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Abstract 
 

Screening tests play an important role for early 

detection of dementia. Among those widely used 

screening tests, drawing tests have gained much 

attention in clinical psychology. Traditional 

evaluation of drawing tests totally relies on the 

appearance of drawn picture, but does not consider 

any time-dependent behaviour. We demonstrated that 

the processing speed and direction can reflect the 

decline of cognitive function, and thus may be useful 

for disease screening. We proposed a model of 

Gaussian process Markov chains (GPMC) to study 

the complex associations within the drawing data. 

Specifically, we modeled the process of drawing in a 

state-space form, where a drawing state is composed 

of drawing direction and velocity with consideration 

of the processing time. For temporal modeling, our 

scope focused more on discrete-time Markov chains 

on continuous state space. Because of the short 

processing time of picture drawing, we applied 

higher-order of Markov chains to model long-term 

temporal correlation across drawing states. 

Gaussian process regression was used for universal 

function approximation to flexibly infer the state 

transition function. With Gaussian process prior to 

the distribution of function space, we could encode 

high-level function properties such as noisiness, 

smoothness and periodicity. We also derived an 

efficient training mechanism for complex Gaussian 

process regression on bivariate Markov chains. With 

GPMC, we present an optimal decision rule based on 

Bayesian decision theory. We applied our proposed 

method to a drawing test for dementia screening, i.e. 

interlocking pentagon-drawing test. We tested our 

models with 256 subjects who are aged from 65 to 95. 

Finally, comparing to the traditional methods, our 

models showed remarkable improvement in drawing 

test for dementia screening. 

1. Introduction  

 
Drawing is a non-linguistic form of human 

expression of ideas. Digital drawing has been 

frequently discussed as a convenient interface for 

human-computer interaction. Thus, much effort in the 

research community has been devoted to recognize 

picture drawing [1-10], trying to maximize the 

recognition accuracy with state-of-the-art machine 

learning techniques. From another point of view, we 

can also take drawing process as a reflection of 

human cognition functions. In fact, drawing tests for 

disease screening are very common in the field of 

clinical psychology, where a number of validated 

drawing tests [11-16] have been applied in healthcare 

settings. Most of the tests are still conducted in 

paper-and-pencil form and relied on human decision 

by healthcare professionals, which usually involves 

subjective judgment. A decision to distinguish a 

straight line from a curve is a typical example.  

Computerized evaluation provides an objective 

way to define a drawing picture being “good” or 

“bad”. Traditional methods evaluate a drawing 

picture with human subjective decision. Also, the 

motion of drawing is a complex factor that can be 

captured for further analysis. Many clinical findings 

suggested, the motion of drawing, such as tremor, is 

closely related to the symptoms of different types of 

dementia. While nowadays digital devices can 

already capture the drawing behaviour in human-

unreachable details, we proposed to consider the 

motion of drawing data for dementia screening, and 

to recognize imperceptible drawing patterns that are 

crucial to distinguish dementia subjects from the 

general population. The challenge comes along the 

explicit consideration of drawing motion and can be a 

spatiotemporal model with an increased complexity 

of time. 
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In this study, we formulated the drawing motion 

as a discrete-time state-space model, in which each 

state is composed of two random variables 

representing drawing direction [1, 3-5, 9-10] and 

drawing velocity [1, 9-10]. Indeed, using state-space 

model is not a new concept in sketch recognition, but 

Markov models [2-6] and Bayesian networks [7] 

have been applied. The definition of training data 

also facilitates big data analytics. The collection of 

real-time drawing data is usually difficult to be 

analyzed by the traditional clinical data processing 

methods among healthcare professionals. We used 

one training sample for each drawing state, but not 

for each subject.  Therefore, our models had more 

training samples to reduce the chance of over-fitting 

of the data. 

The process of drawing was presented in a state-

space form. In our formulation, each state in a 

drawing process is bivariate, encoding direction and 

velocity information within a short period of time. 

For temporal modeling, our scope focused on 

discrete-time Markov chains on continuous state 

space. Instead of the most commonly used first-order 

Markov chains, we proposed to use higher-order 

Markov chains because, for states defined in a short 

period of time, transitions across states tended to 

have higher-order temporal dependence. 

To obtain a conditional likelihood in higher-order 

Markov chains on continuous state space, a general 

state transition function is necessary. A common way 

to learn the unknown state transition function is to 

define a parametric form, such as linear functions 

[17], and radial basis functions [20]. We did not 

restrict the state transition function to a class of 

mathematical functions parameterized by a finite set 

of parameters. 

Instead, we placed a Gaussian process prior over 

an infinite-dimensional space of state transition 

function. This prior can encode function properties 

such as noisiness, smoothness and periodicity [25]. In 

fact, with an appropriate choice of the kernel function, 

the Gaussian process prior puts probability mass over 

all continuous functions [21]. The inference of the 

predictive distribution over the function space is 

renowned as Gaussian process regression model 

(GPR) [22]. However, exact inference of GPR is non-

scalable. For practical concerns, we derived an 

efficient complex GPR for bivariate Markov chains. 

