
 

Interdependence of Transmission Branch Parameters on the Voltage Levels  
 

Mir Hadi Athari 

Electrical and Computer Engineering 

Virginia Commonwealth University 

 atharih@vcu.edu  

Zhifang Wang 

Electrical and Computer Engineering 

Virginia Commonwealth University 

 zfwang@vcu.edu

  

 

Abstract 

 
Transformers and transmission lines are critical 

components of a grid network. This paper analyzes the 

statistical properties of the electrical parameters of 

transmission branches and especially examines their 

interdependence on the voltage levels. Some interesting 

findings include: (a) with appropriate conversion of 

MVA rating, a transformer’s per unit reactance exhibits 

consistent statistical pattern independent of voltage 

levels and capacity; (b) the distributed reactance 

(ohms/km) of transmission lines also has some 

consistent patterns regardless of voltage levels; (c) 

other parameters such as the branch resistance, the 

MVA ratings, the transmission line length, etc, manifest 

strong interdependence on the voltage levels which can 

be approximated by a power function with different 

power constants.  The results will be useful in both 

creation of synthetic power grid test cases and 

validation of existing grid models.  
 

Keywords: Transmission network, synthetic power grid, 

statistical analysis, interdependence on voltage 

 

1. Introduction  

 
Modern power systems use multiple voltage levels 

to decrease energy loss in the transmission network [1]. 

The voltage level is changed through the extensive use 

of transmission transformers to step up the voltage for 

long-distance transmission lines and then step down to 

lower voltages to go through the distribution network. 

This multi voltage-level structure causes different grid 

components to have voltage dependent parameters and 

features. Branches in power networks are among those 

components that can have a heavy dependence on 

voltage level. Generally, in power systems, the term 

“branches” refers to transmission lines or transformers 

between two buses in a network. The study of the 

interdependence of transmission branch parameters on 

voltage levels can provide useful insights as well as 

multiple validation metrics for synthetic power 

networks. 

Synthetic power networks are introduced as a 

potential solution for the restricted access to real-world 

power system test cases. Confidentiality requirements 

limit the access to real data in critical infrastructures like 

power systems. On the other hand, researchers in power 

industry need realistic test cases of varying sizes and 

complexities and appropriate properties in order to 

evaluate and verify their proposed solutions and novel 

approaches. For example, the algorithms introduced by 

authors in [2]–[4] need some verification in larger 

systems to identify the pros and cons of the solution. 

Another example is the concept of real-time optimal 

power flow in [5] that can be evaluated in numerous 

synthetic grids. Since Synthetic power networks are 

entirely fictitious but with the same characteristics as 

real networks, they can be freely published to the public 

to facilitate advancement of new technologies in power 

systems. One such characteristic is the interdependence 

of different branch parameters on voltage level. 

In the literature, many studies are dedicated for 

characterizing actual power networks and/or developing 

a synthetic one, mainly from topological perspectives 

such as ring-structured power grid developed in [6] and 

tree structured power grid model to address the power 

system robustness [7], [8]. Works of [9]–[11] used the 

small world approach described in [12] as a reference to 

generate some synthetic transmission network 

topologies. The RT-nestedSmallWorld random topology 

model proposed in [10] is based on comprehensive 

studies on the electrical topology of some real-world 

power grids. Authors in [13] studied the impacts of 

randomized and correlated siting of generation and 

loads in a grid on its vulnerability to cascading failures. 

[14]–[17] defined a topology measure called “bus type 

entropy” to characterize the correlated siting of 

generation and load in actual power grids, based on 

which an optimization algorithm was developed to 

determine appropriate bus type assignments in a 

synthetic grid modeling. [18] studied the statistics of 

generation size and load settings. [19] gave a 

comprehensive report about the scaling property of 

power grid in terms of selected topology measures and 

electric parameters. Authors in [20] reported some 

initial study results on the statistics of transmission line 
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parameters. The substation placement method and 

transmission lines assignment based on population and 

energy data in [21] uses the methodology introduced in 

[22], [23], where they employ a clustering technique to 

ensure that synthetic substations meet realistic 

proportions of load and generation. [24] addressed the 

need for synthetic large-scale system dynamic models 

for transient stability studies such as wide-area damping 

control in [25], [26] and dynamic control allocation for 

damping of inter-area oscillations in [27]. The 

collaboration of researchers from five universities has 

resulted to publishing three fully synthetic power 

networks called ACTIVSg200, 500, and 2000 cases 

[21], [24]. Later, they published a set of topological and 

electrical validation metrics in [28] to assess the realism 

of the developed synthetic power grids. The authors will 

continue to augment those cases by adding additional 

complexities and verification and tuning of the 

parameters. 

