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Abstract 
The e-government includes Wireless Personal Area 

Network (WPAN) enabled internet-to-government 
pathways. Of interest herein is Z-Wave, an insecure, 
low-power/cost WPAN technology increasingly used in 
critical infrastructure. Radio Frequency (RF) 
Fingerprinting can augment WPAN security by a 
biometric-like process that computes statistical 
features from signal responses to 1) develop an 
authorized device library, 2) develop classifier models 
and 3) vet claimed identities. For classification, the 
neural network-based Generalized Relevance 
Learning Vector Quantization-Improved (GRLVQI) 
classifier is employed.  GRLVQI has shown high 
fidelity in classifying Z-Wave RF Fingerprints; 
however, GRLVQI has multiple hyperparameters.  
Prior work optimized GRLVQI via a full factorial 
experimental design.  Herein, optimizing GRLVQI via 
stochastic approximation, which operates by iterative 
searching for optimality, is of interest to provide an 
unconstrained optimization approach to avoid 
limitations found in full factorial experimental designs.  
The results provide an improvement in GRLVQI 
operation and accuracy. The methodology is further 
generalizable to other problems and algorithms. 

 
1. Introduction  

 
The e-government provides for the efficient 

information dissemination via electronic means and the 
necessary information and communication 
technologies (ICTs) for information dissemination 
within and around the government [1].  Due to the 
sensitivity of information, securing e-government 
networks is a primary concern [2]. However, 
adequately securing e-government networks, servers, 
firewalls and content is an issue with known 
deficiencies [2].  

Wireless Personal Area Network (WPAN) devices 
are commonly low-cost and low-power devices which 
enable mesh networks comprised of smart internet of 
things (IoT) devices [3].  Z-Wave devices are among 

the IoT enabling WPAN devices which support e-
government [4].  Increasingly, such devices are found 
in e-government and Critical Infrastructure (CI) 
applications such as hospital [5] and electrical smart 
grid [6]. 

Security issues exist with Z-Wave, and other 
WPAN devices, due to 1) government-to-internet 
pathways, 2) the tendency for e-government 
connections to Critical Infrastructure (CI) control 
technologies, e.g. [7], and 3) since one compromised 
device can threaten the security of the entire network 
[8]. These issues are compounded by inherent 
vulnerabilities in WPAN technologies, see [9] [10].  
For these reasons, enabling robust security by 
improving the ability to determine Z-Wave device 
identities, e.g. after they have claimed a bit-level 
identify (such as MAC address), is of interest. 

To vet the identity of Z-Wave WPAN devices, the 
standard three step process (library building, classifier 
model development, and verification), as used in 
biometrics [11], is followed. However, to characterize 
communication devices, one logically compares 
predefined signal characteristics, such as preambles, 
between devices operating on the same standard.  For 
this purpose, Radio Frequency (RF) fingerprinting is 
used whereby the communication signal of interest is 
examined, divided into bins, and statistical features are 
computed for each bin [12].   

To discriminate between devices using RF 
fingerprint features, machine learning (ML) methods 
are employed.  Two ML methods have generally been 
employed: Multiple Discriminant Analysis (MDA) and 
the Generalized Relevance Learning Vector 
Quantization-Improved (GRLVQI) classifier.  MDA is 
a linear ML algorithm whereas GRLVQI is a nonlinear 
Artificial Neural Network (ANN) algorithm.  
Generally, for Z-Wave, GRLVQI outperforms MDA in 
classification accuracy [13].  However, GRLVQI has 
multiple algorithmic settings, called hyperparameters, 
which influence the way in which the classifier is 
trained. Little has been published in GRLVQI, or 
ANN, literature on these hyperparameters beyond 
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vague guidelines for very specific applications [14] 
[15].  

Prior work, c.f. [13], examined full factorial 
GRLVQI algorithm optimization relative to Z-Wave 
device identification for its five hyperparameters.  
However, the results and approach of [13] were not 
ideal since they: 1) were highly tailored to the example 
Z-Wave dataset and thus possibly not applicable to 
other WPAN device signals, 2) involved exploring 
only a small region of the design space and utilized 
subject matter expertise to find appropriate high (+) 
and low (–) settings, and 3) involved only a single 
replication and thus ignored the randomness existing in 
any ANN algorithm, including GRLVQI, result.   

Efficiently determining optimal hyperparameters is 
thus of interest. More efficient alternatives to the 
approach of [13] include 1) considering an alternative 
experimental designs, e.g. [16] [17], and 2) stochastic 
estimation, e.g. [18].  Although various experimental 
design approaches have been used to find optimal 
hyperparameter settings, see [19], these do not avoid 
the limitations in specifying the high and low settings 
to examine. Stochastic approximation begins with 
initial hyperparameter settings and proceeds to search 
throughout the space to find optimal settings. Thus 
stochastic approximation is of interest since it does not 
artificially restrict the search space. 

