
1

Co-membership, Networks Ties, and OSS Success: An Investigation
Controlling for Alternative Mechanisms of Knowledge Flow

Gang Peng

California State University Fullerton
gpeng@fullerton.edu

 Feng Yu
Youngstown State University

fyu@ysu.edu
 Yiqun Peng

 QingDao University
 pengyiqun@163.com

Abstract

Co-membership has been considered as a major

mechanism for constructing social networks, but it
has met many criticisms over time for failing to
control for alternative mechanisms for knowledge
flow. Although social networks constructed in online
environment can reduce such possibilities, it is not
without limitations. One possible mechanism for
learning and knowledge flow is direct watching and
observation. This study investigates the impact of co-
membership taking into account the alternative
mechanism of watching under the setting of OSS
development at GitHub. It finds that both co-
membership and watching contribute positively to
OSS success, and thus shows the co-existence of both
experiential learning and vicarious learning for OSS
development. Moreover, it finds the impact of co-
membership is much stronger than watching. While
the impact of co-membership may be biased in prior
literature, this study confirms that co-membership is
indeed an effective mechanism for constructing
online social networks for knowledge flow.

1. Introduction

Network ties are known to channel knowledge
and expertise among social actors, and further
influence their performance or decision-making [1].
Network ties can arise from various forms of
mechanisms such as friendship, alliance, mobility,
and advice, and one of the most important
mechanisms is co-membership, where two entities
are connected by a member belonging to both entities
[2-4]. Members of an entity, e.g., team, project, firm,
organization, can simultaneously participate in other
entities, and therefore they become co-members of
these entities, and they can potentially channel
expertise and knowledge across the connected
entities. The effect of co-members on knowledge
diffusion and eventually performance has been

documented in many studies under various settings.
For example, business board-interlock can diffuse
managerial practices and expertise across firms [5],
co-members of TV production teams can bring in
knowledge and expertise for movie production [4],
and software development projects can benefit from
knowledge leveraged by co-members [2]. As such
co-membership has been used to construct social
networks both online and offline. However, there has
been some criticisms about the impact of co-
membership on knowledge flow: while co-
membership is important, there are other possible
mechanisms through which learning and knowledge
flow can occur [5], thus confounding the impact of
co-membership. Therefore whether co-membership is
indeed an effective mechanism for constructing
social networks is called into question. Indeed, prior
studies have shown inconsistent results, suggesting
no or even negative relationship exists between co-
membership and performance [6, 7]. Therefore, to
establish a cleaner impact of co-membership,
alternative mechanisms for learning and knowledge
flow need to be controlled.

However, in real world, there are many
alternative mechanisms that need to be controlled to
establish a cleaner impact of co-membership.
Obviously the simplest way to tease out their impact
is to eliminate them altogether. In this regard, online
or virtual environment presents an ideal setting to
reduce the possibility of alternative mechanisms—
individuals online are distributed worldwide and
many of them might have never met before or will
never meet in person, and as such the only
mechanism for them to interact with each other is
through online platforms.

However, even under the virtual environment,
there are other possible mechanisms through which
knowledge and expertise can flow. The most obvious
and often cited mechanism is direct watching or
lucking [8]. Prior studies have commented that
individuals can directly watch other projects’
development activities online and learn from them
without joining these projects as members [9]. Thus

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50423
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 4252

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

the following questions remain open: 1) Does co-
membership really matter for performance and
decision-making and thus can serve as an effective
mechanism for constructing social networks? 2) As
direct watching is often unobservable, how to control
for it as an alternative mechanism for learning and
knowledge flow? 3) Which mechanism, co-
membership or watching, is more influential or
effective for knowledge flow?

We intend to address the above questions in this
study. Specifically we use GitHub to examine the
impact of co-membership and watching for learning
and knowledge flow.1 GitHub is currently the most
popular hosting website for open source software
(OSS) project development. It possesses the features
afforded by traditional platforms such as
SourceForge.net and thus allows us to trace project
co-membership. At the same time, it also exhibits
certain features of social media such as watching,
thus allowing us to tease out the learning effect due
to direct watching [10]. By controlling for both co-
membership and watching, we find that: 1) Co-
membership indeed plays a critical role for learning
and knowledge flow, even after controlling for
watching. 2) Projects also learn from each other
through the mechanism of watching. 3) The impact of
co-membership is much stronger than watching.