Statistical studies on the database from historical 

weather data for forecasting in [29] to probabilistic 

methods for reliability assessment based on historical 

data in [30] and a data-driven analysis on capacitor bank 

operation in [31] show that statistics derived from real-

world data are commonly used for modeling and 

validation in power systems. The above literature 

review on synthetic grid modeling suggests that there is 

a need for a comprehensive statistical study on real-

world power systems branch electrical and non-

electrical parameters. This will allow us to identify the 

interdependencies of various electrical and topological 

parameters on the nominal voltage level. Also, it may 

provide us with useful guidelines on their distribution to 

be used in parameter value assignment in synthetic 

cases. In this paper, using a large sample of real-world 

power system branch data from Federal Electricity 

Regulatory Commission (FERC), we present a 

statistical study to characterize electrical and non-

electrical parameters of the transmission network to be 

used in synthetic grid models. The goal of this paper is: 

(a) to identify the interdependence of branch parameters 

on the nominal voltage level and (b) to provide 

guidelines on how to accurately configure them in the 

synthetic models. 

The rest of the paper is organized as follows. Section 

2 analyzes and presents branch parameters that are 

independent of the voltage level. Section 3 discusses the 

statistics and interdependence of other branch 

parameters on voltage levels. In Section 4, the validation 

of three published synthetic grids according to derived 

statistics will be presented and finally, some concluding 

remarks and future work will be presented in section 5. 

 

2. Voltage independent parameters  

 
In this study, we focused on seven different 

parameters from two real-world power systems 

including transformers and transmission lines per unit 

and distributed reactance, X/R ratio, transformers and 

transmission lines capacity (MVA), and transmission 

line length (km). We found some of these parameters 

exhibit a strong correlation with voltage level while 

others show a very trivial dependence on voltage level 

which can be assumed approximately voltage 

independent. The latter includes transformers per unit 

reactance converted to their own MVA base and 

transmission lines distributed reactance (Ω/𝑘𝑚). In this 

section, the statistics of these parameters will be 

presented. 

 

2.1. Transformer per unit reactance 
 

Per unit system is a common method used in power 

system analysis to express the system quantities as 

fractions of a defined base unit quantity. Considering a 

large number of transformers deployed in the power 

systems with different voltage levels for their terminals, 

the use of per unit system is important. Another 

advantage for this expression is a common engineering 

practice in which the transformer impedance falls into a 

narrow numerical range when expressed as per unit 

fraction of the equipment rating, even if the unit size 

varies widely. However, in practice, the per unit 

impedances of power system components are converted 

to different values using a common system-wide base 

and then used in power flow or economic power flow 

calculations. So, the conversion of per unit impedance 

of each component can be done back and forth from 

system-wide common base to equipment’s own rating 

and will significantly impact the range of the parameter. 

This conversion is based on the following formula that 

depends on the voltage bases for different zones in the 

system and a predefined unique power base for the 

entire system (𝑆𝑏𝑎𝑠𝑒): 

𝑍𝑃𝑈
𝑁𝑒𝑤 = 𝑍𝑃𝑈

𝐺𝑖𝑣𝑒𝑛 × (
𝑉𝐵𝑎𝑠𝑒

𝐺𝑖𝑣𝑒𝑛

𝑉𝐵𝑎𝑠𝑒
𝑁𝑒𝑤 )

