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Abstract 

Big data analytics (BDA) is emerging as a game 
changer in healthcare. While the practitioner literature 
has been speculating on the high potential of BDA in 
transforming the healthcare sector, few rigorous 
empirical studies have been conducted by scholars to 
assess the real potential of BDA. Drawing on the 
health care delivery value chain (CDVC) and an 
extensive literature review, this exploratory study aims 
to discuss current peer-reviewed articles dealing with 
BDA across the CDVC and discuss future research 
directions.  
 
1. Introduction  
 

Increasing health care costs has become a critically 
important public policy challenge around the world 
[75]. While each country has its own unique history 
and challenges there are good reasons to explore 
emerging areas of scholarship that address 
commonalities such as the need for greater efficiency 
and efficacy of health care delivery. This paper seeks 
to build on efforts to assess big data in health care by 
reviewing research literature for its impact on health 
care delivery. Understandably, many studies have 
based their assessments using frameworks that have 
their origins in extant health care delivery models [36, 
44, 69, 73, 79]. In contrast, Porter and Teisburg’s care 
delivery value chain (CDVC) is a framework that aims 
to re-organize the delivery of health care to improve 
treatment outcomes and reduce costs [53]. Hence, the 
use of Porter and Teisburg’s CDVC model in this 
paper to evaluate big data research aims to provide an 
assessment of the transformative potential of big data 
to facilitate changes in the way health care is delivered 

Porter and Teisburg’s care delivery value chain 
(CDVC) model seeks to radically change the 
organization of health care delivery [53]. The primary 
features of their CDVC is to promote better patient 
focused treatment outcomes while improving 
efficiencies in the delivery of health care services [26, 
31, 32, 34, 52]. A central feature of Porter and 

Teisburg’s CDVC relates to information and 
information technology [53]. Accordingly, one 
essential and strategic aspect, from their perspective, is 
recognition of the role that information technology 
plays in enabling transformations from the silo-ed 
information environments of the past to integrated 
systems across the whole health care value chain. 

The reliance of health care and allied services on 
patient data and related health care information 
coupled to mobile technologies and the Internet of 
Things (IoT) has contributed to enormous growth in 
health care information. It is understandable that some 
consider the potential of big data in health care 
delivery [60]. Big data is defined in this paper using 
the 5 V-related dimensions of volume, variety, 
velocity, veracity and value [19]. What is yet to emerge 
from this research activity is a meaningful 
understanding of the relative impacts that big data 
research is having in promoting improved health 
outcomes for patients or improving efficiencies relative 
to health costs. In order to create actionable insights 
that address big data’s contributions to these two issues 
of efficacy and efficiency in the delivery of health care 
this paper undertakes a review of relevant literature 
using Porter and Teisburg’s CDVC as an analytical 
framework.  

The rest of this paper is organized as follows: 
Section 2 further explains the concept of care delivery 
value chains as outlined by Porter and collaborators. 
Section 3 defines big data and provides some 
background to its attributes and its potential health care 
impacts. Section 4 explains the methodology used for 
the research. Section 5 presents the results of the 
literatures review analysis. Section 6 moves on to 
discuss these results and explore implications for future 
research.  

 
2. Health Care Delivery Value Chain 

Porter’s and Teisburg’s care driven value chain 
(CDVC) aims to re-orientate traditional health delivery 
models to focus on providing value to the consumers of 
health care. The CDVC represents a radical shift in the 
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delivery of health care away from supply side models 
where health care is organized around the needs and 
wants of doctors, hospitals and associated health care 
units. In their 2006 monograph, Porter and Teisberg 
reason that the fee-for-service model rewards health 
care practitioners for their time and expertise without 
sufficient regard for optimal treatment of the 
underlying health condition from a patient and cost 
perspective. This has led to inefficiencies in the 
delivery of treatments. Their CDVC is organized on 
the basis of “integrated practice units” that deliver 
treatment for specific conditions over a full cycle of 
care [53  p. 49]. As patients progress through the 
treatment value chain it becomes possible to focus on 
delivering each stage of care in more cost effective 
ways. Thereby costs can be reduced without sacrificing 
standards of care 

The CDVC comprises of ten components (see 
Figure 1). The integrated treatment cycle begins with 
monitoring and preventing followed by diagnosing, 
preparing, intervening, recovering rehabbing and 
monitoring and managing. Each of these can be 
divided into individual units of costs that can be 
monitored. However, from the patient’s perspective, 
this cycle of care should be integrated rather than 
separated as indicated by the three top layers of 
informing and engaging, measuring and accessing. 
This is what delivers value to the patient.  