2. Literature review

OSS development has gained increasing
popularity in recent years. Many studies have been
devoted to studying the success of OSS development.
Among the various perspectives to OSS research, the
one that has received increasing attention is that of
social network theory, which argues that social actors
are embedded in their relations, and they are
connected by network ties, which can channel
valuable information and facilitate learning and
knowledge flow, and lead to improved outcomes and
performance [1].

Social network ties can arise from many
mechanisms. One of the frequently invoked
mechanisms is co-membership. For example, prior
literature suggests that member mobility can be
effective for knowledge flow and performance
improvement [11]. In OSS community, OSS project
consists of multiple developers or project members,
who in turn might participate in other projects. Here,
a developer who belongs to two or more projects is
called a “co-member” between the projects the
developer concurrently participate in.
Correspondingly, OSS projects that share one or

1 GitHub url: http://github.com

more co-members are called connected projects.
When a co-member works on a connected project, he
can exchange ideas and discuss issues with other
members through such tools as discussion forums,
email lists, and tracker systems [12], and
subsequently he learns from others and gains
expertise and knowledge from participating in the
project. Indeed, learning has been identified as one of
the most significant motivations for OSS
participation [13]. Furthermore, when the co-member
works on the focal project, other members on the
project learn from him as well. Therefore, through
learning, knowledge and expertise can flow from the
connected project to the focal project. Effectively, co-
membership constitutes network ties between OSS
projects and acts as conduits for knowledge flow
across boundaries of OSS projects. Through co-
members, useful information and knowledge,
including innovative ideas and techniques for OSS
development, can be channeled across the connected
projects, influencing the performance of OSS
projects, and more specifically the success of OSS
projects [2].

In literature, project co-membership has been
widely adopted to construct network ties among OSS
or wiki projects. Table 1 shows some prior studies
that have adopted co-membership to construct online
social networks. A common finding of these studies
is that co-membership is an effective mechanism for
knowledge flow. We also examine if these studies
have controlled for alternative mechanisms that can
possibly lead to knowledge flow. However, we did
not find evidence for controlling for alternative
mechanisms such as watching.

Table 1: Sample Studies Using Co-membership

Studies Levels of
Analysis Related Research Questions

[14] Individual
How does collaboration network
structure affect the contribution
behavior in Wikipedia?

[15] Individual

How does prior collaboration
network affect developers’
choice of newly initiated OSS
projects to participate in?

[16] Individual

How does participation in
industry events relate to
entrepreneurs’ brokerage
positions in informal industry
networks?

[17] Project

How does network position
affect the market value of
collaborative user-generated
content?

[18] Project
How does different types of
network ties affect OSS project
success?

Page 4253

3

[19] Project
How does social network
structure affect the success of
OSS projects?

[20] Project
How does social capital affect
knowledge flow in OSS
development?

[21] Project
How does network structure
interact with human actions in
affecting OSS success?

[22] Project

How does network structure and
network content affect
technology adoption in OSS
development?

[23] Project
How does developers’ attention
to external projects may dampen
OSS project success?

[24] Project
How does social networks
influence OSS project license
choice?

[25] Project How does structural capital
affect OSS project success?

[26] Project

How does a project founder’s
network position affect time to
release user-generated open
source products?

[27] Project
Are there knowledge spillovers
in the network of open-source
projects?

[28] Project
How well does an affiliation
network predict information
quality on Wikipedia?

As commented by prior studies, the omission of

controlling for alternative mechanisms is mainly due
to the fact that there are virtually no way to track
these mechanisms under traditional development
platforms such as SourceForge, Wikipedia, or many
other virtual environments [8]. However, more recent
platforms like GitHub not only provide features
afforded by SourceForge or Wikipedia, but also
afford features of social media, so that developers
and projects can directly watch others that are of
interest to them [29].

GitHub not only provides a traceable project
repository via Git, but it also acts as a social
networking virtual space for individuals [30]. Just
like other social applications, developers can
“follow” other developers or “watch” other projects
by subscribing them to a feed with frequent updates
of their activities [9, 10, 29]. Figure 1 shows a
snapshot of a typical project at GitHub.2 The project
has 5 members who have made 389 commits to its
code repository. Most relevant to this study, it is
being watched by 41 developers at the time. Usually,
popular projects tend to be watched more and have
more followers [31].