2

× (
𝑆𝐵𝑎𝑠𝑒

𝑁𝑒𝑤

𝑆𝐵𝑎𝑠𝑒
𝐺𝑖𝑣𝑒𝑛

)  

where 𝑍𝑃𝑈
𝐺𝑖𝑣𝑒𝑛, 𝑉𝐵𝑎𝑠𝑒

𝐺𝑖𝑣𝑒𝑛, 𝑆𝐵𝑎𝑠𝑒
𝐺𝑖𝑣𝑒𝑛 are given per unit 

impedance, voltage base, and power base for each 

apparatus and 𝑍𝑃𝑈
𝑁𝑒𝑤 is the new per unit impedance 

calculated using 𝑉𝐵𝑎𝑠𝑒
𝑁𝑒𝑤 and 𝑆𝐵𝑎𝑠𝑒

𝑁𝑒𝑤 . Usually, the voltage 

base values are selected the same as the nominal voltage 

of transformer terminals for each zone to simplify the 

calculations. Therefore, the conversion formula for per 

unit impedance is expressed as 

𝑍𝑃𝑈
𝑁𝑒𝑤 = 𝑍𝑃𝑈

𝐺𝑖𝑣𝑒𝑛 × (
𝑆𝐵𝑎𝑠𝑒

𝑁𝑒𝑤

𝑆𝐵𝑎𝑠𝑒
𝐺𝑖𝑣𝑒𝑛

)  
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In this study, the transformers are grouped based on 

their high voltage side to examine their parameters 

interdependence on the voltage level. The original data 

from FERC were reported in per unit values based on 

the system-wide common base. Our initial observations 

in [32] show that per unit reactance calculated based on 

system common base falls into a wide range and we are 

not able to find a standard probability distribution for 

them. However, after converting them into values based 

on transformer own rating, they fall into a narrow range 

regardless of their size. In other words, there exists no 

interdependence between per unit reactance and the 

voltage level of transformers after this conversion as 

shown in Figure 1. 

 

 
Figure 1. Interdependence of transformer 

per unit reactance on voltage level 
  

In this figure, the black dots are the average per unit 

reactance of transformers for different voltage levels 

from 69 to 735 kV. The blue dashed line is the average 

of all data points. There is no visible trend in the data 

which means the per unit reactance of transformers 

calculated based on their own rating is independent of 

the voltage level. 

In addition, we found that there exist some 

extraordinarily large values for transformer per unit 

reactance in the original data from FERC. These outliers 

make it difficult to fit a standard PDF to data. 

Furthermore, the range of the data becomes very large 

while including the outliers. In this study, we remove 

the outliers from all data points to avoid erroneous 

disturbance on statistical analysis. The outliers are 

removed based on box plot method where values 

beyond a certain threshold are considered extreme 

outliers and exclude when fitting an empirical PDF 

curve to the data. It is found that excluding outliers from 

data set leads to the more consistent statistical pattern 

for the parameters. For example, the Normal distribution 

found to perfectly fit the transformer per unit X after 

excluding the outliers while in [32] the t Location-Scale 

distribution was recognized the best fit to the parameter. 

Figure 2 shows the probability distribution of per 

unit reactance of transformers for four different voltage 

levels. It is found that this parameter can be 

approximated using the Normal distribution. The 

goodness of this fit is measured with Kullback-Leibler 

divergence. In probability theory and information 

theory, the Kullback–Leibler (KL) divergence, also 

called discrimination information, is a measure of the 

difference between two probability distributions P and 

Q. It is not symmetric in P and Q. In applications, P 

typically represents the "true" distribution of data, 

observations, or a precisely calculated theoretical 

distribution, while Q typically accounts for a theory, 

model, description, or approximation of P [33]. 

Specifically, the KL divergence from Q to P, denoted 

𝐷𝐾𝐿(𝑃 ∥ 𝑄), is the amount of information lost when Q 

is used to approximate P. For discrete probability 

distributions P and Q, the KL divergence from Q to P is 

defined to be [34] 

𝐷𝐾𝐿(𝑃 ∥ 𝑄) = ∑ 𝑃(𝑖)𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

  

In words, it is the expectation of the logarithmic 

difference between the probabilities P and Q, where the 

expectation is taken using the probabilities P. Therefore, 

smaller values for the divergence represents a more 

accurate fit for the empirical PDF of the parameters. 