This work presents a framework for general 
algorithm optimization via stochastic approximation 
for sequential design.  In doing so, this extends the 
initial work of [18] by allowing GRLVQI to find 
optimal settings in an iterative fashion for its four 
continuous hyperparameters: gradient descent learning 
rate (𝜖𝜖), relevance learning rate (𝜉𝜉), conscience rate 1 
(𝛾𝛾), and conscience rate 2 (𝛽𝛽).  Additionally, the work 
of [13] is extended by creating a more efficient 
approach to optimizing GRLVQI settings and by 
creating a more robust approach to GRLVQI 
optimization by averaging replication results.   

 
2. WPAN Devices and E-Government 
Concerns  
 

While much of the ICTs used in e-government 
applications involve access to information [20], 
increasingly the e-government includes other 
communication technologies such as WPAN devices 
[3] [21] and Supervisory Control and Data Acquisition 
(SCADA) [22] systems. SCADA systems generally 
connect to infrastructure, including CI, while WPAN 
devices serve as a backbone for IoT connectivity where 
devices ranging from refrigerators to Heating, 
Ventilation and Air Conditioning (HVAC) [23].  While 
these systems can be separate, and more secure, e-

government pathways can exist through systems being 
connected at various points; thus there generally exist 
a link between these networks and the internet [24] 
[25].   
 
2.1.  Z-Wave Devices  
 

Z-Wave devices are a wireless communication 
devices are small, low-cost hardware devices that are 
advantageous for WPANs because they support many 
network topologies, is simpler to work with than 
ZigBee [26]. However, Z-Wave is generally 
considered as less secure than competing WPAN 
technologies given 1) originally lacked built in 
encryption [27] and 2) the proprietary nature of the 
standard making it difficult for third parties to provide 
enhancements [28].  

Vendors are largely responsible for integrating Z-
Wave capabilities into their system. However, to 
produce a Z-Wave device, vendors must coordinate 
with Sigma Designs and sign a Non-Disclosure 
Agreement (NDA) to gain access to the proprietary 
details of the Z-Wave standard.  Once an NDA is in 
place, hardware and software to develop Z-Wave 
devices are provide by Sigma Designs [10]. While 
Sigma Designs will provide examples to vendors who 
sign an NDA, without a signed NDA specific 
characteristics of the protocol are unknown [10].  The 
protocol describes general physical layer (PHY) and 
medium access layer characteristics, but the routing 
and application layer specifications are protected by the 
NDA enforced by Sigma Designs [10].  Thus one is 
confronted with a digital forensics, c.f. [29] [30],  
problem in analyzing the Z-Wave standard without an 
NDA and being bound by its restrictions.   

 

 
Figure 1. Z-Wave device protocol 

characteristics [27] [28] [31]. 
 
What is known about Z-Wave is that it follows the 

ITU-T G.9959 protocol [32], which is a similar ISO 
architecture to ZigBee and TCP/IP, as seen in Figure 1.  
General Z-Wave signal characteristics are known and 
presented in Table 1.  Z-Wave is also known to have a 
predefined preamble and Start of Frame (SoF) [31], 
which is conceptualized in the PHY packet structure 
seen in Figure 2.  Z-Wave also includes a payload-
based home identification (32-bits) and source 
identification (8-bits) [28].  Due to their proprietary 

Page 2226



nature, further knowledge of Z-Wave signal 
characteristics is limited and thus digital forensic 
analysis of Z-Wave devices remains an emerging area 
of interest [10]. 

 
Table 1.  General Z-Wave Device 
Characteristics 
DEVICE Z-WAVE 
STANDARD Proprietary 
FREQUENCY 906 MHz  
BIT RATE 40 Kbits/s 

SECURITY 
None (200 and 300 series 
models) 
AES 128 (400 series models) 

LATENCY ~1000 ms 
RANGE 30 - 100 m 
MESSAGE SIZE (BYTES) 64 (max) 
TOPOLOGY Star, cluster, mesh 

 
Figure 2. Z-Wave device signal characteristics 

[27] [28] [31]. 
 
3. RF Fingerprinting 
 

RF Fingerprinting, as conceptualized in Figure 3 
via the RF-DNA (Distinct Native Attributes) 
fingerprinting process of [12], is a systematic process 
of collecting communication signals. RF fingerprinting 
involves selecting a Region of Interest (ROI) to extract, 
then digital filtering, computation of the instantaneous 
amplitude, frequency and phase, fingerprint 
generation, and finally classifier model development 
and verification testing [12]. To simulate degraded and 
distance collections and environmental conditions, 
independent like-filtered Additive White Gaussian 
Noise (AWGN) is added to collected signals [12]. 