2 It was taken on May 1, 2017.

Figure 1. Snapshots of A GitHub Project

3. Theory and hypotheses

The literature on learning and its impact has a
long history [32]. Learning can occur at various
levels and through various mechanisms. Learning can
be realized through ones’ own experience or the
experience of others [33]. Through learning,
individuals, teams, and organizations accumulate
stocks of knowledge, which can be applied to future
activities. In this research, we adopt the view that
team learning is an aggregate of individual learning
as a result of actions and interactions among team
members when they create, share, and integrate
unique knowledge and information that can be
applied in future situations [34-36].

3.1 Learning through co-membership

When members work on a project, they learn by

working on the project, and when they move on to
new projects or work concurrently on other projects,
they apply what they learnt to the other projects [4].
Equivalently, these members become knowledge
reservoirs and when they move, they carry the
knowledge, expertise, and experience with them [11].
Learning from one’s own experience has been
referred to as experiential learning [37]. Experiential
learning is particularly effective for gaining tacit
knowledge that cannot be acquired easily through
other types of learning. The impact of experiential
learning on software development has also been
observed. For example, when developing the first
real-time online air ticket reservation system, SABRE,

Page 4254

4

many developers had participated in a prior project
SAGE, and consequently, SABRE was able to not
only benefit from technical innovations from SAGE,
but also avoid many of the development pitfalls in
system requirements, programming, and project
management [38]. Similarly, the development of
FreeBSD, an OSS Unix-like operating system,
benefited greatly from 386BSD, a relatively mature
and stable operating system software, as many of the
developers on FreeBSD used to work on 386BSD
[39, 40]. At project level, through co-membership,
the focal project is connected to other projects which
share these co-members. The more connected
projects the focal project has, the more knowledge
and expertise can potentially flow into the focal
project, increasing the odd of its success:

H1: OSS project success is positively associated with
the number of connected projects.

3.2 Learning through watching

In social computing workspace, developers can
watch the activities of other projects. At GitHub, it
has been observed that learning is one of the
important motivations for observing other projects or
users [9]. Once a project is set to be watched, all the
activities of the project will be forwarded to the
follower automatically through feeds [9, 10].
Therefore, through watching, the follower can
examine and keep updated of the development
activities of the watched project and learn from them.

Distinct from experiential learning or learning
from one’s own experience, learning from others’
experience is referred to as vicarious learning [41,
42]. Vicarious learning is important for OSS
development. First, OSS development consumes
scarce resources, such as time, energy, cognitive, and
computational efforts [43]. By taking advantage of
others’ experience and expertise, the focal project can
economize the cost in decision-making, save their
scarce cognitive efforts and resources, and improve
the odds of making the right decision. Second,
vicarious learning helps apply the experience and
expertise of other projects to the focal project, and
yields insights that potentially can increase the
success of the focal project. Third, vicarious learning
can also reduce risks associated with decision-
making. Uncertainty is intrinsic in OSS project
development [30]. When faced with the many tasks
of software development, the focal project observes
the actions of other projects and take into
consideration the experience and lessons of others. In
doing so, they can reduce the uncertainty associated

with project development and enhance the success of
the project.

At project level, members of a focal project may
watch many other projects, and through watching, a
form of vicarious learning, the focal project as a
whole can gain knowledge and expertise, accumulate
experience, and apply them to the focal project to
enhance the odds of its success:

H2: OSS project success is positively associated with
the number of projects that the focal project is
watching.

The implication here is that, similar to co-
membership, watching constitutes another
mechanism for building online social networks. The
activity of watching establishes the network ties
between the focal project and the projects being
watched. While ties based on co-membership is
bidirectional, ties based on watching is
unidirectional, representing knowledge flow from the
projects being watched to the focal project.

3.3 Co-membership vs watching

As discussed above, co-membership and watching
represent two different mechanisms for learning. A
practical question for developers to ask is: which
mechanism is more effective? In the context of OSS
development, we believe co-membership is more
effective than watching in leading to project success.
First, being able to work on the connected projects
directly allows developers to gain first-hand
experience and knowledge, which affords them
confidence in applying what they have learnt to the
focal project. Although watching can speed up and
economize the cost of learning, the fact that these
experiences and knowledge are obtained second-hand
can potentially cast doubt on their applicability to the
focal project. Second, experience and knowledge
though watching lack details and accuracy, thus they
are hard to implement for the focal project. Third,
compared to second-hand information, direct
experience through co-membership lasts longer in
memory and can be recalled and acted upon easier
when needed [44]. Therefore, although both co-
membership and watching are expected to be
effective channels for learning, the former tends to be
more powerful since the first-hand learning tends to
be more relevant, and last longer:

H3: The impact of co-membership is stronger than
that of watching in affecting OSS project success.