 

  

  
Figure 2. Empirical PDF and the Normal fit of 
per unit reactance for 115, 138, 161, and 230 

kV transformers 
 

As shown in figure 2, the per unit reactance in 

transformer own rating is within a fixed range (0 to 0.25 

P.U.) for all voltage levels. Also, they all can be best fit 

with the Normal distribution with relatively small KL 

divergence values meaning that we lose a minimal 

amount of information by using the Normal distribution 

for this parameter. 
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2.2. Transmission line distributed reactance 

 
Transmission line distributed reactance (Ω/𝑘𝑚) is 

the second parameter that shows no dependence on 

voltage level. The original data from two real-world 

power systems are reported in per unit values. In order 

to convert per unit values into distributed reactance, we 

use a formulas as follows: 

𝑋(Ω/𝑘𝑚) =
𝑋𝑝𝑢𝑉𝐵

2

𝑙 𝑆𝐵  
  

in which using system common base 𝑆𝐵  and voltage 

base 𝑉𝐵 for each transmission line the actual reactance 

in ohms is first calculated; then using the approximated 

line length 𝑙 in km, the distributed reactance in Ω/𝑘𝑚 is 

then derived. Note that, the line length data reported 

from FERC is approximated and are calculated using 

Geographical Information System (GIS) data. This may 

not have a big impact on long lines, while it can affect 

shorter lines, as the actual distance between two buses 

may be longer than the direct line between the 

geographic locations of the two buses. Figure 3 shows 

the distributed reactance of transmission lines for 

different voltage levels. The black dots are average 

distributed reactance for each voltage level and the blue 

dashed line is their average. Similar to transformer 

reactance, we can see no visible interdependence 

between these two parameters which means the 

distributed reactance of transmission line is an 

independent parameter from the nominal voltage level. 

 

 
Figure 3. Interdependence of transmission 

line distributed reactance on voltage level 
 

We also examined the distribution of per unit 

reactance of transmission lines for select voltage levels. 

Figure 4 shows their distribution and approximated 

exponential fit using KL divergence criteria. Note that, 

since we could not find a standard fitting function for 

distributed reactance (Ω/𝑘𝑚), we used per unit 

reactance instead that shows a clear exponential decay 

for all four considered voltage levels. However, the 

mean value of each distribution function also indicates 

a strong correlation with the voltage levels. 

 

  

  
Figure 4. Empirical PDF and exponential fit 

of per unit reactance for 115, 138, 161, and 230 
kV transmission lines 

 

3. Voltage-dependent parameters 

 
Out of seven studied parameters from network 

branches, five shows a very strong interdependence on 

voltage level which can be used in validation and tuning 

of existing synthetic models such as ACTIVSg cases. 

Following is the detailed results of analysis on voltage-

dependent branch parameters in real-world power 

networks. To characterize the interdependence of each 

parameter on nominal voltage level mathematically, 

using power curve of (𝑉𝐵) = 𝑎 × 𝑉𝐵
𝑏, their empirical 

relationship will be extracted. The choice of power 

function makes it easier to validate the empirical results 

with physical constraints of the network imposed by 

Kirchhoff’s voltage and current laws and Ohm’s law 

which is the subject of our next study. 

 

3.1. Transformer capacity (MVA) 
 

When transformers are grouped based on their high 

voltage side, there is a visible trend in their size. We 

found that the larger the voltage level the bigger the 

transformer size. Figure 5 shows the interdependence of 

transformer capacity (MVA) on voltage levels. In this 

figure, black dots show the average transformer size for 

each voltage level and the blue dashed curve, represent 

a power equation that is fit to these data considering 

minimum Root Mean Squared Error (RMSE). 

According to the curve fitting result for transformer 

capacity versus voltage level, the transformer capacity 

in MVA is related to its voltage level in the form of 

𝑆𝑇𝑋 = 0.172. 𝑉1.332. This can be served as a validation 
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and tuning metric to adjust the size of transformers in 

the synthetic grids. 

 

 
Figure 5. Interdependence of transformer 

capacity on voltage level 
 

Figure 6 shows the distribution of transformer size 

and an approximated Generalized Extreme Value 

(GEV) fit for select voltage levels. The Cumulative 

Density Function (CDF) for GEV distribution is 

represented by (4) 

𝐹(𝑥|𝜁, 𝜇, 𝜎) = 𝑒𝑥𝑝 (− (1 + 𝜁
(𝑥 − 𝜇)

𝜎
)

−1
𝜁

)  

where 𝜇 is location parameter, 𝜎 is scale parameter, and 

𝜁 ≠ 0 is shape parameter. Using this mathematical 

distribution, one can generate reasonable values for 

transformer capacities in a given synthetic grid model. 

