized as: in-motion, at-rest, or in-use. 
Where in-motion is data that in transmission via a 
communication system; at-rest is data stored as files; 
and in-use describes data that is actively being 
processed (i.e. the data is resident in a devices main 
memory, caches, or registers). 
 
3.1. Enclave 
 

The use of enclaves for isolation is well established 
in the information security discipline. In the realm of 
privacy it is the most restrictive form of limited data 
release. In the enclave based approach data is 
intentionally shared only with those who are explicitly 
authorized access to the system. Enclaves provide 
restricted access to data by imposing conditions on that 
access[17]. This is unlike the other approaches which 
restrict the data released by limiting or adjusting data 
before it is published. We group other methods that 
require authorization into the enclave category. This 
includes remote access and data licensing approaches 
which require a signed non-disclosure agreement. 

In the example, shown in Figure 4 below, a single 
enclave encompasses all phases of the intelligence cycle 
for the system under consideration. A more granular 

Page 4508



approach could use multiple federated enclaves to limit 
access at specific phases or to control access to subsets 
of the underlying operational processes and technical 
infrastructure (i.e., mid-point and end-point devices that 
comprise the information systems). In practice, it is 
likely that multiple enclaves will be used to maintain 
separation of concerns and separation of duties among 
multiple participants in the intelligence cycle. 

 

Figure 4: Operational model with enclave 
 

Enclave approaches can be designed to protect data 
in all three states. Unfortunately, as shown by historical 
cases, enclaves are not immune to breach by adversarial 
actors, intentional leakage by insiders, or incidental 
spillage by failures in process or technical controls. 
Additionally, without privacy controls, an enclave 
approach does not prevent privacy-invasive data misuse 
by the 'honest-but-curious' data snooper – which is the 
main threat to privacy in our threat model.  
 
3.2. Privacy preserving data publication 

(PPDP) 
 

Privacy preserving data publication de-couples 
privacy from analytics. The intent is to produce and 
publish data sets with adequate privacy protection and 
sufficient analytic utility. This can be advantageous in 
situations where the data owner is unable to perform 
analytics and intends to outsource the effort to a third 
party. 

 
 
Figure 5: Operational model with PPDP 

 
PPDP approaches have been proposed for a wide 

range of data sources including: social network data 
[18], trajectory stream publication[19]–[21], and big 
data publication[22].  When using a PPDP the impact of 
incremental data release must be considered when 
releasing additional data elements.  An adversary could 
collect historical data and leverage the new data 
elements to derive quasi-identifiers. 

3.3. Privacy preserving data analytics (PPDA) 
 

 Privacy Preserving Data Analytics (PPDA) use 
analytic techniques drawn from data mining and 
machine learning. PPDA is process oriented. The data, 
analytic procedure, or both must be modified so that the 
technique is oblivious to identifying data. Because of 
this PPDA techniques must be incorporated into both 
the process & exploration and analysis & production 
phases of the operational model (see: Figure 6). 

 

Figure 6: Operational model with PPDA 
 

PPDA models require data holders to modify the 
original data in such a way that it is still possible to 
generate analytic results. While the inferred models and 
parameters could be published, the modified data 
(potentially randomized with cryptographic techniques) 
will have little utility. Cryptographic methods requires 
data owners to execute specifically designed analytic 
algorithms. Statistics based approaches allow data 
owners to release sanitized data sets (perturbation or 
generalization). There are many machine learning and 
data mining efforts that provide PPDA capabilities. 
PPDA techniques can potentially provide some 
protection for data-in-use. 

 
3.4. Statistical Disclosure Controls (SDC) 
 

Statistical Disclosure Controls (SDC), sometimes 
called Statistical Disclosure Limitation (SDL), methods 
can be implemented in the final dissemination & 
integration phases of the operational model as shown in 
Figure 7. 