Page 4255

5

4. Datasets, variables, and method

The datasets we use for this study are from
GitHub. Since first established in February 2008,
GitHub has grown rapidly into the worlds’ leading
hosting website for OSS development. GitHub
integrates a number of social features which allows
users and their activities to be visible within and
across OSS projects [9]. At GitHub, project members
are those who make code contribution to a project.

We took two snapshots of the whole projects at
GitHub, one on January 8, 2016 and the other one on
November 11, 2016. Two datasets are built from
them. The first one is used to construct independent
variables used in this study, and the second one,
together with the first one, are used to construct the
dependent variable.

There are 25,364,494 projects in the first dataset.
However, as noted by other researchers, many of the
projects are inactive [45]. Therefore, we restrict our
sample to projects that have made any commits
during the study period, and this reduces the sample
to 1,417,028. We further restrict the sample to
projects that are not forked from any other projects,
and the sample is further reduced to 1,158,021.3
Since many of the projects are for individual use
other than programming, we further restrict the
sample to those having more than one member, and
this leaves 308,127 projects which are used to
construct the social networks as describe later. All the
network metrics in this study are based on the project
universe of these projects.4 Figure 2 shows the counts
of the projects using different programming
languages.

Figure 2. Project Counts by Programming

Languages at GitHub

3 As commented by prior studies, forking makes it difficult to
clearly identify the commits by the projects that are being forked
[29, 42, 44].
4 It needs to point out that working on such a large number of
projects is not easy, and to speed up the processing speed, we made
use of Amazon AWS big data platform.

As can be seen from Figure 2 that Java is one of
the major programming languages used at GitHub,
and therefore, we focus on projects that use Java.5
There are 21,786 Java projects among them.

We construct the independent variables using the
first dataset. The independent variables include alters,
watched alters, project size, project age, and project
experience. Detailed variable definitions are provided
in Table 2.

Table 2. Variable Definitions

Variables Definitions

Log(commi
ts)

The logarithm of commits made by a focal
project between Jan and Nov 2016. It measures
the OSS project success.

Alters The total number of projects connected by the
co-members between the focal project and its
connected projects, divided by 10. It measures
the impact of co-membership.

Alters
watched

The total number of projects that are watched by
the focal project, divided by 10. It measures the
impact of direct watching.

Project size The total number of contributors to a focal
project

Project age The age (in months) of a focal project in month
since its registration with GitHub till Jan 2016

Project
experience

The average experience (in months) of a focal
project members since they registered with
GitHub till Jan 2016

From the first dataset, we also construct two

social networks using the co-membership and the
watching mechanism respectively. The construction
of the social network through co-membership is as
follows: First, each member of a focal project is
identified; second, for each member, the connected
projects are identified; third, all unique connected
projects are counted for the focal project as the
number of alters through co-membership.

The watching mechanism to constructing social
network follows the same way: First, each member of
a focal project is identified; second, for each member,
projects that are watched by that member are
identified; third, all unique projects that are watched
by the focal project are counted as alters watched.

We also present the kernel density estimation of
variable alter and alters_watched in Figure 3 and 4.
They show that both variables are heavily right
skewed. To reduce the impact of outliers, we further
restrict our sample to projects that have less than 50
alters and 100 watched alters.

5 Although we restrict the analysis to Java projects, the network
variables are derived from the whole project universe, as discussed
earlier.

Page 4256

6

0
.0

2
.0

4
.0

6
D

en
si

ty

0 50 100 150 200
alters

kernel = epanechnikov, bandwidth = 2.6808

Kernel density estimate

Figure 3. Kernel Density Estimate of Alters

0
.0

1
.0

2
.0

3
.0

4
D

en
si

ty

0 100 200 300
alters_watched

kernel = epanechnikov, bandwidth = 4.4100

Kernel density estimate

Figure 4. Kernel Density Estimate of Alters_watched

For the dependent variable, OSS project success,
we use the logarithm of the number of commits made
by the focal project during the study period, i.e., from
January to December 2016—this represents the
incremental changes made in the commits during the
time period [46]. Through the time lag, we use
independent variables to explain the dependent
variable that are affected by them. Ordinary least
squares (OLS) model is used for estimation.

