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Abstract 
 
Real-time monitoring of power system dynamics us-

ing phasor measurement units (PMUs) data improves 
situational awareness and system reliability, and helps 
prevent electric grid blackouts due to early anomaly de-
tection. The study presented in this paper is based on 
real PMU measurements of the U.S. Western Intercon-
nection system. Given the nonlinear and non-stationary 
PMU data, we developed a robust anomaly detection 
framework that uses wavelet-based multi-resolution 
analysis with moving-window-based outlier detection 
and anomaly scoring to identify potential PMU events. 
Candidate events were evaluated via spatiotemporal 
correlation analysis and classified for a better under-
standing of event types, resulting in successful anomaly 
detection and classification of the recorded events.  
 
1. Introduction  
 

The phasor measurement units (PMUs) provide 
high-resolution, accurate, and synchronized information 
about power system state. Active deployment of PMUs 
enables a more reliable and efficient manner of power 
system operations by monitoring key metrics, such as 
angle and voltage stability, along with power system os-
cillations [1, 2]. According to North American Synchro-
phasor Initiative (NASPI), the installations of PMUs are 
rapidly increasing in the United States. In July of 2012, 
there were only about 500 PMUs installed across the 
country, but the number increased to over 2000 installed 
PMUs by 2015 [3]. Given the large coverage and rich 
capability of PMUs, extensive research in applying 
PMU measurements to enhance the situational aware-
ness for the power grid has been conducted [5-9], and 
PMUs have been utilized for voltage stability improve-
ments [4] and building of advanced Wide Area Moni-
toring Protection and control (WAMPC) systems [4]. 

The magnitude phasors data from PMUs were used to 
analyze voltage stability in real time [10]. Also, studies 
of phasor angle data from PMUs were performed for 
line outages detection [11].  

Since the amount of PMU data rapidly increased, 
implementation of data mining on PMUs can benefit the 
operator by tracking power system dynamics and detect-
ing conditions that could result in system blackouts. For 
example, anomaly detection of PMU data has been done 
using transmission line parameters [12], where continu-
ous monitoring of equivalent impedances of transmis-
sion lines is required. When Supervisory Control and 
Data Acquisition (SCADA) system data is available, a 
correlation examination of the PMU data can be useful 
[13] and optimal filtering and feature-based classifica-
tion approaches to improve accuracy of PMU anomaly 
detection have been studied [14], [15].  

 Data mining is often referred to as knowledge dis-
covery in databases (KDD), and finding or recognizing 
patterns can be thought of as fitting a model to the data. 
Pattern mining techniques can be used to analyze power 
system behaviors, such as frequency or voltage changes 
in the PMU measurements, as well as to localize these 
anomalous events.  

Anomaly detection can be accomplished by several 
signal-processing approaches, such as Eigenvalue Anal-
ysis (EA), Fourier Transform (FT), Short Time Fourier 
Transform (STFT), Spectral Analysis (SA), and others. 
Since PMU signals are usually nonstationary, many 
standard FT methods unsuitable for PMU applications. 
It has been demonstrated that advanced algorithms 
based on FT [16] can be applied to PMU data to improve 
dynamic phasor estimates. However, with a large 
amount of PMU data, computational requirements are 
significant [17]. Likewise, because STFT and SA ap-
proaches are based on fixed-size windowing techniques, 
they are less accurate and efficient in tracking signals in 
both time and frequency domains.  
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In contrast, the wavelet transform separates 1D sig-
nals into 2D components overlapping in time-frequency 
domain. The wavelet techniques have been widely used 
because of good multiple time-frequency resolution [18, 
19]. Wavelet transforms have been proven to be very ef-
ficient [20] in signal analysis, with a reduction of the 
number of coefficients as the scaling factor increases. 
Discrete wavelet transform (DWT) is sufficient to de-
compose and reconstruct most power quality problems, 
which can analyze information accurately and effi-
ciently [21]. Wavelet-based anomaly detection has been 
successfully applied for detecting network anomalies 
[22-26] for various systems and problems. Wavelet-
based multi-resolution analysis (MRA) uses a wavelet 
function and a scaling function to decompose and recon-
struct the signal at different resolution levels, allowing 
the anomaly phenomena to be detected and localized at 
each resolution level.  

In this study, MRA was applied to the PMUs in a 
U.S. Western Electricity Coordinating Council (WECC) 
system. The paper is organized as follows: Section 2 de-
scribes the theoretical background of MRA, and mov-
ing-window-based outlier detection and anomaly scor-
ing system. Section 3 demonstrates detection results us-
ing real-world PMU data, together with classification 
analyses of the verified events. The different scoring 
systems and spatiotemporal correlation analyses are dis-
cussed in Section 4.  