 

  

  
Figure 6. Empirical PDF and GEV fit of 
transformer capacity for 115, 138, 161, and 230 
kV transformers 

 
3.2. Transformer X/R ratio 

 
Another voltage dependent electrical parameter is 

the ratio between per unit reactance and per unit 

resistance of the transformer. Our analyses suggest that 

as the size of transformer grows, their X/R ratio 

increases as well (see Figure 7). 

 

 
Figure 7. Interdependence of transformer 

X/R ratio on voltage level 

 
Similar to transformer capacity, the relationship 

between X/R ratio and voltage level can be expressed 

using power function as shown in Figure 7. This is 

another metric useful for validation and tuning purposes 

in synthetic grid modeling. 

The empirical distribution of X/R ratio for 

transformers with different voltage levels and GEV fit 

are depicted in Figure 8. All distribution fittings show 

small KL divergence value which is a metric for the 

goodness of the approximated fit for the data. 

 

  

  
Figure 8. Empirical PDF and GEV fit of 

transformer X/R ratio for 115, 138, 161, and 230 
kV transformers 

 

3.3. Transmission line length 
 

As mentioned earlier, the length of the transmission 

lines (km) in different voltage levels is calculated based 

on GIS data and the great circle method. While this 

approximation may not exactly reflect the line length, 
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the data can be used to examine the interdependence of 

average line length on voltage level. Figure 9 shows the 

relationship between average line length and voltage 

levels for transmission lines of 69 to 735 kV. Using the 

similar procedure as used in the last two parameters, the 

curve fitting based on power function is performed and 

the fitting parameters are shown in the figure. 

 

 
Figure 9. Interdependence of transmission 

line length on voltage level 

 
The distributions of transmission line length and the 

approximated GEV distribution are shown in Figure 10. 

It is found that, as the voltage level in transmission lines 

increases, the average line length grows as well which 

is consistent with the common engineering practice in 

power systems. To reduce power loss in long lines of the 

network, higher voltage levels are used which in turn 

leads to the reduced current in the line and consequently, 

the power loss along the line drops significantly. 

 

  

  
Figure 10. Empirical PDF and GEV fit of 

transmission line length for 115, 138, 161, and 
230 kV transformers 

 
3.4. Transmission line X/R ratio 

 

Another parameter that we examined for their 

interdependence on voltage level is the X/R ratio for 

lines at different voltage levels. This parameter is 

important for tuning purposes because given valid 

reactance values for transmission lines, this ratio helps 

us assign valid values to the line resistance. Figure 11 

shows the interdependence of this parameter on voltage 

level for transmission lines of 69 to 735 kV. We can 

observe an almost linear increase in the X/R ratio as 

voltage level increases. 

 

 
Figure 11. Interdependence of transmission 

line X/R ratio on voltage level 

 
The blue dashed line is fitted to average X/R ratio 

points using power function. The fitting parameter b is 

calculated as 0.95 that shows an almost linear 

relationship between these two parameters. 

Finally, the distribution of X/R ratio for 

transmissions lines is shown in Figure 12. Based on KL 

divergence, the Normal distribution found to be the best 

fitting curve as shown in the figure. 

 

  

  
Figure 12. Empirical PDF and the Normal fit of 
transmission line X/R ratio for 115, 138, 161, 

and 230 kV transformers 
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3.5. Transmission line capacity (MVA) 

 
Similar to transformers, transmission lines on 

different voltages have different capacities. Figure 13 

shows the interdependence of transmission line capacity 

(MVA) on the nominal voltage level for the FERC data. 

Black dots show the average line capacity per voltage 

level and the blue dashed line is calculated based on the 

curve fitting using power function. The curve fitting 

parameters are shown in the figure. 

 

 
Figure 13. Interdependence of transmission 

line capacity on voltage level 

 
Finally, Figure 14 shows the distribution of line 

capacity data for different voltage levels. Unlike the 

capacity of the transformer, the best fitting function 

found to be the Normal distribution with the minimum 

KL divergence. Among voltage levels, 161 kV 

transformers exhibit the largest KL divergence for the 

Normal fit. However, the Normal distribution function 

was the best fit to the data. 