5. Results

We first present the descriptive statistics and
correlation matrix in Table 3. It shows that
log(commits) is positively associated with both alters
and watched alters, and this is consistent with our
hypotheses.

Table 3. Descriptive Statistics and Correlation
Matrix

Variables 1 2 3 4 5
Log
(commits)

Alters 0.097** ___

Alters
watched

0.087** 0.395** ___

Project size 0.237** 0.300** 0.250** ___

Project age −0.019* 0.228** 0.198** 0.175** ___

Project
experience

−0.014 0.414** 0.366** 0.040** 0.476**

Notes: N=14,626; *p<0.05; **p<0.01.

The OLS estimation results are shown in Table 4.
Model 1 is with only the control variables, and
establishes the baseline results. The coefficient on
project size is positive and significant and that on
project age is negative and significant (p<0.01).
These suggest that as projects attract more
contributors, more commits are made, which is as
expected. On the other hand, as time passes, projects
tend to make less commits. This echoes the
observation that most of commits are made in the
early stage when projects first get started; however,
the coding frenzy may subside as projects mature.

Table 4. Estimation of OSS Project Success
Independent
Variables Model 1 Model 2 Model 3 Model 4

Alters
 0.069**

(0.014)
0.057**
(0.014)

0.278**
(0.040)

Alters2 −0.059**
(0.010)

Alters_watched
 0.027**

(0.007)
0.061**
(0.0020)

Alters_watched2
 −0.005

(0.003)
Project size 0.149**

(0.005)
0.141**
(0.005)

0.137**
(0.005)

0.133**
(0.005)

Project age −0.007**
(0.001)

−0.008**
(0.001)

−0.007**
(0.001)

−0.008**
(0.001)

Project
experience

−0.001
(0.001)

−0.001
(0.001)

−0.002*
(0.001)

−0.004**
(0.001)

R2 0.060 0.062 0.063 0.065

Notes: N=14,626; dependent variable is log(commits); estimated
coefficients and their associated standard errors (in parentheses)
are listed under each model. *p<0.05; **p<0.01.

Model 2 adds alters, and Model 3 adds alters and
alters_watched. While the coefficients on alters are
both positive and significant in both models, the
coefficient in Model 3 is lower than that in Model 2.
The implication is that without controlling for
alternative mechanism of watching, and impact of co-
membership will be biased upward, thus echoing the
caveat in prior literature that it is necessary to control
for alternative mechanisms when estimating the
impact of co-membership [22].

Model 4 further adds variables alters2 and
alters_watched2, the quadratic terms of alters and
alters_watched. The coefficient on alters2 is negative
and significant. This suggests that excessive number
of alters may backfire, hurting the development of the
focal project. This makes sense—co-membership
among OSS projects requires developers to
contribute codes to the participated projects, and as
the number of alters continues to grow, developers
will need to allocate and divert more of their limited
resources across multiple projects, eventually hurting

Page 4257

7

the development of the focal project. On the other
hand, although the coefficient on alters_watched2 is
negative but is insignificant—watching other projects
obviously requires less effort from the developers and
thus incurs less cost to the focal project.

Taking into account the results from the four
models, it can be seen that the coefficients on alters
and alters watched are both positive and significant
(p<0.01), thus H1 and H2 are supported.
Furthermore, the coefficient on alters is much higher
than that on alters_watched, in either Model 3 or
Model 4 (p<0.01), therefore H3 is also supported.

6. Discussion and conclusion

Co-membership has been proposed as an effective
mechanism for learning and knowledge flow.
However, prior results have been hampered by the
lack of controlling for alternative mechanisms [6, 7].
Even though online environment provides an ideal
setting for studying the efficacy of co-membership,
the possibility of alternative mechanisms still exists.
For example, watching is very common for OSS
development. In this study, we take advantage of the
social computing platform afforded by GitHub to
address three research questions we proposed earlier:
1) Does co-membership really matter for
performance and decision-making? 2) How to control
for direct watching as an alternative mechanism for
knowledge flow? 3) Which mechanism is more
influential or effective for knowledge flow? Since
GitHub allows project members to record their
watching behavior, leaving trace of watching, and
thus we can effectively control for watching in this
study. Consequently, we identify two different
mechanisms for learning in this study: experiential
learning through co-membership and vicarious
learning through watching. We empirically show that
both of these two mechanisms, or two forms of
learning, are effective for knowledge flow; however,
co-membership is more effective than watching. Our
study makes several theoretical and practical
contributions.