In this paper, GPR is first to be proposed as a 

general solution to find state transition function of 

conditional higher-order discrete-time Markov chains 

on continuous state space. We put this generic 

modeling approach as Gaussian process Markov 

chains (GPMC). As a generative model, GPMC can 

be used to infer the probability of having dementia 

given drawing behavioural data. Since GPMC is 

derived from Bayesian framework, we came up with 

an optimal decision rule based on Bayesian decision 

theory. To minimize the chance of false negative 

results, we put more allowance for the false positive 

results. We applied our proposed method to a 

drawing screening test, namely, interlocking 

pentagon drawing test. Finally, we tested our models 

with 256 subjects aged from 65 to 95, and compared 

the result to traditional screening tests. Our method 

reported a remarkable improvement over the previous 

evaluation schemes for interlocking pentagon 

drawing test.  

In the sections after this introduction, we begin to 

introduce our modeling approach for digital drawing 

in section 2. We formally define the task of drawing-

based for dementia screening, and then derive GPMC 

to deal with the task in section 3. We compare the 

performance with experimental evidence in section 4. 

Finally, we conclude our work in section 5. 

 

2. Modeling for Digital Drawing 
 

This section is structured as follows: in section 

2.1, we define the structure of raw drawing data 

collected from digital devices; in section 2.2, we 

formulate a state-space representation for digital 

drawing with clinical interpretation; in section 2.3, 

we define statistical properties by linking our state-

space representation to Markov Chains.  

 
2.1. Raw Data of Digital Drawing 

 

For any subject denoted by 𝑺, the drawing process 

𝐷(𝐒) is composed of a sequence of strokes 𝑠1, … , 𝑠𝐿, 

preserving the drawing order, while a stroke 

𝑠𝑚contains a sequence of points 𝑝𝑖,1, … , 𝑝𝑖,𝑀𝑖 . At each 

point 𝑝𝑖,𝑗, we capture three quantities: 

(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑡𝑖,𝑗), 

where 𝑥𝑖,𝑗 , 𝑦𝑖,𝑗  corresponds to the coordinate of the 

drawing point, and 𝑡𝑖,𝑗 ∈ ℝ
+ is the amount of seconds 

spent on the point 𝑝𝑖,𝑗  before moving to the next 

point 𝑝𝑖,𝑗+1. Combining above definitions, we simply 

denote a drawing process by  

𝐷(𝐒) = [(𝑥𝑟 , 𝑦𝑟,, 𝑡𝑟 , 𝑒𝑟)]𝑟=1
𝑁
, 

where 𝑒𝑟  is a binary indicator denoting whether the 

𝑟th point is at the end of the stroke, and 𝑁 = ∑ 𝑀𝑖
𝐿
𝑖=1   

is the total number of points captured in the drawing 

process. It is notable that for different devices the 

density of illuminated points could also be varied. As 

a result, it is better to convert pixels to centimeters 

with reference to pixels per inch (ppi). 
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2.2. State-Space Representation 
 

Having defined the raw data structure for digital 

drawing, we proceeded by defining higher-level 

features that are more expressible to human, and are 

useful for inference. Two quantities from the raw 

data were extracted, including: i) drawing direction 

𝜃𝑟 [1, 3-5, 9-10] and ii) drawing velocity 𝑣𝑟[1, 9-10]. 

Formally, for 𝑟 ∈ {1, … , 𝑁}, if 𝑒𝑟 = 0, 

𝜃𝑟 = tan
−1 (

𝑦𝑟+1 − 𝑦𝑟
𝑥𝑟+1 − 𝑥𝑟

),  

𝑣𝑟 =
√(𝑦𝑟+1 − 𝑦𝑟 )

2 + (𝑥𝑟+1 − 𝑥𝑟 )
2

𝑡𝑟
, 

otherwise, if 𝑒𝑟 = 1, the point is at the end of a stroke, 

therefore 𝜃𝑟 and 𝑣𝑟  are not defined. 

 

In fact, drawing direction and velocity constitute a 

natural description of drawing motion. Note that we 

did not consider the locations of image on the 

drawing panel which are highly varied across 

different subjects. For example, a subject can put 

his/her drawing picture on a corner of the drawing 

panel. Our models are more robust if we only 

considered two quantities in a state for direction and 

velocity. In this study, we investigated the nature of 

these two features, and discuss the connection to 

clinical findings. 

 

2.2.1. Feature of Drawing Direction  
 

In an ideal case, direction of a single straight line 

can be directly associated with the drawing time, but 

the movement of a stroke can be curve-shaped that 

we need to measure the direction changes in angles. 