 
2. Methodology  
 
2.1. Multi-resolution analysis (MRA) 
  

Wavelet process using DWT can filter the input sig-
nal with lowpass and highpass filters. Lowpass filter is 
defined by a scale function, that is, 

 

𝜑𝜑𝑗𝑗,𝑘𝑘(𝑥𝑥) =  2
𝑗𝑗
2𝜑𝜑(2𝑗𝑗𝑥𝑥 − 𝑘𝑘)  (1) 

 
where 𝑘𝑘 is the translation coefficient and j is the scale 
factor [27]. The expansion function of any subspace 
can be built from double-resolution copies of them-
selves [28], so the scaling function can be written as  
 

𝜑𝜑(𝑥𝑥) =  ∑ ℎ𝜑𝜑(𝑛𝑛)𝑛𝑛 √2𝜑𝜑(2𝑥𝑥 − 𝑛𝑛)  (2) 
 
where ℎ𝜑𝜑 represents the scaling function coefficients. 
The highpass filter is defined by a wavelet function, 
 

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑥𝑥) =  2
𝑗𝑗
2𝜓𝜓(2𝑗𝑗𝑥𝑥 − 𝑘𝑘)  (3) 

 
It can be expanded to   
 

𝜓𝜓(𝑥𝑥) =  ∑ ℎ𝜓𝜓(𝑛𝑛)𝑛𝑛 √2𝜓𝜓(2𝑥𝑥 − 𝑛𝑛)  (4) 
 
where ℎ𝜓𝜓 contains the wavelet function coefficients. 
The DWT decomposes signals into the approximation 
(A) and detail (D) components, respectively. Approxi-
mation of the signal at resolutions 2−𝑗𝑗 , 𝑗𝑗 = 0, 1, 2 … can 
be obtained at decreasing levels of detail. A detailed the-
ory of MRA has been developed by Meyer [29], and can 
be mathematically expressed as 
 

𝑓𝑓(𝑥𝑥) =  ∑ 𝐶𝐶𝑜𝑜(𝑛𝑛)𝜑𝜑(𝑥𝑥 − 𝑛𝑛) +𝑛𝑛

∑ ∑ 𝐷𝐷𝑗𝑗(𝑛𝑛)2
𝑗𝑗
2𝑗𝑗−1

𝑗𝑗=0𝑛𝑛 𝜓𝜓(2𝑗𝑗𝑥𝑥 − 𝑛𝑛)  (5) 
  

where 𝐶𝐶𝑜𝑜 is the 0 level scaling coefficient and 𝐷𝐷𝑗𝑗  is the 
wavelet coefficient at scale j. The scaled and translated 
wavelet 𝜓𝜓(2𝑗𝑗𝑥𝑥 − 𝑛𝑛) in MRA is a decomposed signal 
in the time-frequency domain. Orthogonal wavelets ex-
panded by 2𝑗𝑗 carry signal variations at the resolu-
tion 2−𝑗𝑗. A number of wavelet families have been de-
veloped with different characteristics, and a well-
known family is the Daubechies (db) [30]. In our pa-
per, Haar (db1) wavelet is employed in the MRA. 
Haar’s wavelet has 1 moment of wavelet function, 
which has a linear phase and a complete localization in 
the time domain [30] [31].  
 
2.2. Anomaly scoring and classification 
 

The raw PMU data that was used in this study con-
tains 12 units representing signals at 12 different loca-
tions in the WECC system. For each PMU, there are 
four attributes, including the voltage, angle variation 
(lag 1 differences for PMU phasor angle), frequency, 
and rate of changes of frequency (ROCOF). The PMUs 
are stored in PDAT format [32], developed by the 
Bonneville Power Administration (BPA). The format 
was based on IEEE Std. C37.118.2-2011 data frames 
[33]. Each file contained 1 minute of PMU data at a 60 
samples per second resolution. In this paper, the PMU 
signals were re-sampled at 1Hz for our framework since 
we focused on detecting anomalous events which usu-
ally lasted for a number of seconds and the variability 
within 1 second generally has weak correspondence to 
the potential events.  