When used effectively, RF fingerprinting provides 
biometric-like security of communication devices 
whereby unique fingerprint features are computed for 
a communication signal’s ROI.  Fingerprint features of 
variance, skewness and kurtosis are used for this task 
[12], which is similar to the use of mathematical 
moments for identification problems [33]. Standard 
predefined ROIs, e.g. preambles which have a 
specified sequence of 1s and 0s, are selected for RF 
fingerprinting and then RF fingerprint features are 
computed for this ROI.  Due to production variations 
inherent in integrated circuit manufacturing, minute 

differences between devices at a serial number level are 
resolvable through RF fingerprinting. 

 
3.1 Z-Wave Signal Collection 
 

The work herein considered the Z-Wave dataset 
used previously in [13] [34].  This dataset considered 
three devices, ND = 3, which were Aeon Labs’ Aeotec 
Z-Stick S2 transmitters.  As discussed in Section 2.2, 
characteristics of the preamble response (the first 
8.3 ms of Z-Wave bursts) are known for Z-Wave and 
this was considered as the ROI for RF fingerprinting.   

 
Figure 3. Conceptualization of Z-Wave signal 

collection within the RF fingerprinting generation 
and exploitation process of [12] 

 
Of interest were collecting preamble responses, and 

a total of 230 preambles were collected using a signal 
collection setup that had each Z-Stick transmitter being 
considered individually.  As conceptualized at the top 
of Figure 3, to ensure laboratory collected signals were 
low noise, each Z-Stick device was located 10 cm from 
a vertically-oriented log periodic antenna (LP0410, 
Ettus Research, Santa Clara, CA), which was 
connected via a Gigabit Ethernet cable directly to a 
software defined radio device RF input (USRP-2921, 
National Instruments) [34].   
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Responses were collected for each device at a 
sample frequency of fs = 2 Msps with burst detection 
via an amplitude-based leading edge detector with a -6 
dB threshold [34]. The resultant data was collected 
with a Signal-to-Noise Ratio (SNR) at SNRC = 24.0 dB 
[34]. AWGN was apply to achieve operating 
conditions of SNR ∈ [0 24.0] dB in 2 dB increments 
[34] [12].  Since 3 devices were considered, all devices 
were considered as serving in “authorized” roles.  
Thus, this research does not consider identity 
impersonation attacks by “rogue” devices.   
 
3.2. RF-DNA Fingerprint Generation 
 

Once burst signals were collected, RF fingerprints 
were generated from the preamble ROI, as in the RF-
DNA [12] [34].  RF fingerprints were computed by 
1) dividing each response into NR contiguous equal 
length bins, 2) calculating Ns features within each bin 
and across the entire response (NR + 1 total bins), and 
3) computing regional fingerprint vectors [34], [12]. 
RF regional fingerprint vectors were organized as, 

 𝐹𝐹𝑅𝑅𝑅𝑅 = [𝜎𝜎𝑅𝑅𝑅𝑅2 , 𝛾𝛾𝑅𝑅𝑅𝑅 , 𝜅𝜅𝑅𝑅𝑅𝑅  ]1×3  , 
(1) 

where 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑅𝑅 + 1, for the NS = 3 RF fingerprint 
features (statistics) of variance (𝜎𝜎2), skewness (𝛾𝛾), and 
kurtosis (𝜅𝜅) [34], [12]. This process is conceptualized 
in Figure 4. 

 
Figure 4. Conceptualization of Z-Wave RF 

fingerprint computation 
 

A fingerprint vector for each of the NC 
characteristics is formed from (1) as,  

 𝐹𝐹𝐶𝐶 = �𝐹𝐹𝑅𝑅1  𝐹𝐹𝑅𝑅2 ⋯𝐹𝐹𝑅𝑅(𝑁𝑁𝑅𝑅+1) �
1×𝑁𝑁𝑠𝑠(𝑁𝑁𝑅𝑅+1)

  ,  (2) 

which are concatenated to form the final fingerprint 
vector: 

 𝑭𝑭 = �𝑭𝑭𝒂𝒂 ⋮ 𝑭𝑭𝝓𝝓 ⋮ 𝑭𝑭𝒇𝒇 �
1×𝑁𝑁𝑠𝑠(𝑁𝑁𝑅𝑅+1)×𝑁𝑁𝐶𝐶

  .   
(3) 

For Z-Wave device discrimination assessments, 
and consistent with [34], NR = 20 subregions spanning 
the ROI were considered within NC = 3 Z-Wave 
instantaneous time domain responses of amplitude (𝑎𝑎), 
phase (𝜙𝜙), and frequency (𝑓𝑓).  Thus, a total of NF = 189 
features are computed with NTRN = 115 Training (TNG) 
and NTST = 115 Testing (TST) observations per device. 
When considering the NC = 3 devices, our dataset has a 
total of NTRN = 345 and NTST = 345, each with NF = 189 
features. To avoid the possibility of overfitting, the 
TNG and TST data was sequestered during model 
development. 