The tenth component of the CDVC deals with 
knowledge development. This covers a broad range of 
activities such as physician and nurse training, results 
management and tracking, process improvements and 
technology development. For the purposes of this 
paper, knowledge development has been limited here 
to technology development. Porter and Teisburg 
outline a specific role for information technology in 
promoting the dissemination of results-based 
information generated in the course of treatment [53]. 
They argue that such information enables competition 
to flourish which also places downward pressure on 
health care costs.  

So, it is with these factors in mind that the paper 
moves on to consider the impact of big data in relation 
to health care delivery. 

 
3. Big Data  

The “Gartner’s Top 10 Strategic Technology 
Trends for 2017” recognizes advanced analytics within 
the Intelligent Apps as one of the ten top strategic 
technology trends for 2017 that, when fully utilized by 
firms, will help refine their offers and transform 
customer experience [51]. Big data analytics (BDA) is 
considered as a “holistic process to manage, process 
and analyze 5 Vs (i.e., volume, variety, velocity, 
veracity and value) in order to create actionable 

insights for sustained competitive advantage” [19]. 
BDA recently has received much attention from both 
practitioners and scholars because of its huge potential 
in transforming firms across industry to achieve 
sustained competitive advantage [13].  

In healthcare, BDA offers many applications 
including: better prediction of epidemics, treatment of 
disease, improvement in the quality of life and 
prevention of preventable deaths [45]. MacDonald [46] 
identifies five big data trends in healthcare for 2017.  

(i) Value-Based, Patient-Centric Care. This aims to 
capitalize on technology to improve healthcare quality 
and coordination by delivering “outcomes [that] are 
consistent with current professional knowledge” (p. 1), 
while reducing healthcare costs and avoidable overuse, 
while providing support for reformed payment 
structures  

(ii) The Healthcare Internet of Things (IoT). 
Alternatively known as the Industrial Internet, IoT is 
characterized by a variety of devices that will be used 
to monitor all types of patient behaviors including: 
glucose monitors, fetal monitors, electrocardiograms, 
blood pressure and medicines consumption. This 
envisages a situation called “management of 
exceptions” in which the need for direct physician 
intervention is reduced because patients can followed 
up by a nurse if an exception occurs.  

(iii) Reducing Fraud, Waste, and Abuse. Here, the 
author argues that BDA “can be a game changer for 
healthcare fraud” because “predictive modeling” using 
BDA tools can identify “inaccurate claims in a 
systematic, repeatable way and generate a “2200% 
return on their big data/advanced technology” 
investment (p. 1).  

(iv) Predictive Analytics to Improve Outcomes: 
Using predictive modeling of health care records has 
the potential to lead to early diagnosis and reduced 
mortality rates. More generally, enhanced “accuracy of 
diagnosing patient conditions, matching treatments 
with outcomes, and predicting patients at risk for 
disease or readmission” (p. 1) leads to better and more 
efficient health outcomes 

(v) Real-time Monitoring of Patients. The 
generation of personalized health case data enables 
“more proactive care to … patients by constantly 
monitoring patient vital signs”. 

The areas outlined by MacDonald resonate with 
recent contributions to the academic literature. For 
example Kohn et al. cite the potential that big data has 
for better decision making in health care as well as a 
greater autonomy for the patient in care management 
[36]. Shah and Jyotishman similarly identify the 
potential of big data for better integration of health care 
data, knowledge-creation with consequent 
improvements in practice [60].  
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Figure 1 Care Delivery Value Chain Framework (Based on [34, 53]) 

 
Using established frameworks to assess the extant 

health care-related big data literature enables insights  
to be developed about relevance of big data research, 
research gaps and its potential to guide future research. 
One recent paper uses a framework that draws on the 
concept of a data life cycle to track data from its 
capture, transformation to its consumption [73]. This 
framework emphasizes the role of data governance to 
support each phase. Another recent paper uses a health 
care operations and supply chain management 
(HOSCM) framework to assess the potential of big 
data research to improve outcomes in health care 
delivery [44]. The authors found that the HOSCM 
framework was found wanting in revealing end-to-end 
care delivery processes thereby not allowing patient 
pathways to be adequately captured.  