 
 

Figure 7: Operational model with SDC 
 

   SDC is a venerable approach with a long history.  
For example, the U.S. Census Bureau has released 
micro-data for several decades without reported 
disclosure[23]. SDC is of intense interest to 
governments which can make evidence based policy 
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decisions based on aggregated data like census 
information[17]. SDC is used to release accurate 
statistics about a population while preserving individual 
privacy [24], [25]. SDC is well studied, Abowd et. al. 
highlight several dozen appropriate methods in their 
2001 survey of methods for longitudinal linked 
data[26].  Many SDC methods modify data values (by 
randomization). Because this does not preserve the 
truthfulness of data values, data release might not be 
useful for evidence based decision making. Instead, 
tables of summary statistics are typically disseminated. 

 
4. System design 
 

We separate the operations and research into 
separate enclaves and use a PPDP architecture to 
publish de-identified data from the operational systems 
into our research oriented system. Our overall design is 
shown as a research data flow in Figure 8. Essentially, 
observational data is extracted from a log aggregation 
system, the data is de-identified, and then used to 
develop and evaluate anonymization and generative 
synthesis techniques. The de-identified data is managed 
within a research specific enclave, where only those 
who have executed a non-disclosure agreement and IRB 
training are allowed access to the data sets. Data within 
the Data Analytics system (DAS) is de-identified, but 
not anonymized. This enables researchers with enclave 
access to develop anonymization and generative 
synthesis techniques. The techniques developed by 
enclave researchers are then used to produce sanitized 
data sets. 

One objective of this research is the design and 
implementation of privacy preserving methods to 
support the risk based release of network security data 
so it can be utilized to develop new analytic methods in 
an ethical manner. Another objective is to preserve 
analytic utility by maintaining semantic meaning and 
syntactic structure. Protected data elements should be 
parsable by standard approaches (i.e. data should be 
syntactically correct and preserve semantic meaning) so 
that the techniques are readily brought back into a 
production environment without excessive process 
revisions and re-tooling. 

 Our design is a system-of-systems that reflects the 
five-phase intelligence cycle previously discussed 
operational model. Our proof-of-concept system relies 
on the operational log aggregation system for 
observational data. We extract batches of tabular data, 
apply de-identification to direct identifiers and quasi-
identifiers, and then store de-identified data in our 
research-focused Data Analytics System (DAS). We 
limit our study to extracted columnar formats because 
we can reliably use automated processes to ensure that 
tabular data elements are de-identified. This does not 
eliminate the general problem of regular expressions 
that are used to parse semi-structured text from event 
messages but does somewhat constrain the problem 
space. The use of a distributed event stream as 
interconnect allows us to substitute sub-systems for 
scalability purposes.  We can leverage substitutable 
components and vary configurations to tune the system 
for our expected performance requirements.  This is 
particularly important for the storage subsystem because 
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we foresee rapid growth as we ingest additional 
observational data sources.  

 
5. Related work 
 

Here we highlight some other system-oriented 
privacy preservation work.  The synthetic data vault 
described in [27] uses a PPDP architecture to evaluate 
the analytic utility of synthetic relational data. The 
authors generated synthetic data from models learned 
from public data sets. PRACIS is a cybersecurity 
information sharing platform using a hybrid of PPDP 
and PPDA architecture. It is focused on sharing 
cybersecurity in in Structured Threat Information 
Expression (STIX) format. The PPDA operations are 
limited to aggregation of encrypted values and 
generation of some summary statistics[28]. A proof of 
concept system focused on unstructured web query logs 
was implemented by Sedayao but, as noted by the 
authors, was not used in a production environment[29]. 
The proposed system is a PPDP architecture. 

 
6. Conclusion 
 

Privacy preserving data publication has the potential 
to support reproducibility and exploration of new 
analytic techniques for network security. Providing 
sanitized data sets de-couples privacy protection efforts 
from analytic research. De-coupling privacy protections 
from analytical capabilities enables specialists to tease 
out the information and knowledge hidden in high 
dimensional data. While, at the same time, providing 
some degree of assurance that people's private 
information is not exposed unnecessarily.  

We hypothesize that for some network security use 
cases that generative synthesis will provide sufficient 
utility and privacy protection, such that it is possible to 
make an informed risk decision regarding data release. 
Information security programs could be enhanced by 
implementing data minimization practices and misuse 
prevention by removing identifying information that is 
not necessary for correct function, security purposes, or 
production of generalizable research results. The system 
under design can supply data that is statistically accurate 
to attributes and behavior of humans without the 
problems of identifiability.  
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