Although prior studies have shown the impact of
co-membership, they do not control for the
alternative mechanism of watching. Therefore, results
from prior studies tend to be biased. In this study,
after controlling for alternative mechanism, we show
that learning and knowledge flow in the form of co-
membership is indeed supported, even after
controlling for alternative mechanisms. With the
accumulation of first-hand experience, developers
learn and accumulate knowledge from connected
projects and apply it to the focal project to improve
efficiency and economize cost. When faced with the

constraints of time, cost, and most importantly
uncertainty of the project development, project
members are motivated to take advantage of learning
from their own experience and apply what they have
learnt to the focal project.

Literature suggests that vicarious learning is an
effective way to gain access to valuable knowledge
and information [8, 41, 42]. In OSS development, the
social computing platforms such as GitHub also
provide opportunities for vicariously learning through
watching. We find that OSS development exhibits
strong characteristics of vicarious learning through
watching—observing peer projects which had
accumulated relevant expertise and knowledge
affords the focal project the opportunity to learn the
second-hand information and knowledge from their
peers.

With the presence of both experiential learning
and vicarious learning, one important question to ask
is which mode of learning is more effective. The
answer to this question has significant implication for
individuals and organizations as well. Our study
reveals that in the context of OSS development,
experiential learning has stronger impact than
vicarious learning. However, we caution that quite
often developers are constrained not only by the time
and resources they possess, but also by their limited
access to social networks to gain the needed
information, thus they do not always have the luxury
to decide on which mode to pursue. When time and
resources allowing, developers may well explore the
problems at hand by themselves through experiential
learning; otherwise developers are probably better off
to take advantage of the knowledge and experience of
others through vicarious learning.

Lastly, although we show that the impact of co-
membership tends to be biased without controlling
for alternative mechanisms, co-membership remains
to be an effective mechanism for learning and
knowledge flow in online settings such as OSS
development. The implication is two-fold: it shows
that prior studies on OSS development and virtual
communities based on co-membership is indeed valid
and effective; at the same time, it points out the
necessity for controlling for watching, an alternative
mechanism for constructing online social networks,
for future studies. Given the burgeoning number of
studies on online social networks at GitHub [29, 31,
47-49], this seems particularly important.

There are several future research directions. In
this study, due to the huge number projects,
constructing the social networks is very time
consuming and computational intensive. Therefore,
we only use the Java projects to test our hypotheses.
One of the future directions is to use projects of other

Page 4258

8

languages such as JavaScript or Python to validate
the results of this study. Second, we use project
commits to measure the success of OSS projects.
However, there are other possible metrics to be
considered, such as project quality and complexity,
which we plan to explore in the future. Third, the
effectiveness of the two mechanisms of learning
obviously depends on the individuals who establish
these two mechanisms, and therefore controlling for
the skill or experience of the co-members or watchers
represents another direction of our future research.

Acknowledgement:
This work was partially supported by AWS Programs
for Research and Education (formerly Amazon
Research and Education Grant).

References

[1] R. S. Burt, Structural Holes: The Social Structure of

Competition, Oxford: Oxford University Press, 1992.
[2] R. Grewal, G. L. Lilien, and G. Mallapragada,

“Location, location, location: How network
embeddedness affects project success in open source
systems,” Management Science, vol. 52, no. 7, pp.
1043-1056, Jul, 2006.

[3] N. H. Lamb, and P. Roundy, “The `ties that bind`
board interlocks research: A systematic review,”
Management Research Review, vol. 39, no. 11, pp.
1516-1542, 2016.

[4] A. Zaheer, and G. Soda, “Network evolution: The
origins of structural holes,” Administrative Science
Quarterly, vol. 54, no. 1, pp. 1-31, Mar, 2009.

[5] P. R. Haunschild, and C. M. Beckman, “When do
interlocks matter?: Alternate sources of information
and interlock influence,” Administrative Science
Quarterly, vol. 43, no. 4, pp. 815-844, Dec, 1998.