To localize anomalies at each decomposed resolu-
tion level, a moving-window-based outlier detection ap-
proach was proposed. The moving window can retain 
both reliability and sensitivity of the detection perfor-
mance. The anomalous score was set to be 1 if an anom-
aly was detected at each resolution level. The anomaly 
score matrices were the summation of scores at multi-
resolution levels across 12 units for each PMU attribute. 
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The anomalous scores can be used to rank the ‘likeli-
hood’ of events. Given the fact that the recorded actual 
events last between 5 and 20 seconds, the detected 
anomalies were further prescreened by the event dura-
tions. Spatiotemporal correlation analysis were applied 
to the anomaly candidates to distinguish between false 
alarms and real events. The false alarms are expected to 
have weak spatiotemporal correlations due to locality 
and weak continuity, although local events may actually 
occur for only a few PMUs. In general, strong correla-
tions across units should verify and confirm the real 
events [34].  

For the verified events, we deployed the cluster anal-
ysis and Principal Component Analysis (PCA) for iden-
tifying similarities between the events. Clustering 
groups multiple objects by putting similar objects in the 
same group. The appropriate clustering algorithm and 
clustering model parameters are problem-dependent. In 
this study, we used Expectation Maximization [35] al-
gorithm for clustering analysis  [35-37]. EM-clustering 
is a general model-based approach for approximating 
maximum likelihood estimations using Bayesian infor-
mation criterion (BIC) [38]. PCA is also useful for sim-
ilarity identification; it converts observations of possi-
bly correlated variables into a set of values of linearly 
uncorrelated variables (called principal components) us-
ing orthogonal transformation. The first principal com-
ponent has the largest possible variance and the most 
variability. By combining quantitative clustering meth-
ods, PCA helps highlight which attributes are useful for 
discriminating the individual events.  

The framework of wavelet-based anomaly detection 
and classification is illustrated in Figure 1. In the next 
section, we will present the detection results using the 
proposed framework.  

  

 
Figure 1. Wavelet-based PMU anomaly de-

tection and classification framework. 
 

 
3. Results  

 
We evaluated our detection framework on the actual 

Western Interconnection synchrophasor data. The raw 
PMU signals were down-sampled to 1Hz, so the time 
resolution for the MRA procedure was 1 second, and the 
first three levels of MRA, D1, D2 and D3, have resolu-
tions of 2-, 4- and 8-seconds, respectively. The 2D time-
frequency representation of real-world PMUs has sig-
nificant benefits compared to the regular 1D data in the 
time domain for event detection perspective. Figure 2 
illustrates MRA and moving-window outlier detection 
results for the first unit of PMUs (PMU1) using the fre-
quency attribute. Given the observations of the signal 
and detailed wavelet coefficients, the events are more 
evidenced from the D3, D2, and D1 coefficients than 
from the original, and it thus helps to increase event lo-
calization accuracy. This increase with detail coeffi-
cients is the key-component of our event detection algo-
rithm. The recorded historical events were marked in red 
in Figure 2(a), which shows that the anomalous candi-
dates have been identified at each resolution level using 
our detection framework. 

In this study, we used a 30-day real-world PMU da-
taset to test the framework, with 32 historical events that 
were recorded during the 30-day testing time period. We 
analyzed four attributes, including the voltage, angle 
variation, frequency and ROCOF for each PMU dataset. 
In general, the ROCOF attribute has nosier signals than 
the rest of the attributes, and the detected candidates 
have weak spatiotemporal correlations. As observed in 
[14], ROCOF has large variance which reduces the 
event detection accuracy due to sensor and grid dynam-
ics. The angle variation attribute contains similar (and 
relatively redundant) information to the frequency at-
tribute because the frequency is derived from the angel 
variation. Therefore, it is warranted to focus on the volt-
age and frequency attributes for event detection in this 
evaluation. 
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Figure 2. An MRA example using PMU 1 fre-

quency attribute. The detected events at each 
scale are marked in red.  

 
In our study, all recorded events have been detected 

with high scores. For example, Figure 3 illustrates one 
event occurred at all 12 units, which is detected based 
on the frequency attribute. At the time of event, the fre-
quency amplitude jumped from 59.96 to 60.01 Hz 
within 10 seconds. The 12 units behave consistently at 
the moment of event occurrence, resulting in strong spa-
tial correlations. This warrants increased situational 
awareness and indicates systematic behavior and area-
wide situation to be monitored. The same event was also 
detected from the voltage attribute, with strong correla-
tions across all units as shown in Figure 4. The ampli-
tude of voltage for each unit increased by over 1000 
Volts within 10 seconds. After the event, the voltage sta-
bilized, but did not necessarily return to the same volt-
age level as prior to the event. 

Two other recorded historical events were reported 
during the same day. In fact, according to the scoring 

system, the event in Figure 3 was ranked #7 in terms of 
the frequency magnitude. The other two were ranked #1 
and #2 respectively. Their ranks in terms of voltage 
events are #2 (the event in Figure 4), #3 and #6 respec-
tively. Besides recorded under-frequency events, we 
also detected several over-frequency events with com-
parable or even higher scores.  