The extent to which these apparent failings are a 
product of the traditionally silo-ed information 
environments that Porter and his collaborators criticize 
warrants attention. The application of the CDVC 
provides an opportunity to assess the potential of big 
data research to transform health care delivery by 
focusing on patient value as well as unit health care 
cost outcomes (see Figure 1). As a consequence the 
objective of this review is summarized as: find how big 
data and associated analytics contribute to the delivery  

 
of healthcare with an emphasis on Porter and 
Teisburg’s health care delivery value chain (CVDC).  

The paper proceeds to outline the steps that were 
taken to assess current literature in relation to CDVC. 
 
4. Methodology 

 
The methods that were adopted in this paper 

enables an assessment to made of big data research 
activity in health care delivery and to identify areas for 
future research. The review of the literature was guided 
by a protocol adapted from Fosso Wamba et al. [19, 
20], Lim et al. [41] and Ngai et al. [49]. The protocol 
consists of three phases: (i) creation of classification 
framework; (ii) identification of relevant literature; and 
(iii) application of classification framework to the 
literature. The selected literature is limited to peer-
reviewed journal articles, articles-in-press and reviews 
are reasoned to be the principal medium by which 
academic and practitioners obtain and disseminate new 
information [50].  

 
4.1. Classification Framework 

The framework used to classify papers is based on 
Porter CDVC as detailed in Figure 1 [53, 34]. The 
CDVC is made up of ten categories. Nine of the 
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categories (Informing and Engaging, Measuring; 
Accessing; Monitoring and Preventing; Diagnosing; 
Preparing; Diagnosing; Recovering Rehabbing and 
Monitoring Managing) were used to classify the 
selected literature.  

Finally, each paper was considered for the area of 
technology that was being advanced by the research. 
Technology in this sense is defined as areas of 
technical knowledge rather than referring more 
generally to technical artifacts as evidenced in popular 
usage of the term (see discussion in [42]).  
 
4.2. Literature search strategies 

In order to capture the most recent and relevant 
research a keyword search from the past five years 
(2012 to 2017) on the SCOPUS database was 
undertaken. The SCOPUS database is considered an 
appropriate choice to begin the literature search 
because it is the largest abstract and citation database 
of peer-reviewed literature holding more than 19,000 
peer-reviewed journals. Only articles, reports and 
articles-in-press were retained for further analysis 

The keywords were derived from the research 
statement to “find how big data and associated 
analytics contribute to the delivery of healthcare with 
an emphasis on Porter and Teisburg’s health care 
delivery value chain (CDVC).” The following 
keywords were derived: “big data” “business 
analytics”, “analytics”, “healthcare” and “care delivery 
value chain” (including variants: “healthcare delivery 
value chain”, “health care delivery value chain” and 
“CDVC”).   The SCOPUS search is defined by the 
following: KEY ("Big data" OR "business analytics"  
OR  "analytics" AND "healthcare")  AND  PUBYEAR 
> 2012) OR (KEY ("Big data" OR "business analytics" 
OR "analytics"  AND  "health care delivery value 
chain")  AND  PUBYEAR > 2012 ) OR (KEY ("Big 
data" OR "business analytics" OR "analytics"  AND 
"healthcare delivery value chain") AND  PUBYEAR > 
2012 ) OR (KEY ("Big data" OR  "business analytics" 
OR "analytics" AND "CDVC" )  AND  PUBYEAR > 
2012) OR (KEY ("Big data"  OR "business analytics" 
OR "analytics" AND "care delivery value chain") 
AND PUBYEAR > 2012) AND  (LIMIT-TO 
(DOCTYPE , "ar") OR LIMIT-TO (DOCTYPE , "re") 
OR LIMIT-TO (DOCTYPE , "ip")). 

Our search started on April 27, 2017 and ended on 
June 13, 2017. The initial search resulted in 134 
articles. One paper was discovered to be redacted so 
was immediately eliminated from the analysis. The 
references for the 133 papers, including the abstracts of 
all articles, were downloaded into Endnote, a reference 
management software package. Groups were created to 
categorize articles in the following fashion: 1. Nine 
papers removed after abstract review by one author 

because paper did not address either health care 
delivery or big data as defined by [19]; and 2. 65 
papers were removed after a review of full content by 
both authors to ensure that articles addressed both big 
data and health care delivery. At the end of this process 
59 articles were deemed suitable for our research 
objectives and were selected for classification. 