 
3.3. Classifier Models 
 

Various classifiers have been applied for 
discriminating between communication devices based 
on RF Fingerprints, as seen in [35].  However, MDA 
and GRLVQI are of interest herein due to their 
illustrated performance advantages in RF 
fingerprinting problems [13] [34]. 

 
3.3.1.  GRLVQI Classifier Model. The GRLVQI 
classifier employed herein is based on the work in [36], 
[35] and extends the Learning Vector Quantization 
(LVQ) approach of Kohonen [15].  LVQ algorithms 
are epistemologically self-organizing ANNs [37], and 
employ nearest neighbor approaches through the 
nearest prototype vector optimization process whereby 
the “nodes” or “prototype vectors” (PVs) of the ANN 
are iteratively moved to characterize the data [38].  In 
operation, LVQ algorithms train prototype vectors to a 
given class label by moving correctly classified PVs 
closer to a given class, incorrectly classified PVs are 
moved away from a given class. The additional letters 
in the GRLVQI acronym signify embellishments to the 
algorithm: G (generalized): a sigmoidal cost function 
[39] [40], R (relevance): relevance learning [41] [42], 
and I (improved): improvements in PV update logic 
and operation [36] [43]. GRLVQI extends GRLVQ 
[42] with the conscience learning of DeSieno [44], 
improved PV update logic, and a frequency based 
maximum input update strategy [36].   

Due to the embellishments, GRLVQI has five 
hyperparameters to consider when creating a model: 
1) the gradient descent learning rate (𝜖𝜖) which 
determines how fast the PVs move [15], 2) the 
relevance learning rate (𝜉𝜉), which determines how 
quickly variables are penalized for being insignificant 
[41], [42], 3-4)  conscience rate 1 (𝛾𝛾), and conscience 
rate 2 (𝛽𝛽), which both determine how frequently 
individual PVs should be moved [36], [43] and 5)  the 
number of prototype vectors (NPV) instantiated per 
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class, which balances under and overfitting.  Beyond 
rough heuristics, c.f. [14] [42], no “hard and fast” rules 
exist to determine GRLVQI parameters [36].  

 
3.3.2.  Multiple Discriminant Analysis.  MDA is a 
linear approach to classification which is a multi-class 
extension of Fisher’s two class linear classifier [35].  
MDA considers input fingerprint matrix F and NC 
classes and involves an eigenvector-based projection of 
the data relative to a ratio of between-group to within-
group sum-of-squares, the Fisher criterion [45]. Since 
MDA is intuitive, computationally inexpensive and has 
shown significant performance advantages over 
GRLVQI for many RF-DNA Fingerprinting problems, 
e.g. ZigBee [34], it is included to provide a baseline 
performance reference, consistent with [35]. 
Additionally, MDA classifier results are not 
susceptible to random variations due to sampling since 
this provides a direct projection of the data.    
 
3.4. Quantifying Algorithm Performance 

 
Consistent with [13], both classification and 

verification accuracy is considered. Classification 
accuracy is considered by developing classifier models 
for each SNR operating point and then evaluating 
performance for against both the TNG and TST 
datasets in a traditional confusion matrix approach for 
“one vs. many” scenarios as in [12].  Verification 
accuracy is considered in a “one vs one” scenario for a 
developed classifier model whereby a communication 
device claims an identity, authorized or 
rogue/unauthorized, and the communication device’s 
signal is evaluated using the classifier model and the 
associated probability mass function [46].   

 
3.4.1.  Classification Accuracy. Classification 
performance is evaluated by examining a plot of 
average percent correct classification (%C) versus SNR 
[13]. Consistent with [13], both a gain measure and an 
area under the classification curve approach can be 
used.  Here, gain is defined as the reduction in required 
SNR, expressed in dB, for two methods to achieve the 
same %C, generally an arbitrary performance 
benchmark of %C = 90% accuracy [13] [47]. However, 
gain only considers one part of the %C vs. SNR curve; 
the Relative Accuracy Percentage (RAP) was 
introduced in [13] to provide for classifier assessment 
over the entire curve by 1) computing the Area Under 
Classification Curve (AUCC) values for each method 
via a trapezoidal approximation, and 2) computing the 
RAP of a given method’s AUCC relative to the 
baseline AUCCBase method.   
 As discussed in [13], gain values, GSNR, are 
interpretted as 

1) GSNR < 0.0 (negative), a given method achieves the 
same %C as the baseline at a higher SNR, i.e. the 
method underperforms the baseline method. 