Angles would remain unchanged for drawing a 

perfect straight line. Therefore, angular feature is 

capable of reflecting information such as line 

straightness, corner sharpness, and tremors. We can 

also capture information that associates with 

neuropsychological findings, such as disability to 

draw horizontal line [40], chorea (involuntary 

movement), and akinesia (difficulty in maintaining 

voluntary movement), which had been shown to be 

particularly sensitive to Huntington’s disease (HD) 

[41] and Parkinson’s disease (PD) [42]. In particular, 

HD had been reported to cause a degeneration of 

striatum [43], which would result in bradykinesia 

(difficulty in maintaining movement) [44]. Similarly, 

PD is associated with a loss of dopaminergic cells in 

the substantia nigra that associated with the striatum, 

which lead to disturbances of motor control [45]. 

Besides HD and PD, clinical studies had also found a 

degradation of motor program in other common types 

of dementia like Alzheimer’s disease (AD) [46] and 

dementia with Lewy Bodies (DLB) [47], while its 

impact on tremors or other involuntary movements 

can be analyzed through angular feature [48].  

  

2.2.2. Feature of Drawing Velocity  
 

Velocity is a quantity due to its unique physical 

meaning. In fact, HD and PD patients, who suffered 

from bradykinesia, revealed difficult to produce rapid 

voluntary motor activity [49]. As an example, reach-

to-grasp tasks [50] showed that motions of PD 

patients are 30% slower than the control group. 

Furthermore, disorders of the visual ability as well as 

constructional disorganization could induce a longer 

drawing time and a lower velocity. This kind of 

disorders can be found commonly in AD [51-52] and 

DLB [53-54]. 

 

To enable comparison across different drawing 

forms and processes, we used a discrete-time state-

space representation, where a drawing process is 

divided into 𝑛 time blocks of equal width, yielding 𝑛 

drawing states. Each drawing state, denoted by 𝐃𝑖 , 
encodes drawing direction and drawing velocity 

within the time block. Formally, we define 𝐃𝑖 =
[𝜽𝑖 , 𝒗𝑖],  where 𝜽𝑖  and 𝒗𝑖  are random variables that 

describe how a subject draws a stroke in terms of 

direction and velocity within the 𝑖th time block. For 

the ease of explanation, in the following parts of this 

paper, the shorthand 𝐃𝑎:𝑏  was used to denote the 

sequence of state 𝐃𝑎, … , 𝐃𝑏. 

 

2.3. Markov Chains for Drawing Processes 
 

Traditional screening on a drawing test usually 

concerns about the shape of final drawn picture, i.e., 

spatial information, but we conjectured that 

imperceptible drawing behaviors can be captured 

with the time, i.e., spatial-temporal information. In 

fact, spatial-temporal modeling is not a new concept 

in sketch recognition communities, where hidden 

Markov models [2-6] and Bayesian networks [7] 

have been used. It is advantageous to refer to the 

successful modeling approaches in sketch recognition. 

Yet, these methods cannot be directly applied to 

drawing-based screening tests. In addition to 

recognizing the final drawn picture, we are trying to 

capture the intermediate cognitive reflection during 

the drawing process such as delays, redrawing, or 

peculiar movements. 

In particular, we put emphasis on temporal 

information. Due to time dependency in the drawing 

task, it is intuitive to claim that a state 𝐃𝑖  is 

dependent on its preceding states 𝐃1:𝑖−1, and is 
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completely unaffected by the future states 𝐃𝑖+1:𝑛. We 

formally express this reasoning with statistical basis: 

𝑝(𝐃1:𝑖)  =∏𝑝(𝐃𝑗|𝐃1:𝑗−1)

𝑖

𝑗=1

. 

Although the future states are neglected, there are 

still a long chain of conditionals that involves messy 

calculations. A common choice of available solutions 

is to assume Markov property [2-6], which asserts 

that the next state only depends on nearby states, and 

is conditionally independent of the previous states. 

For nowadays applications of Markov models, first-

order Markov property [18], which mentions that the 

probability distribution of future state is dependent 

only upon the present state, is the most frequently 

used, but is not likely satisfied in our case. Therefore, 

we relaxed the assumption to allow the future state 

depending on the past 𝑚 states. This is also known as 

a higher-order Markov chain, which is very useful as 

a mathematical tool [19]. Probabilistically, we now 

approximate the joint probability by 

𝑝(𝐃1:𝑖) ≈∏𝑝(𝐃𝑗|𝐃𝑗−𝑚:𝑗−1)

𝑖

𝑗=1

. 

 

3. Drawing for Dementia Screening 

 
In this section, we present a model to infer the 

probability of having dementia given drawing data 

for dementia screening. In section 3.1, we define the 

problem probabilistically. In section 3.2, we define 

the prior. In section 3.3, we derive Gaussian process 

Markov chains (GPMC) to find the likelihood. To 

cope with bivariate Markov chains, in section 3.4 we 

present a complex-valued GPR. In section 3.5, we 

show an optimal decision rule based on GPMC. 

 

3.1. Problem Definition 
 

Our goal is to decide whether a subject with 

certain degree of cognitive impairment (CI) can be 

identified with reference to the process of drawing. 

Instead of classifying the subjects into dichotomous 

outcomes of cognitive healthy or unhealthy, the fuzzy 

logic approach is more appropriate to describe the 

chance of have CI as a continuous value from 0 to 1. 