Further scrutiny of the remaining 59 articles was 
able to separate some articles on the basis of their 
research approach. Seventeen articles were found to be 
literature articles that did not report on research 
findings beyond the outcome of their analysis of 
articles. With the elimination of these the final number 
of articles that were deemed suitable for classification 
against the CDVC totaled 42 (see Table 1).    
 
5. Results 
 

In this section, the results of the review of past 
literature that intersects both big data and the CDVC 
delivery will be outlined. 

 
5.1. Distribution of articles by publication date  
 

The distribution of articles for the past five years is 
shown in Figure 2. It can be seen that there is a clear 
upward trend in the numbers of articles being 
published. For 2012 only one article was retrieved with  
only a small increase in 2013. At the time of writing 
with approximately six months till years-end, the 2017 
total had already exceeded the 2016 total of 25.  

 
 

 
 
Figure 2 Distribution of articles by year of 

publication 
 
5.3. Distribution of articles by CDVC 
framework 

The allocation of research articles according to the 
CDVC classification framework (see Figure 1) is 
summarized in Table 2, 3 and 4. In Table 2 articles
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Table 1. Articles selected for review and classification 
 
 
 
 

 
 

Note: Some articles counted more than once because they cover more than one element of the CDVC 
Table 3. Classification of articles using CDVC framework - treatment cycle 

CDVC  Article # % 
Monitoring and preventing [1] [8] [9] [10] [16] [18] [21] [24] [29] [35] [38] [40] [43] [57] [71] [72] [59] 

[58] 
18 33% 

Diagnosing [1] [6] [12] [15] [16] [18] [21] [25] [27] [37] [38] [54] [57] [58] [70] [78]  16 30% 
Preparing [2] [4] [15] 3 6% 
Intervening [2] [54] [59] [64] [70]  5 9% 
Recovering rehabbing [3] [7] [54] [64] [70] 5 9% 
Monitoring and managing [10] [29] [35] [40] [43] [68] [59] 7 13% 
Total  54 100% 

Note: Some articles counted more than once because they cover more than one element of the CDVC 
Table 4. Big data technology development 

Technology focus Article # % 

Analytics [1]) [3] [4] [7] [17] [18] [25] [29] [33] [43] [57] [63] [68] [71] [74] 15 36% 

Personalized medicine – IoT & 
Web 2.0 

[2] [6] [12] [24] [35] [38] [40] [59] [66] [76] [77] 11 26% 

Computer science- processing 
large data sets 

[8] [10] [15] [16] [21] [27] [30] [58] [72] [78] 10 24% 

Management & policy (resource 
management and ethics) 

[37] [54] [65] [70] 4 10% 

User interface design (e.g. data 
visualization) 

[9] [64] 2 5% 

Total  42 100% 

Review articles [5], [11], [14], [22], [23], [28], [36], [39], [44] [55] [56] [61] [62] [67] [69] [73] [79]  

Research articles  [1], [2] [3] [4] [6] [7] [8] [9] [10] [12] [15] [16] [17] [18] [21] [24] [25] [27] [29] [30] [33], 
[35] [37] [38] [40] [43] [54] [57] [58] [59] [63] [64] [65] [66] [68] [70] [71] [72] [74] [76], 
[77] [78] 

Table 2. Classification of articles using CDVC framework – patient value 

CDVC  Article # % 

Informing  [1] [2] [3] [8] [9] [16] [21] [24] [29] [40] [43] [59] [63] [65] [66] [76] [77]  17 24% 

Measuring [1] [3] [4] [6] [7] [8] [9] [10] [12] [17] [18] [25] [27] [29] [30] [33] [35] [37] [38] 
[40] [43] [54] [57] [58] [63] [64] [71] [72] [74] [76] [78]  

31 46% 

Accessing [2] [4] [8] [9] [10] [12] [16] [17] [24] [29] [37] [38] [40] [43] [54] [57] [64] [66] 
[68] [72] [76] [78]  

22 30% 

Total  70 100% 
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were classified by patient value attributes of Informing 
and Engaging, Measuring and Accessing. It can be 
seen that the majority of big data articles (31) address 
the element of Measuring. The allocation of articles to 
Informing and Engaging and Accessing were 17 and 
22 respectively. These three elements are common to 
all phases of the CDVC and are identified by Porter 
and his collaborators as providing patient value. All of 
the reviewed articles can be placed in one of more of 
these categories so ostensibly provides evidence that 
the research described by the articles provides added 
value to patients.  