2) GSNR = 0.0, a given method achieves the same %C 
as the baseline at the same SNR 

3) GSNR > 0.0 (positive), a given method achieves the 
same %C as the baseline at a lower SNR, i.e. the 
method outperforms the baseline method. 

As developed in [13], RAP is interpreted as: 
1) RAP < 1.0, a given method achieves overall lower 

%C than the baseline 
2) RAP = 1.0, a given method achieves overall %C 

comparable to the baseline 
3) RAP > 1.0, a given method exceeds overall 

baseline %C performance. 
 
3.4.2.  Verification Accuracy. Verification 
performance is evaluated using Receiver Operating 
Characteristic (ROC) curves at a specified SNR, 
typically at the lowest SNR a %C = 90% accuracy 
threshold is reached [13]. In operation, and as 
described in [47], [46], verification involves: 1) an -
unknown device claiming bit level credentials (e.g., 
MAC address) which matching a specific authorized 
device, 2) extracting RF fingerprint features from the 
unknown device, and 3) comparing current RF 
fingerprints against the model for the claimed 
authorized device having the claimed identity. For 
authorized devices, ROC curves are plotted as True 
Verification Rate (TVR) versus False Reject Rate 
(FRR). To evaluate performance, two approaches are 
used [13]: 1) the percentage authorized (%Aut) at an 
arbitrary TVR ≥ 90% at FVR ≤ 10% threshold and 2) 
the mean area of the ROC curves (AUCM).  The AUCM 
approach was developed in [13] since %Aut reflects 
coarse and dichotomous sampling and dichotomous, 
e.g. ND = 3 devices %Aut ∈ [0, 33, 66, 100], and thus 
%Aut does not distinguish between relative 
performance differences between competing 
classifiers.   
 
4. Multivariate Stochastic Approximation 
based Optimization of Hyperparameters 
 

Consistent with general ANN operations, the 
performance of the GRLVQI classification algorithm 
after training is a random variable as the training data 
set is randomly selected.  Thus, determining optimal 
hyperparameters for the GRLVQI requires an 
appropriate experimental design. 

We use a sequential design strategy [48] which 
begins with an intitial guess of the hyperparameter 
settings.  Based on these settings, GRLVQI is trained 
and the results from this training determine a new set 

Page 2229



of hyperparameters.  This procedure is repeated until it 
converges on a particular set of hyperparameters.  To 
update the hyperparameter values each iteration,  we 
use the method of Kiefer and Wolfowitz [49], which is 
a stochastic approximation version of gradient descent 
optimization.   

We present a minimal amount of the theory behind 
stochastic approximation to demystify the psuedocode 
for the optimization algorithm. 
 
4.1. Stochastic Approximation Theory 
 

For the Kiefer and Wolfowitz approach of our 
sequential design strategy, we will let ℎ𝑅𝑅,𝑗𝑗 be the value 
of the 𝑖𝑖𝑡𝑡ℎ of 𝑁𝑁 continuous valued hyperparameter of 
the GLVQI at iteration 𝑗𝑗 of the optimiztion procedure, 
and let 𝒉𝒉𝑗𝑗 be vector of these hyperparameters. Let 
𝑓𝑓�𝒉𝒉𝑗𝑗� be the performance measure of interest of 
GRLVQI.  Finally, let {𝑎𝑎𝑛𝑛} and {𝑐𝑐𝑅𝑅} be sequences such 
that 

 

∑ 𝑎𝑎𝑅𝑅∞
𝑅𝑅=1 = ∞ , 

∑ 𝑎𝑎𝑛𝑛𝑐𝑐𝑛𝑛∞
𝑅𝑅=1 < ∞ , 

and 
∑ 𝑎𝑎𝑛𝑛2𝑐𝑐𝑛𝑛−2∞
𝑅𝑅=1 < ∞  . 1  

(5) 

 
Using (5), let 𝒄𝒄𝑗𝑗𝑅𝑅 = �𝟎𝟎𝑅𝑅−1, 𝑐𝑐𝑗𝑗 ,𝟎𝟎𝑁𝑁−𝑅𝑅� where 𝟎𝟎𝑛𝑛 is a 

vector of zeroes of size 𝑛𝑛. The iteration function is 
given by 

 