Naturally, we would make use of probability as a 

well-established tool to represent such a value. 

With our aforementioned state-space concepts, 

our task becomes to find the likelihood of a sequence 

of drawing states being generated by a subject with 

CI. Formally, we use 𝐂 = c ∈ {1, 0}  to denote 

whether the subject have CI or not. In addition to the 

drawing performance, it is sensible to consider other 

factors that may affect the chance of having CI. In 

this paper, we additionally considered age 𝐀, gender 

𝐆, and education level 𝐄 [32-35]. Generally, we used 

𝐁 to denote the subject’s background information that 

can be collected together with the drawing data. 

From a probabilistic perspective, our target can be 

written as 𝑝(𝐂|𝐃1:𝑛, 𝐁), so that we can theoretically 

give a screening result by comparing 𝑝(𝐂 = 1|𝐃1:𝑛 =
𝐝1:𝑛 , 𝐁 = 𝐛) to  𝑝(𝐂 = 0|𝐃1:𝑛 = 𝐝1:𝑛, 𝐁 = 𝐛), where 

𝐝1:𝑛 is the vector corresponding to observe drawing 

states, and 𝐛 is the vector corresponding to subject’s 

background. In our case, 𝐛 = [𝑎, 𝑔, 𝑒], providing that 

𝑎  is the age of the subject, 𝑔  is the gender of the 

subject, 𝑒 is the education level of the subject. From 

Bayes’ rule, we know that posterior is proportional to 

the prior times the likelihood: 

𝑝(𝐂|𝐃1:𝑛, 𝐁) ∝ 𝑝(𝐁, 𝐂)𝑝(𝐃1:𝑛|𝐁, 𝐂). 
Since the evidence 𝑝(𝐃1:𝑛, 𝐁) is not affected by  𝐂, 

the problem is reduced to finding the prior 𝑝(𝐁, 𝐂) 
and the likelihood 𝑝(𝐃1:𝑛|𝐁, 𝐂). 
 

3.2. Prior Distribution: Maximum Likelihood 

Estimation 
 

To reasonably set up a prior distribution 𝑝(𝐁, 𝐂), 
we take advantage of the conditional dependence: 

𝑝(𝐁, 𝐂) = 𝑝(𝐁|𝐂)𝑝(𝐂), 
where the conditional probability 𝑝(𝐁|𝐂), in our case, 

equals to 𝑝 (𝐀|𝐂)𝑝 (𝐆|𝐂)𝑝 (𝐄|𝐂) . Presumably, the 

conditional variables follow below distributions: 

𝐀|𝐂 ~ 𝒩(𝜇age|𝐂, 𝜎age|𝐂
2 ), 

𝐆|𝐂 ~ Ber(𝑝male|𝐂), 

𝐄|𝐂 ~ Cat(𝑝ued|𝐂, 𝑝pri|𝐂, 𝑝sec |𝐂, 𝑝uni|𝐂), 

where 𝜇age|𝐂 and 𝜎age|𝐂
2  are the mean and the variance 

of a subject’s age respectively in a Gaussian 

distribution, 𝑝male|𝐂 is the probability of being a male 

subject in a Bernoulli distribution, 𝑝ued|𝐂 , 𝑝pri|𝐂 , 

𝑝sec |𝐂 , and 𝑝uni|𝐂  are the probabilities of being an 

uneducated subject, being a subject graduated from 

primary school, being a subject graduated from 

secondary school, and being a subject graduated from 

university school respectively in a categorical 

distribution. Note that we have two sets of parameters 

corresponding two possible outcomes of 𝐂. To 

calculate the parameters, we used maximum 

likelihood estimation (MLE) in the training data. 

On the other hand, for  𝑝(𝐂) , we similarly 

assume 𝐂 ~ Ber(𝑝ci), but it is usually problematic to 

directly estimate 𝑝ci  from the training data as we 

often set selection criteria to control the number of 

dementia patient while collecting the training 

samples. Therefore, we employed random sampling 

of a larger pool to estimate 𝑝ci. In a realistic setup, 
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the prior belief addressed by 𝑝ci  should be varied 

over counties. In our work, we referred to the 

statistics reported by a clinical study [58], 

suggesting 𝑝ci = 0.145. 

 
3.3. Likelihood Distribution: Gaussian 

Process Markov Chains 
 

In the last section, we had shown that 𝑝(𝐁, 𝐂) can 

be estimated from statistical inference. This part is to 

infer 𝑝(𝐃1:𝑛|𝐁, 𝐂), which accounts for the likelihood 

of drawing being produced by a subject with or 

without CI from different background. The solution 

is closely related to our state-space modeling 

approach which was introduced in section 2. 

Specifically, we considered the higher-order Markov 

chains in conditional form, i.e., specifying modeling 

conditions such that 𝑝(𝐃1:𝑛)becomes 𝑝(𝐃1:𝑛|𝐁, 𝐂). A 

typical practice is to independently train several 

Markov chains with the corresponding subsets of data. 