 

 
Figure 3. An example of frequency event oc-

curred across all units. The detected events for 
each unit are marked in red. The recorded his-
torical events are marked in green.  
 
 
 

 
Figure 4. An example of voltage event oc-

curred across all units. The detected events for 
each unit are marked in red. The recorded his-
torical events are marked in green. 

 
  

 
Our framework also enables detection of anomalies 

when they are local. During another time period on the 
same testing day, two voltage events were detected, as 
shown in Figure 5, where 7 out of the 12 units did not 
show evidence of the same anomalies. The first event 
occurred at unit 9 only, and the second event happened 
at units 3, 5, 8 and 10, respectively. Figure 6 shows the 
frequency signals for the same time period as in Figure 
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5, with no frequency events detected, suggesting that the 
events that happened during this time period were 
mainly voltage-related. Special attention is needed for 
these types of events as they cannot be treated as “bad 
data” although the spatiotemporal correlations are rela-
tively weak.  

 

 
Figure 5. Two examples of voltage events 

detected at different local units. The detected 
events for each unit are marked in red. No his-
torical events were recorded during this time 
period. 

 

 
Figure 6. PMU Frequency during the same 

time period as Figure 6. No frequency events 
were detected. 

 
PCA were applied to evaluate and classify the iden-

tified events. The PCA result is illustrated in Figure 7. 
The left panel shows the first two principal components 
of three attributes (voltage, angle variation, and fre-
quency). The events can be grouped easily based on the 
Biplot. For example, anomalies #83, #108, #109 and 
#142 have outstanding differences in both frequency 
and angle variation compared to other anomalies; while 
anomalies #11 and #141 have outstanding voltages 
among the anomalies. Another unsurprising observation 
is that the angle variation has a strong correlation with 
the frequency, and the two have redundant information 

with very similar behaviors contributing mainly to the 
first principal component. The variability of voltage is 
the major contributor to the second component. By re-
moving the redundant angle variation in PCA, the volt-
age and frequency are nearly orthogonal factors as 
shown in the right panel in Figure 7. PCA helps classify 
the identified events to be either frequency-related or 
voltage-related. However, there are a few exceptions; 
for example, events #2, #85, #113 and #116 are clearly 
identifiable using both frequency and voltage factors. 
And three of them were actually the historical recorded 
events, which were detected using both voltage and fre-
quency attributes. 
 

 
Figure 7.  PCA Biplots of detected events us-

ing different PMU attributes. The historical rec-
orded events are circled in blue.  
 

EM-clustering was used to assign the events to dif-
ferent classes. The goal of EM clustering is to estimate 
the means and standard deviations for each cluster so as 
to maximize the likelihood of the observed data. The R-
package mclust [39] was used for the clustering, and the 
optimum number of clusters was determined to be 3, 
based on voltage, angle difference, and frequency attrib-
utes. The clustering results are shown in Figure 8. Note 
that the recorded actual events were all clustered into the 
same group (i.e., class 2) with the smallest group size. 
The events falling into the same class (i.e., class 2) as 
the recorded ones are potential events of interest. The 
clustering approach helps reduce the number of events, 
and therefore reduce the chance of false alarms. The his-
torical recorded events tend to have outstanding anom-
alies in terms of both voltage and frequency, and there-
fore can be considered as voltage-frequency-related 
events, as do the events in the entire cluster 2.  
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Figure 8. Clustering analysis of detected 

events using three PMU attributes including 
voltage, angle variation, and frequency. The 
historical recorded events are marked in blue.  
 
4. Discussion 
 

We described and developed a PMU signal analysis 
framework that features a scoring system for the anom-
aly detection as explained in Section 2. We also evalu-
ated the effect of an alternative scoring system on our 
detection framework. Compared with the additive scor-
ing system, the alternative multiplicative scoring system 
is much stricter, because the score for each MRA scale 
at each unit is multiplied to obtain scores of either 0 or 
1. This multiplicative scoring system, reduced both the 
false alarm and anomaly detection rates. Future work 
will address techniques for enhancing the ratio of anom-
aly detection over false alarms. 

Wu and Xie’s work [34] shows that spatiotemporal 
analysis can be applied to reduce the false alarm rate ef-
fectively.  In general, real events have strong spatial and 
temporal correlation, but this is not always true due to 
measurement errors, bad data, and local events. Further 
investigation of the real-world PMU data from a variety 
of sources and scenarios will be needed, especially for 
those units/regions where local events are likely to oc-
cur.    
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