[6] E. M. Fich, and L. J. White, “Why do CEOs
reciprocally sit on each other's boards?,” Journal of
Corporate Finance, vol. 11, no. 1-2, pp. 175-195,
Mar, 2005.

[7] N. Fligstein, and P. Brantley, “Bank control, owner
control, or organizational dynamics: Who controls
the large modern corporation?,” American Journal of
Sociology, vol. 98, no. 2, pp. 280-307, Sep, 1992.

[8] S. Rafaeli, G. Ravid, and V. Soroka, “De-lurking in
virtual communities: a social communication
network approach to measuring the effects of social
and cultural capital,” in Proceedings of the 37th
Hawaii International Conference on System
Sciences, 2004.

[9] L. Dabbish et al., "Social coding in GitHub:
Transparency and collaboration in an open software
repository.." pp. 1277-1286.

[10] A. Begel, J. Bosch, and M.-A. Storey, “Social
networking meets software development:
Perspectives from GitHub, MSDN, Stack Exchange,
and TopCoder,” IEEE Software, vol. 30, no. 1, pp.
52-66, 01/01/2013, 2013.

[11] L. Argote et al., “Knowledge transfer in
organizations: Learning from the experience of
others,” Organizational Behavior and Human
Decision Processes, vol. 82, no. 1, pp. 1-8, May,
2000.

[12] J. Xu, S. Christley, and G. Madey, "Application of
social network analysis to the study of open source
software," Economics of Open Source Software
Development, J. Bitzer and P. Schroder, eds.:
Elsevier Science, 2006.

[13] Y. L. Fang, and D. Neufeld, “Understanding
sustained participation in open source software
projects,” Journal of Management Information
Systems, vol. 25, no. 4, pp. 9-50, Spr, 2009.

[14] X. Q. Zhang, and C. Wang, “Network positions and
contributions to online public goods: The case of
Chinese wikipedia,” Journal of Management
Information Systems, vol. 29, no. 2, pp. 11-40, Fal,
2012.

[15] J. Hahn, J. Y. Moon, and C. Zhang, “Emergence of
new project teams from open source software
developer networks: Impact of prior collaboration
ties,” Information Systems Research, vol. 19, no. 3,
pp. 369-391, Sep, 2008.

[16] W. Stam, “Industry event participation and network
brokerage among entrepreneurial ventures,” Journal
of Management Studies, vol. 47, no. 4, pp. 625-653,
Jun, 2010.

[17] S. Ransbotham, G. C. Kane, and N. H. Lurie,
“Network characteristics and the value of
collaborative user-generated content,” Marketing
Science, vol. 31, no. 3, pp. 387-405, May-Jun, 2012.

[18] G. Peng, Y. Wan, and P. Woodlock, “Network ties
and the success of open source software
development,” Journal of Strategic Information
Systems, vol. 22, no. 4, pp. 269-281, Dec, 2013.

[19] O. Temizkan, and R. L. Kumar, “Exploitation and
exploration networks in open source software
development: An artifact-level analysis,” Journal of
Management Information Systems, vol. 32, no. 1, pp.
116-150, 2015.

[20] R. Mendez-Duron, and C. E. Garcia, “Returns from
social capital in open source software networks,”
Journal of Evolutionary Economics, vol. 19, no. 2,
pp. 277-295, Apr, 2009.

[21] J. Wang, M. Y. Hu, and M. Shanker, “Human
agency, social networks, and FOSS project success,”
Journal of Business Research, vol. 65, no. 7, pp. 977-
984, Jul, 2012.

[22] G. Peng, and D. Dey, “A dynamic view of the impact
of network structure on technology adoption: The
case of OSS development,” Information Systems
Research, vol. 24, no. 4, pp. 1087-1099, Dec, 2013.

[23] S. Daniel, and K. Stewart, “Open source project
success: Resource access, flow, and integration,”

Page 4259

9

Journal of Strategic Information Systems, vol. 25, no.
3, pp. 159-176, Oct, 2016.

[24] P. V. Singh, and C. Phelps, “Networks, social
influence, and the choice among competing
innovations: Insights from open source software
licenses,” Information Systems Research, vol. 24, no.
3, pp. 539-560, Sep, 2013.