However, this approach usually requires a large 

training dataset to prevent over-fitting of the model 

[18]. The problem of over-fitting may become severe 

when a Markov chain is in a higher order, where the 

number of parameters increases exponentially with 

the order of Markov chain. An order-𝑚 Markov chain 

taking values in a finite set of size 𝑘 has 𝑘𝑚(𝑘 − 1) 
independent transition probabilities [19]. In our case, 

𝐃𝑖  takes values in an uncountable set. Apparently, 

traditional formulation of finite-state Markov chains 

is infeasible. 

To overcome the hurdles for conditional Markov 

chains on continuous state space, we defined a 

general state transition function 𝑓(∙) , which 

presumably can capture the transition dependencies 

with some tolerable noise, i.e., 

𝒚𝑗 = 𝑓(𝐱𝑗) + 𝝐, 𝝐~𝒩(0, 𝜎2) 

where 

𝐱𝑗 = [𝐝𝑗−𝑚:𝑗−1, 𝐛, 𝑐] 

is a D-dimensional input vector that represents 

previous 𝑚  states, subject’s background and CI 

condition, and 

𝒛𝑗 = 𝑧(𝐃𝑗) = 𝒗𝑗 + 𝑖𝜽𝑗   

is a complex-valued random variable that represent a 

bivariate drawing state 𝐃𝑗 . Here, 𝑧(∙)  maps a two-

dimensional random vector to a complex-valued 

random variable. A parametric approach to find 𝑓(∙) 
consists in specifying a class of mathematical 

functions parameterized by a finite set of parameters. 

However, we used a less restrictive approach to infer 

𝑓(∙) by directly specifying a prior over an infinite-

dimensional space of functions, i.e., a Gaussian 

process prior. Specifically, we define 

𝑓(∙) ∼ 𝒢𝒫(0, 𝑘(∙,∙)), 
which is a zero-mean Gaussian process that is fully 

specified by a kernel function 𝑘(∙,∙). There are many 

analytical properties of 𝑘(∙,∙). By choosing a higher-

level parametric function 𝑘(∙,∙)  we encoded 

properties such as noisiness, smoothness and 

periodicity [25]. Neal [26] has proved that Bayesian 

neural networks with infinitely many hidden units 

converged to a Gaussian process with particular 

kernel function. Having defined a prior over 𝑓(∙), we 

need to update the distribution of  𝑓(∙) with training 

data.  

Given the training set 𝕯 = {𝒛𝑖 , 𝐱𝑖}𝑖=1
𝑛(𝑆−1)

 that 

contains the drawing data of 𝑆 − 1  subjects, we 

denoted the training targets by 𝔃 = [𝒛𝑖]𝑖=1
𝑛(𝑆−1)

, and 

the training inputs by 𝔁 = [𝐱𝑖]𝑖=1
𝑛(𝑆−1)

. A finite 

collection of function variables 𝓕 = [𝑓(𝐱𝑖)]𝑖=1
𝑛(𝑆−1)

 

was created corresponding to the training inputs. By 

the definition of Gaussian process, 𝓕  follows 

multivariate Gaussian: 𝑝(𝓕) = 𝒩(𝟎, 𝐊), 
where 𝐊 is computed from the kernel function:  

𝐊𝑖𝑗 = 𝑘(𝐱𝑖 , 𝐱𝑗). 

From our definition of state transition function, we 

have 

𝑝(𝔃|𝓕) = 𝒩(𝓕, 𝜎2𝐈). 
Using Bayes’ rule,  

𝑝(𝓕|𝔃) =
𝑝(𝔃|𝓕)𝑝(𝓕)

𝑝(𝔃)
, 

where the denominator is a constant, we can update 

the prior of 𝓕 and get the posterior: 

𝑝(𝓕|𝔃) = 𝒩 (
𝐊(𝐊 + σ2𝐈)−1𝔃,

𝐊 − 𝐊(𝐊 + σ2𝐈)−1𝐊
). 

Then, for an unseen input 𝐱∗ , we want to find the 

predictive distribution derived from the posterior: 

𝑝(𝑓(𝐱∗)|𝔃) = ∫ 𝑝(𝑓(𝐱∗)|𝓕)𝑝(𝓕|𝔃)𝑑𝓕 

where 𝑝(𝑓(𝐱∗)|𝓕) results from the Gaussian process 

prior linking all possible values of 𝓕 and 𝑓(𝐱∗) with 

a joint Gaussian distribution. Finally, we can obtain 

𝑝(𝑓(𝐱∗)|𝔃) = 𝒩 (
𝐤∗(𝐊 + σ2𝐈)−1𝔃,

𝑘(𝐱∗, 𝐱∗) − 𝐤∗(𝐊 + σ2𝐈)−1𝐤∗T
), 

where 𝐤∗ = [𝑘(𝐱∗, 𝐱𝑖)]𝑖=1
𝑛(𝑆−1)

 is the kernel vector.  