 
⎣
⎢
⎢
⎢
⎡
ℎ1,𝑗𝑗+1
⋮

ℎ𝑅𝑅,𝑗𝑗+1
⋮

ℎ𝑛𝑛,𝑗𝑗+1⎦
⎥
⎥
⎥
⎤

=
𝑎𝑎𝑅𝑅
2𝑐𝑐𝑅𝑅

⎣
⎢
⎢
⎢
⎢
⎡ 𝑓𝑓�𝒉𝒉𝑗𝑗 + 𝒄𝒄𝑗𝑗1� − 𝑓𝑓�𝒉𝒉𝑗𝑗 − 𝒄𝒄𝑗𝑗1�

𝑓𝑓�𝒉𝒉𝑗𝑗 + 𝒄𝒄𝑗𝑗𝑅𝑅�
⋮

−𝑓𝑓�𝒉𝒉𝑗𝑗 − 𝒄𝒄𝑗𝑗𝑅𝑅�
⋮

𝑓𝑓�𝒉𝒉𝑗𝑗 + 𝒄𝒄𝑗𝑗𝑁𝑁� − 𝑓𝑓�𝒉𝒉𝑗𝑗 − 𝒄𝒄𝑗𝑗𝑁𝑁�⎦
⎥
⎥
⎥
⎥
⎤

 

 

(6) 

The algorithm terminates when the norm of the 
differences between 𝑓𝑓(𝒉𝒉) of two consective iterations 
is small. 
 It should be noted that stochastic approximation 
finds locally optimal solutions, which are potentially 
significantly different from the globally optimal 
solutions.  While it is never possible to be sure that we 
have arrived at the globablly optimal solution with 
stochastic approximation, we can identify multiple 
locally optimal solutions and select the best by running 
the algorithm multiple times with different intital 

                                                           
1 Suggested sequences are {𝑎𝑎𝑛𝑛} = 1

𝑛𝑛
 and 𝑐𝑐𝑛𝑛 = 𝑛𝑛−

1
3 

solutions (however, for this work, we have chosen to 
do only one run). 
 
4.2. Sequential Design Algorithm 
 
 In operation, the process in Section 4.1 can be 
applied to a given algorithm by following a few steps.  
Specifically we employ the following algorithm to find 
the (locally) optimal hyperparamers of 𝝐𝝐, 𝝃𝝃,𝜸𝜸,  and 𝜷𝜷 
for GRLVQI; however, this can be applied to many 
other algorithms. 
 The algorithm works as follows, with 𝝉𝝉 being a 
termination criteria and 𝒇𝒇�𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓(𝒉𝒉𝒊𝒊) representing the 
mean value of RAP values after training individual 
GRLVQI classifiers for 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 replications.  Also let 
|𝒉𝒉𝒊𝒊 − 𝒉𝒉𝒊𝒊−𝟏𝟏| be the L1 norm of 𝒉𝒉𝒊𝒊 and 𝒉𝒉𝒊𝒊−𝟏𝟏. 

1. Set 𝒊𝒊 = 𝟏𝟏.  
2. Specificy initial hyperparameter values for 

𝝐𝝐𝟏𝟏, 𝛏𝛏𝟏𝟏,𝜸𝜸𝟏𝟏, and 𝜷𝜷𝟏𝟏 
3. Let 𝒉𝒉𝟏𝟏 = (𝝐𝝐𝟏𝟏, 𝛏𝛏𝟏𝟏,𝜸𝜸𝟏𝟏,𝜷𝜷𝟏𝟏). 
4. While |𝒉𝒉𝒊𝒊 − 𝒉𝒉𝒊𝒊−𝟏𝟏| < 𝝉𝝉 or 𝒊𝒊 ≥  𝟏𝟏 

a. Set 𝒂𝒂𝒊𝒊 = 𝟎𝟎.𝟏𝟏
𝒊𝒊

 and 𝒄𝒄𝒊𝒊 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟏𝟏𝒊𝒊− 𝟏𝟏𝟑𝟑. 

b. Set 𝐑𝐑𝐑𝐑𝐑𝐑𝐮𝐮,𝐣𝐣 = 𝒇𝒇�𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓�𝒉𝒉𝒊𝒊 + 𝒄𝒄𝒊𝒊
𝒋𝒋�, 

𝐑𝐑𝐑𝐑𝐑𝐑𝒍𝒍,𝐣𝐣 = 𝒇𝒇�𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓�𝒉𝒉𝒊𝒊 − 𝒄𝒄𝒊𝒊
𝒋𝒋�,  𝒋𝒋 = 𝟏𝟏, … ,𝟒𝟒, 

and 𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓 = 𝟏𝟏𝟎𝟎 

c. Set 𝒉𝒉𝒊𝒊+𝟏𝟏 = 𝒂𝒂𝒊𝒊
𝟐𝟐𝒄𝒄𝒊𝒊

�
𝐑𝐑𝐑𝐑𝐑𝐑𝐮𝐮,𝟏𝟏 − 𝐑𝐑𝐑𝐑𝐑𝐑𝒍𝒍,𝟏𝟏

⋮
𝐑𝐑𝐑𝐑𝐑𝐑𝐮𝐮,𝟒𝟒 − 𝐑𝐑𝐑𝐑𝐑𝐑𝒍𝒍,𝟒𝟒

� 

d. Set 𝑹𝑹𝑹𝑹𝑷𝑷𝒊𝒊+𝟏𝟏 = 𝒇𝒇�𝑵𝑵𝒓𝒓𝒓𝒓𝒓𝒓(𝒉𝒉𝒊𝒊+𝟏𝟏) 
e. Set 𝒊𝒊 = 𝒊𝒊 + 𝟏𝟏. 