 

  

  
Figure 14. Empirical PDF and the Normal fit of 
transmission line capacity for 115, 138, 161, 

and 230 kV transformers 

 

4. Validation results with some synthetic 

grid models  

 
In this section, we try to compare and validate the 

seven parameters for the ACTIVSg cases in terms of 

their interdependence on the nominal voltage level. For 

comparison purposes, the average values of each 

parameter for different voltage levels are superimposed 

on the figures presented in the previous sections (see 

Figures 1, 3, 5, 7, 9, and 11). 

For transformer per unit reactance (Figure 1), all 

three ACTIVSg cases are within the scope and present 

independent values from voltage level which is 

consistent with what is found from FERC data. For 

transmission line distributed reactance (Figure 3), 

ACTIVSg500, and ACTIVSg2000 cases show 

comparable values with those of FERC data and there is 

no visible trend in the data, while ACTIVSg200 case 

seems to have some extraordinarily large values that 

make the average larger. For transformer capacity 

(Figure 5), all three cases show an increasing trend with 

respect to the voltage level which is consistent with the 

real data from FERC. However, the ACTIVSg500 and 

2000 cases seem to have oversized transformers for 

lower voltage levels. Transformer X/R ratio for 

ACTIVSg500 and 2000 seems a bit out of order (see 

Figure 7) and they don’t exhibit the same growth trend 

with regard to the voltage level as we recognized in 

FERC data. But, the ACTIVSg200 case exhibits a 

consistent trend with that of actual data. For 

transmission line length, X/R ratio, and capacity (see 

Figures 9, 11, and 13), all three ACTIVSg cases exhibit 

similar trend with close values to those found from 

statistical analysis on the real data. Table 1 summarizes 

the validation results for the three synthetic grid cases. 

Note that in the table, the check mark denotes to the 

consistency of the parameters and statistics from the real 

data for the corresponding ACTIVSg case, while we 

used TR (Tuning Required) for parameters whose 

average value don’t fall within the scope of those found 

from FERC data. 

Based on the above observations for ACTIVSg 

synthetic power system cases, the majority of 

parameters for these cases are consistent with statistics 

derived from the real-world systems. However, some 

parameters such as transformer size in ACTIVSg500 

and 2000 cases need to be tuned in order to conform to 

the real situation. This can be easily addressed by 

reassigning the transformer capacities based on 

empirical PDF identified for the parameter (see Figure 

6) using the average value shown in the curve fitting 

result of Figure 5. Similarly, for the transformers X/R 

ratio and transmission line distributed reactance, the 

same tuning procedure based on extracted statistics from 
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FERC data can be applied to cases with out of scope 

parameter values. This shows the practical application 

of the presented statistics in the paper in the context of 

synthetic power system modeling. 

 

Table 1. Validation on the interdependence 
of transmission branch parameter on voltage 

levels 

 Synthetic Grid Models 

Parameter 
ACTIVSg 

200 

ACTIVSg 

500 

ACTIVSg 

2000 

Transformer X 

(p.u.) 
   

Line 

X (/km) 
TR   

Transformer  

Capacity (MVA) 
 TR TR 

Transformer  

X/R ratio 
 TR TR 

Line Length 

𝒍 (km) 
   

Line 

X/R ratio 
   

Line Capacity 

(MVA) 
   

 

 

5. Conclusions and future work  

 
The statistical properties of the electrical and non-

electrical parameters of transmission branches from two 

real-world power systems are examined in this study. 

Seven parameters including transformer per unit 

reactance, transmission line distributed reactance and 

line length, transformer and transmission lines X/R 

ratio, and transformer and transmission line capacity are 

considered in the statistical analysis. It is found that 

some parameters exhibit strong interdependence on the 

nominal voltage level such as X/R ratios, branch 

capacities, and transmission line length, while others 

show no dependence on the voltage level like 

transformer per unit reactance calculated based on their 

own rating and transmission line distributed reactance 

(Ω/𝑘𝑚). Using the power function, the relationship 

between parameters and the voltage level is extracted 

and expressed to serve as validation metric and tuning 

criteria in synthetic grid modeling. These findings will 

be helpful in both creation of synthetic power grid test 

cases and validation of existing grid models. 

As the future extension of this study, we want to 

cover a wide range of electrical and non-electrical 

parameters of transmission branches to provide a 

comprehensive validation study for synthetic grid 

modeling applications. In addition, the verification of 

the empirical parameter-voltage level relationships 

based on physical constraints of the power system is of 

interest. 
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