This exact inference procedure is popularized as 

GPR [22]. Eventually, by fitting the predictive 

distribution given by GPR into higher-order Markov 

chain, we obtained the joint likelihood of drawing 

being produced by a dementia subject: 

𝑝(𝐃1:𝑛|𝐁, 𝐂) ≈∏𝑝(𝑧(𝐃𝑗)|𝑓(𝐱𝑗)) 𝑝(𝑓(𝐱𝑗)|𝔃)

𝑛

𝑗=1

. 

This approach is defined as GPMC, which generally 

works for conditional higher-order discrete-time 

Markov chains on continuous state space. For a 
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generic setting where states are not bivariate, we can 

set 𝒛𝑗 = 𝐃𝑗. 

 
3.4. Complex Gaussian Process Regression  
 

In fact, two practical problems in GPMC were 

still unsolved for the task of drawing to distinguish 

dementia subjects: i) inversion of 𝐊 + σ2𝐈  involves 

𝒪(𝑛3𝑆3)  complexity which is not scalable, and ii) 

complex-valued target is seldom discussed with GPR, 

which probably involves inversion of complex kernel 

matrix that is not Hermitian positive-definite. In this 

regard, we extended the standard GPR to complex-

valued regression using the sparse spectrum 

approximation method [23]. Our extended approach 

shares the benefits of the sparse spectrum 

approximation method, where kernel function can be 

optimally found from the training data, and, more 

importantly, the training procedures are more 

efficient.  

The idea is called sparse spectrum approximation 

of Gaussian process regression (SSGPR) [23], which 

in fact is a special case of randomized feature space 

for kernel machines [30]. The starting point of 

derivation is to assume a stationary kernel function: 

𝑘(𝐱𝑖, 𝐱𝑗) = 𝑘(𝐱𝑖 − 𝐱𝑗). 

Then, following Wiener-Khintchine theorem [28-29], 

the power spectral density and the autocorrelation 

function of a stationary random process together 

constitute a Fourier pair: 

𝑘(𝐱𝑖 − 𝐱𝑗) = ∫ 𝑆(𝝎)𝑒2𝜋𝑖𝝎
T(𝐱𝑖−𝐱𝑗)𝑑𝝎

ℝ𝟐𝒎

. 

From Bochner’s theorem [30], which states that a 

stationary kernel function can be represented as 

Fourier transform of a positive finite Borel measure, 

we know that 𝑆(𝝎) is directly proportional to certain 

probability measure: 

𝑆(𝝎) ∝ 𝑝(𝝎) ⇔ 𝑆(𝝎) = 𝜂2𝑝(𝝎). 
Combining above theorems, we get 

𝑘(𝐱𝑖 − 𝐱𝑗) = 𝜎𝑘
2𝔼𝑝(𝝎) [𝑒

2𝜋𝑖𝝎T(𝐱𝑖−𝐱𝑗)]. 

The heart of SSGPR is to approximate the real part of 

this expectation with Monte-Carlo simulation [31]. 

The resultant becomes a sum of inner product: 

𝔼𝑝(𝝎) [Re {𝑒
2𝜋𝑖𝝎T(𝐱𝑖−𝐱𝑗)}] 

≈
1

𝐾
∑cos (2𝜋𝝎̂𝑘

T(𝐱𝑖 − 𝐱𝑗))

𝐾

𝑘=1

 

by which the kernel matrix can be equivalently 

expressed as a matrix-matrix multiplication: 

𝐊 = 𝚽T𝚽, 
given that 

𝚽 =
𝜂

√𝐾

(

 
 
 
 

sin(2𝜋𝝎̂1
T𝐱1) ⋯ sin(2𝜋𝝎̂1

T𝐱𝑛)

⋮ ⋱ ⋮

sin(2𝜋𝝎̂𝐾
T𝐱1) ⋯ sin(2𝜋𝝎̂𝐾

T𝐱𝑛)

cos(2𝜋𝝎̂1
T𝐱1) ⋯ cos(2𝜋𝝎̂1

T𝐱𝑛)

⋮ ⋱ ⋮

cos(2𝜋𝝎̂𝐾
T𝐱1) ⋯ cos(2𝜋𝝎̂𝐾

T𝐱𝑛))

 
 
 
 

, 

is a 2𝐾 × 𝑛 feature matrix. 

By Woodbury formula, (𝐊 + σ2𝐈)−1  in SSGPR 

becomes 

(𝚽T𝚽+ σ2𝐈)−1 = σ−2(𝐈 − 𝚽T𝐀−1𝚽), 
where 𝐀 = 𝚽𝚽T + σ2𝐈,  is a 2K × 2K  matrix. 