5. Return 𝒉𝒉𝒊𝒊. 
The termination criteria, 𝝉𝝉, is used to comparing the 

norm of the difference between the current iteration 
hyperparameter values, 𝒉𝒉𝒊𝒊, and its value from the last 
iteration, 𝒉𝒉𝒊𝒊+𝟏𝟏; thus when these results are sufficiently 
similar, the algorithm will stop. The initialization steps, 
#1-3 initalize the decay terms, the iteration counter, i, 
and the initial operating point of the algorithm. Step 4a 
specify how the decay terms are updated which 
monotonically decrease as the algorithm progresses.  
Step 4b runs the algorithm multiple times, each with a 
hyperparameter increased and decreased by c; in this 
case we have four hyperparameters and GRLVQI was 
run twice for each setting (8 times total) and then the 
process was replicated 10 times to improve the estimate 
of GRLVQI preformance with a given set of 
hyperparameters.  Step 4c is in essence performing a 
gradient descent by examining the differences between 
the scores with ±c (Ncond = 2 conditions).   and adjusting 
the hyperparameter values accordingly.  Step 4d sets 
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the value of this iterations’s results and Step 4e 
increments the iteration counter.  Step 5 retuns the 
optimal setting values for GRLVQI. 

 
5. Learning Vector Quantization Setting 
Optimization 
 

Work in [13] aimed to find optimal LVQ settings 
by using a full factorial model with optimal settings 
found via both a spreadsheet search and a response 
surface method with constrained nonlinear 
optimization.  However, two limitations exist with the 
approach of [13]: 
1) The full factorial approach was limited by 

exploring only a constrained region of the 
possible design space 

2) Lack of sufficient replications to account for 
random variation 

 
5.1. Experimental Considerations 
 

The Sequential Design strategy via Stochastic 
Approximation approach discussed in Section 4 was 
used to account for the first issue by allowing the Nhyp 

= 4 continuous hyperparamters (𝜖𝜖, 𝜉𝜉, 𝛾𝛾, 𝛽𝛽) of GRLVQI 
to be optimized by consideration ±c. Consistent with 
[35], 𝒉𝒉𝟎𝟎 = (0.025, 0.005, 2.5,3.5) was used.   

To account for the second issue, Nrep = 10 replicates 
were considered for all steps in the process to account 
for random variation. Optimization was considered 
with respect to maximum possible RAP, from 100 %C 
for all explored SNR operating points.  Optimization 
was performed with respect to the TNG set 
performance to avoid training on testing data.  

In total, with Nhyp × Nrep  × Ncond = 80 GRLVQI runs 
were computed for each iteration.  The average RAP 
was computed for GRLVQI by hyperparameter. The 
stochastic approximation appoach was allowed to run 
until the norm between latest iteration and last iteration 
was 0.01.  This resulted in Niter = 28 iterations being 
run, thus 2,240 total GRLVQI classifiers were 
developed.    
 
5.2. Results 
 

By evaluating the hyperparameter settings through 
each iteration, Figure 5, we can gather some indication 
of the path the stochastic approximation algorithm took 
where each subplot examines the respective rate versus 
iteration number.  Figure 5a shows the learning rate 
progression shows a continual increase.  Figure 5b 
shows the relevance rate progression which climbs fast 
and then oscillates around 0.02.  Figure 5c and Figure 

5d show the progression for the conscience learning 
rates, which quickly hit a general plateau.  

Although the progression of the learning rate in 
Figure 5a shows a continual climb, this is being 
counteracted by the decaying property of c in the 
algorithm.  Additionally, we can examine the RAP 
values at each iteration (using a baseline of the 
maximum possible achievable performance of 100 %C 
at all SNR).  Figure 6 shows the RAP values with error 
bars computed from the replicated runs.  In Figure 6 we 
see that the algorithm climbs quickly from an initial 
RAP of approximately 0.63 and then levels off to an 
RAP of approximately 0.645.  The error bars illustrate 
that this performance improvement is a significant 
improvement over the initial settings.   

 
Figure 5. Hyperparameter settings through 28 

iterations 

 
Figure 6. RAP values with error bars (± σ(RAP)/ 

Nrep) at each iteration. 
 
When evaluating performance at the last iteration 

step, we can see the curves from which the RAP values 
were generated. Figure 7 presents the performance 
results for the TST set of %C versus SNR for GRLVQI 
after Stochastic Optimization by Sequential Design 
(GRLVQI-SD), Baseline GRLVQI using the nominal 
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settings of [50], and MDA.  Notably, GRLVQI 
outperforms MDA. When GRLVQI settings are 
optimized via stochastic approximation, classification 
performance is further improved.    