In relation to the CDVC treatment cycle (Table 3) it 
can be seen that the first element of Monitoring and 
Preventing has attracted the greatest number of articles 
(18). The second highest treatment area is Diagnosing 
(16). Interestingly, the areas of Preparing (3) and 
Intervening (5) were allocated relatively few articles. 
The final two areas of Recovering Rehabbing (5) and 
Monitoring and Managing and Policy (7) similarly 
received relatively small tallies. Hence, it can be seen 
that the majority of research articles favors the early 
phases of the CDVC treatment cycle (Monitoring and 
Preventing and Diagnosing) 

In order to develop a deeper understanding of the 
nature of research that contributes to the CDVC it is 
useful to review Table 4 which lists areas of 
technology development represented in each of the 
articles. From the table it is clear that the largest 
number of articles describe big data-related 
innovations in analytics (15). The next most popular 
area of research concerns personalized medicine where 
the Internet, Web 2.0, mobile technologies coupled 
with bio sensors have made a significant impact (11). 
A similar number of articles pertain to the concerns of 
computer scientists and the need to process large data 
sets in a timely manner (10). These papers are notable 
for being technical in nature (notably Hadoop 
Mapreduce framework and varying statistical 
techniques) which use datasets obtained from 
healthcare applications for their experiments. There are 
only four papers that deal with relevant management 
issues such as resource management and ethics. Also 
connected to Computer Science is user interface design 
(data visualization) where two studies into data 
visualization are represented. 

Finally, the results of Tables 2-4 are summarized in 
a CDVC-technology matrix (Table 5). Its possible to 
gain a sense of the areas in which big data research has 
been making a greater or lesser impact. In relation to 
Patient Value, it can be seen that there is a good 
coverage of technology over the three levels. Notably, 
Analytics can be seen to be making the greatest impact 
in the areas of Measuring (14). None of the 

management papers appear to have informed  
Accessing sites of care.  

 Moving on to Health outcomes, Analytics has 
made the greatest impacts on Monitoring and 
preventing (6) and Diagnosing (4). Similarly, 
Computer Science research has a similar concentration 
in Monitoring and preventing (6) and Diagnosing (6). 
For Personalized Medicine technologies the greatest 
areas of impact are Diagnosing (3) and Monitoring and 
Managing (3). The relatively few papers in 
Management and Policy made the greatest tallies in 
Intervening (3) and Recovering and rehabbing (3). 
User Design papers were evident in Monitoring and 
preventing (1) Intervening (1) and Recovering and 
rehabbing (1). 
 
6. Discussion 
 

The results summarized in Tables 1-4 begin to 
provide an insight into the potential impact of big data 
research to alter the CDVC for healthcare. Each of the 
areas of the CDVC were relevant to the articles 
reviewed though its clear that some aspects of the 
CVDC (Preparing, Intervening, Recovering and 
Rehabbing) have attracted relatively few articles when 
compared to other areas (Monitoring and Preventing 
and Diagnosing).  

It is in the treatment cycle element of Preparing 
which has received the least attention from big data 
researchers (3). Preparing is defined in the CDVC 
framework as being made up of “Choosing the team”, 
and “Pre-intervention preparations” (including Pre-
treatments). One can speculate that the lack of research 
interest may reflect silo-ed arrangements of care where 
treatment centers have largely determined the 
composition of teams and treatments without much 
consumer input.  

There are three areas of technology research from 
Table 4 represented here: Analytics (design of patient 
care homes using outpatient data); Personalized 
Medicine (twitter initiative organizing blood donations 
in India) and Computer Science data processing 
(determining optimal chemotherapy treatments from a 
health records data set).  