Therefore, the time complexity of (𝐊 + σ2𝐈)−1  is 

reduced to 𝒪(𝐾𝑛2 + 𝐾3), for a smaller 𝐾 ≪ 𝑛 [23].  
Note that the initiative of SSGPR is to speed up 

the standard GPR training. Thus, the authors used 

only the real part of the complex exponential to 

resemble the originally-defined real-valued GPR. In 

fact, by this derivation, we can also come up with an 

analytical setup of complex GPR, which at the same 

time is as efficient as SSGPR. Our approach is to 

approximate the full expectation with Monte-Carlo 

simulation, i.e., 

𝔼𝑝(𝝎) [𝑒
2𝜋𝑖𝝎T(𝐱𝑖−𝐱𝑗)] ≈

1

𝐾
∑𝑒2𝜋𝑖𝝎̂𝑘

T𝐱𝑖 (𝑒2𝜋𝑖𝝎̂𝑘
T𝐱𝑗)

∗
𝐾

𝑘=1

, 

where ( )∗ denotes the complex conjugate. Similarly, 

we now have a 𝐾 × 𝑛 feature matrix 

𝚽 =
𝜂

√𝐾
(
𝑒2𝜋𝑖𝝎̂1

T𝐱1 ⋯ 𝑒2𝜋𝑖𝝎̂1
T𝐱𝑛

⋮ ⋱ ⋮

𝑒2𝜋𝑖𝝎̂𝐾
T𝐱1 ⋯ 𝑒2𝜋𝑖𝝎̂𝐾

T𝐱𝑛

). 

The complex-valued kernel matrix becomes 

𝐊 = 𝚽H𝚽, 
where 𝚽H is the conjugate transpose of 𝚽. Also,  

𝐀 = 𝚽𝚽H + σ2𝐈. 
With this formulation, the predictive distribution 

can simplified as 

𝑝(𝑓(𝐱∗)|𝔃) = 𝒩 (
𝛟∗H𝐀−1𝚽𝔃,

σ2𝛟∗H𝐀−1𝛟∗
), 

where 𝛟∗ =
𝜂

√𝐾
[𝑒2𝜋𝑖𝝎̂𝑘

T𝐱∗]
𝑘=1

𝐾

 is the feature mapping 

applied to the prediction inputs 𝐱∗. 
Based on the above derivation, we implemented a 

Python module for complex Gaussian process 

regression called GomPlex,
1

 which was tested in 

IPython notebook on the cloud platform provided by 

IBM Data Science Experience.
2
 The advantage of 

                                                 
1
 GomPlex: Complex Gaussian Process Regression - 

https://github.com/MaxInGaussian/GomPlex 
2
 https://apsportal.ibm.com/analytics/notebooks/235da738-5c2d-

4509-868f-7c1b4c3dccb9/view?access_token=cfaa2bfe988432d6 

137899369dd12f1cbc69b2d2d0b6278e318c81ede0429d3c 
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using this platform is mainly on the convenience of 

sharing results among interdisciplinary research team. 
 
3.5. Decision Rules for Dementia Screening 

 
Let 𝓌+  be the decision of positive screening 

result, and 𝓌− be the decision of negative screening 

result. Note that these two decisions may not be 

equally good or costly. We defined 𝒞(𝓌, 𝑐) to be the 

cost of choosing 𝓌 ∈ {𝓌+,𝓌−} while the subject’s 

status of dementia is 𝐂 ∈ {0, 1} . In this sense, 

𝒞(𝓌+, 0)  is the cost of false positive, while  

𝒞(𝓌−, 1)  is the cost of false negative. Based on 

Bayesian decision theory [36], by letting πCI =
𝑝(𝐂 = 1|𝐃1:𝑛 , 𝐁)  be the probability of having CI 

given the drawing data and subject’s background, we 

obtained the expected risks for choosing the two 

decisions: 

ℛ(𝓌+) = 𝒞(𝓌+, 1)πCI + 𝒞(𝓌+, 0)(1 − πCI), 
ℛ(𝓌−) = 𝒞(𝓌−, 1)πCI + 𝒞(𝓌−, 0)(1 − πCI).  

Essentially, for a screening test, false negative [37] is 

critical as early prevention is prohibited, and adverse 

events may be generated because of underestimation. 

In dementia screening, as there are currently no 

specific treatments to block the progression of 

cognitive decline in dementia [38]. Early detection 

allows the early plan of treatment or interventions 

[39]. In contrast, the cost of false positive equals to 

the drawbacks of preventive treatment, which is 

comparatively harmless. As a matter of fact, we set 

𝒞(𝓌−, 1) =  (1 + δ) ∙ 𝒞(𝓌+, 0), 
where  δ ∈ ℝ+ is a parameter pre-specified to the 

system that asserts 𝒞(𝓌−, 1) ≥ 𝒞(𝓌+, 0). Since we 

normally embrace correct predictions, vanishing cost  

𝒞(𝓌+, 1) = 𝒞(𝓌−, 0) = 0. 
Above specifications lead to a simplified form of 

expected risks: 

ℛ(𝓌+) = 𝒞(𝓌+, 0)(1 − πCI), 
ℛ(𝓌−) = 𝒞 (𝓌+, 0)(1 + δ)πCI. 

The updated optimal decision rule becomes 

𝑐ℎ𝑜𝑜𝑠𝑒 {
𝓌+, if πCI ≥

1

2 + δ
,

𝓌−,         if πCI <
1

2 + δ
.