[25] P. V. Singh, Y. Tan, and V. Mookerjee, “Network
effects: The influence of structural capital on open
source project success,” MIS Quarterly, vol. 35, no.
4, pp. 813-829, Dec, 2011.

[26] G. Mallapragada, R. Grewal, and G. Lilien, “User-
generated open source products: Founder's social
capital and time to product release,” Marketing
Science, vol. 31, no. 3, pp. 474-492, May-Jun, 2012.

[27] C. Fershtman, and N. Gandal, “Direct and indirect
knowledge spillovers: The ``social network`` of
open-source projects,” Rand Journal of Economics,
vol. 42, no. 1, pp. 70-91, Spr, 2011.

[28] G. C. Kane, and S. Ransbotham, “Content and
collaboration: An affiliation network approach to
information quality in online peer production
communities,” Information Systems Research, vol.
27, no. 2, pp. 424-439, Jun, 2016.

[29] Y. Yu et al., "Exploring the patterns of social
behavior in GitHub." pp. 31-36.

[30] J. Tsay, L. Dabbish, and J. Herbsleb, "Influence of
social and technical factors for evaluating
contribution in GitHub." pp. 356-366.

[31] A. Lima, L. Rossi, and M. Musolesi, “Coding
together at scale: GitHub as a collaborative social
network,” 2014/07/09, 2014.

[32] D. A. Levinthal, and J. G. March, “The myopia of
learning,” Strategic Management Journal, vol. 14,
pp. 95-112, Win, 1993.

[33] L. Argote, and E. Fahrenkopf, “Knowledge transfer
in organizations: The roles of members, tasks, tools,
and networks,” Organizational Behavior and Human
Decision Processes, vol. 136, pp. 146-159, Sep,
2016.

[34] V. U. Druskat, and D. C. Kayes, “Learning versus
performance in short-term project teams,” Small
Group Research, vol. 31, no. 3, pp. 328-353, Jun,
2000.

[35] A. C. Edmondson, “The local and variegated nature
of learning in organizations: A group-level
perspective,” Organization Science, vol. 13, no. 2,
pp. 128-146, Mar-Apr, 2002.

[36] A. P. J. Ellis et al., “Team learning: Collectively
connecting the dots,” Journal of Applied Psychology,
vol. 88, no. 5, pp. 821-835, Oct, 2003.

[37] G. P. Huber, “Organizational learning: The
contributing processes and the literatures,”
Organization Science, vol. 2, no. 1, pp. 88-115, Feb,
1991.

[38] W. Scacchi, “Managing software engineering
projects: A social analysis,” IEEE Transactions on
Software Engineering, vol. 10, no. 1, pp. 49-59,
1984.

[39] T. T. Dinh-Trong, and J. M. Bieman, “The FreeBSD
project: A replication case study of open source

development,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 481-494, Jun, 2005.

[40] bjk. "A Brief History of FreeBSD," April 19, 2017.
[41] P. Ingram, and J. A. C. Baum, “Opportunity and

constraint: Organizations' learning from the operating
and competitive experience of industries,” Strategic
Management Journal, vol. 18, pp. 75-98, Sum, 1997.

[42] A. Terlaak, and Y. Gong, “Vicarious learning and
inferential accuracy in adoption processes,” Academy
of Management Review, vol. 33, no. 4, pp. 846-868,
Oct, 2008.

[43] C. Casalnuovo et al., "Developer onboarding in
GitHub: The role of prior social links and language
experience." pp. 817-828.

[44] J. P. Bonardi, and G. D. Keim, “Corporate political
strategies for widely salient issues,” Academy of
Management Review, vol. 30, no. 3, pp. 555-576, Jul,
2005.

[45] E. Kalliamvakou et al., "The promises and perils of
mining GitHub." pp. 92-101.

[46] Y. Yoshikawa, T. Iwata, and H. Sawada,
"Collaboration on Social Media: Analyzing
Successful Projects on Social Coding."

[47] B. Heller et al., "Visualizing collaboration and
influence in the open-source software community."
pp. 223-226.

[48] N. Kerzazi, and I. El Asri, "Knowledge flows within
open source software projects: A social network
perspective," Advances in Ubiquitous Networking 2,
R. El-Azouzi et al., eds., Singapore: Springer, 2017.

[49] F. Thung et al., "Network structure of social coding
in GitHub." pp. 323-326.

Page 4260

	Definitions