 
Figure 7. Representative classification 

performance for the TST set for the baseline 
GRLVQI algorithm, GRLVQI after Stochastic 

Optimization via Sequential Design, and MDA. 
 
Table 2 condenses the results and presents 

verification performance.  In Table 2, RAP values were 
computed relative to MDA.  Here we see that GRLVQI 
outperforms MDA and the baseline GRLVQI 
significantly. Additionally, Table 2 includes 
verification accuracy performance of all algorithms.  
This shows that the optimized GRLVQI offers both 
improved classification performance over baseline 
GRLVQI and MDA and improved verification 
accuracy over the baseline GRLVQI. Although 
verification performance is not as good as that of 
MDA, this performance is approaching the quality of 
the MDA verification performance if we consider 
AUCM.  Additionally, the similarity between TST and 
TNG performance indicates that overfitting is not an 
issue. 

Overall, these performance results are consistent 
with those of [13].  Although the reference “best” 
performance values of [13] are included for 
comparison, direct comparisons with these 
performance results are not possible since replications 
were not used in that effort.  Thus the work of [13] was 
essentially “cherry picked” since it involved searching 
for best of nonreplicated runs. Interestingly, the 
optimal hyperparameter settings found through 
Stochastic Approximation are different from those 
found in [13], indicating the possibility of multiple 
local optima in ANN solutions. 
 
6. Summary and Conclusions 
 

The cyber attack surface, vectors by which cyber 
attacks can occur, are increased by sub-internet 
pathways, e.g. those comprised of common wireless 
WiFi, Z-Wave, ZigBee and Bluetooth devices.  Risks 
associated with sub-internet pathways include risks of 
service degradation or disruption which are magnified 
since e-government pathways include hospitals, power 
grids and other CI systems. The approach presented 
herein demonstrates enhancements to sub-internet 
pathway security with applicable to WPANs.   

Herein, a process was presented to find optimal 
algorithm settings by stochastic approximation which 
allowed hyperparameter settings to freely change 
without enforcing bounds as in a design of experiments 
approach, e.g. [13]. The results illustrate 1) the 
necessity in determining appropriate GRLVQI 
algorithm settings, 2) the viability of Stochastic 
Approximation for RF-DNA Fingerprinting algorithm 
optimization, and 3) general invariance of conscience 
learning rates in GRLVQI to accuracy. 

Primary contributions include improvements to 
communication device discrimination using RF 
Fingerprints by: 1) formalization of a Stochastic 
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Table 2. Algorithm Optimization Results 

METHOD MAXIMIZATION 
OBJECTIVE 

FACTORS LEVELS 
PERFORMANCE RESULTS 

CLASSIFICATION VERIFICATION   
AT SNR = 20DB 

A B C D E 
GSNR (DB) AT 
%C = 90%   RAP TVR  AUCM 

TNG TST TNG TST 
Stochastic 

Approximation 
Optimization 

RAPTNG 0.078 0.016 2.527 0.319 7 +5.16 +5.05 1.16 1.17 66% 0.965 

Best Full 
Factorial   [13] 

Spreadsheet Search 0.25 0.05 2.0 0.35 7 +5.30 +5.77 1.22 1.18 66% 0.979 
Constrained Nonlinear 

Optimization 
0.1501 0.05 4.5 0.15 7 +5.23 +5.26 1.20 1.19 66% 0.967 

None   [13] BASELINE GRLVQI 0.025 0.005 2.5 0.35 10 +3.72 +3.32 1.14 1.13 33% 0.936 
MDA N/A N/A N/A N/A N/A +1.68 0.00 1.23 1.0 100% 0.971 
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Approximation approach for classifier model 
development, 2) demonstration of this approach for 
GRLVQI optimization for Z-Wave device 
discrimination, and 3) improvements in the 
experimental approach of RF Fingerprinting classifier 
development by replication. 

Results achieved were also similar to those of [13], 
but comparisons are notional since replications were 
not considered in [13].  Thus the performance results 
presented herein are more rigorous by considering both 
the estimate of the optimal hyper parameter value and 
the error on that estimate. 

Future work includes further refining the sequential 
design strategy.  Firstly, there is no guarantee that the 
globally optimal point has been found; further work 
would explore this issue.  Secondly, since the algorithm 
relies on finite differences, we must be reasonably 
confident in the order relation between estimates of 
performance at the ±𝑐𝑐 values of the hyperparameters.  
This may require increasing the number of training 
replications per iteration. Thirdly, the sequential design 
strategy must be adapted to accommodate integer 
parameters, e.g. the number of PVs. 
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