 

 

4. Application: Pentagon Drawing Test  

 
In this section, we show an application of our 

proposed modeling method to a drawing test – 

interlocking pentagon drawing test, which has been 

shown to be correlated with the measures of 

visuospatial abilities, memory and attention [14]. The 

details of data collection and evaluation results are 

shown as follow: 

4.1. Data Collection 

 
In our experiment, 256 subjects were recruited to 

draw the interlocking pentagons on our digital 

platform. Participants drew two overlapping 

pentagons on a touchscreen of an Android tablet with 

reference to a sample figure. Among the 256 subjects, 

44 subjects were recruited from the dementia clinics 

and diagnosed with moderate-to-severe stage of 

Alzheimer’s Disease (AD), while 212 subjects aged 

65 or above were recruited from the community 

without clinical symptoms of dementia. Prior to the 

test, all subjects had assessed by the Montreal 

Cognitive Assessment (MoCA) test [24], which is 

widely used for dementia screening. Therefore, for 

the 212 participants from the community, we used 

their MoCA score as the indicator of dementia and 

used a cut-off of 21 for CI, according to a local study 

in Hong Kong [55]. From this criterion, 132 out of 

212 community participants were labeled as potential 

cases of dementia. Therefore, in this study, a total of 

176 participants were classified as dementia subjects 

and 80 participants were healthy subjects. 

 
4.2. Evaluation Results 

 
The performance of our computational methods 

was compared to the traditional paper-and-pencil 

methods on the same group of subjects. The 

traditional scoring method was mainly based on the 

Mini-Mental State Examination (MMSE) [15], where 

the scoring guideline for frontier physicians is 

concluded into one statement: “the subject must draw 

two 5-sided figures intersected by a 4-sided figure”. 

If this statement is violated, then the subject will 

receive 0 score, otherwise he/she will receive 1 score. 

 
Figure 1. ROC Curve of different methods 

[15-16] for pentagon-copying test 
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The binary scoring between 0 and 1 on the 

pentagon drawing test is not favorable to represent 

the visuospatial performance, thus a new qualitative 

scoring method for MMSE pentagon test has been 

proposed by Caffarra [16]. We referred it as another 

reference method. Caffarra‘s method included five 

factors of consideration: i) the numbers of angles, ii) 

distance/ intersection between the two figures, iii) 

closing/opening of the contour, iv) rotation of one or 

both pentagons, and v) closing-in.  

Regarding our proposed method, we completed 

out-of-sample evaluation with leave-one-out cross-

validation. That is, to calculate πCIfor a person, that 

person’s drawing data as well as background 

information are excluded from GPMC totally. 

Receiver Operating Characteristic (ROC) curve is 

a plot of true positive rate (sensitivity) versus false 

positive rate (1-specificity) that plays a prime role in 

evaluating diagnostic tests and finding the optimal 

cut-off in medical research [56]. Meanwhile, since 

our derived optimal decision is determined by the 

cut-off of the probability measure πCI, i.e., the pre-

specified parameter δ, it is well-suited to analyze the 

predictive performances across all possible thresholds 

through a ROC curve. The ROC curve comparing the 

performance of all methods is shown in Figure 1.  

By maximizing sensitivity plus specificity, we 

also found optimal cut-offs for all methods, marked 

with crosses in the figure. The performances of all 

methods corresponding their optimal cut-offs are 

listed on Table 1. We calculated the most commonly 

used quantitative measures for classification problem 

including the area under the ROC curve (AUC) [57], 

sensitivity, specificity, precision, F1 score, and 

accuracy.  Our computational method achieves the 

best among 4 measures out of 5 measures. All in all, 

with the optimal cut-off, our method has shown 

superiority over the two methods. Besides the 

predictive performance, the time-dependent 

behaviour is also a considerable factor for dementia 

screening.  In the 256 participants, the average 

drawing time was 58.1  seconds to copy the 

overlapping pentagons, whereas traditional screening 

test, such as MoCA [24], takes at least 5 to 10 

minutes for the whole evaluation. In this regard, our 

system is cost-effective for a population-based 

screening.  

 

5. Conclusions 

 
Digital drawing is potentially a valuable solution 

for dementia screening. It is demonstrated to be a 

simple and effective test. Although image recognition 

is common on digital drawing test, time-dependent 

behaviour is more directly related to the cognitive 

functions during the drawing. In this paper, we 

constituted three contributions. The first one is to 

show a novel state-space representation that can be 

used to quantify a drawing process. Robustness and 

connection to clinical studies have been found for our 

formulation. The second contribution, which is also 

the highlight of this paper, is to introduce Gaussian 

process Markov Chain (GPMC), by which we 

estimate the joint likelihood of conditional higher-

order discrete-time Markov chains on continuous 

state space.  The third contribution of this paper is to 

derive an efficient algorithm for complex Gaussian 

process regression. This allows us to generalize 

transition probabilities in Markov chain composed of 

bivariate states. Finally, we deduced an optimal 

decision rule from Bayesian decision theory.   
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