Moving on to Intervening in Table 3 a slightly 
higher number of research articles (5) can be found 
which are diverse in their foci. Intervening is 
comprised of: “Ordering and administering drug 
therapy”, “Performing procedures” and “Performing 
counseling therapy”. Four of the research articles that 
have been assigned are: once again, twitter initiative 
for blood donations; limitations of EU health policy to 
support personal medicine interventions; user interface 
design (sepsis management using data visualization); 
and management (US Medicare cost comparisons for  
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Table 5. CDVC - technology matrix 

CDVC elements Analytics Personalized 
medicine 

Computer 
science 

Management & 
Policy 

User design 

Patient value      

Informing  5 7 3 1 1 

Measuring 14 6 7 2 2 

Accessing 3 4 5 0 1 

Health outcomes      

Monitoring and preventing 6 0 6 0 1 

Diagnosing 4 3 6 1 0 

Preparing 1 1 1 0 0 

Intervening 0 1 0 3 1 

Recovering rehabbing 2 0 0 3 1 

Monitoring and managing 3 3 1 0 0 

interventions across the US). The fifth article 
discusses the potential of combining big data 
analytics with virtual physiological human (PVH) 
technology in treatments of disease research. The 
technology mix from this category as revealed in 
Table 5 indicates that one study is assigned to 
personalized medicine (twitter), three papers to 
Management and Policy (US Medicare cost 
comparisons, EU health policy for personalized 
medicine and PVH research policy) and one to User 
Design. 

Recovering Rehabbing in Table 3 indicates a 
similarly low tally of big data articles with five 
papers assigned. Recovering Rehabbing entails the 
following: “Inpatient recovery”, “Inpatient and out- 
patient rehab”, “Therapy fine- tuning” and 
“Developing a discharge plan”. Looking to Table 5, 
the five papers assigned are comprised of two from 
analytics researchers (re-admissions), two from 
Management and Policy (EU health policy for 
personalized medicine and cost comparisons across 
the US for readmissions) and one from data 
visualization (dash boards for sepsis management). 

The final treatment element considered in Table 3 
is Monitoring and Managing. Analytics (e.g. 
predicting readmissions monitoring after effects of 
health shocks) and personalized medicine (e.g. bio 
sensing, smart home monitoring) from Table 4 are 
most strongly represented here. The CVDC-
technology matrix (Table 5) indicates that three 
papers are drawn from analytics, three from 
personalized medicine and one from Computer 
Science.  One can see a similarity in these research 
articles with those performed in the Monitoring and 
preventing stage. Opportunities to engage with 

community members before or after their treatment 
within health facilities seems to be better than that 
once patients enter such facilities.  

 Broadly summarizing, it can be seen that there is 
a strong representation of papers that engage with 
patients before entry into and after treatment regimes 
within health care facilities. Much less engagement 
can be seen with health care delivery around 
Intervening and Recovering Rehabbing suggesting 
the need for more attention to these areas if big data 
is to facilitate changes to all aspects of the CDVC. 
The relatively small number of big data articles that 
deal with Management and Policy can similarly be 
seen as a future research need to address questions of 
efficiency within the CDVC.  

To that end, a need for greater engagement of big 
data researchers with treatment (Preparing, 
Intervening and Recovering Rehabbing) is one future 
area of research the paper suggests. Another area is 
the need for big data researchers to engage with 
management and policy issues of CVDC. The case 
for change to CVDCs is likely to be met with 
resistance from entrenched interests. According to 
Porter and his collaborators, the tendency to replicate 
existing models of health care privileges the interests 
of health and allied care practitioners over patient 
value and lowering costs. The need for robust 
evidence to agitate for such change outlines a 
significant research challenge of big data researchers. 

The findings from this paper have limitations in 
that the selection of literature was from one database. 
Further work in this area should initially seek to 
broaden the literature base to confirm the initial 
findings from this analysis.  
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7. Conclusion 
 
This paper seeks to provide an informed 

understanding of the impact of big data research on 
health care delivery. Using the care delivery value 
chain (CDVC) framework developed by Porter and 
collaborators it has been possible to see what aspects 
of health care delivery have benefitted most from big 
data research and areas that have been given less 
attention. Health care delivery involves many 
different disciplines none more so than medical and 
allied health professions. However, there is a 
critically important role for IS scholarship too as 
demonstrated through the examples outlined in 
relation to CDVC. While there is an ongoing role for 
big data research to address improvements in 
treatments the paper finds that there is a greater need 
for increased attention to management and policy 
development that aims to promote more personalized 
modes of care that create increased patient value 
while simultaneously seeking to achieve greater 
efficiencies in the delivery of health care. 
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