
Automatically Quantifying Customer Need Tweets:
Towards a Supervised Machine Learning Approach

Niklas Kühl

Karlsruhe Institute of Technology
kuehl@kit.edu

Marius Mühlthaler
Karlsruhe Institute of Technology

marius.muehlthaler@student.kit.edu
Marc Goutier

Karlsruhe Institute of Technology
marc.goutier@student.kit.edu

Abstract

The elicitation of customer needs is an important

task for businesses in order to design customer-centric
products and services. While there are different
approaches available, most lack automation,
scalability and monitoring capabilities. In this work,
we demonstrate the feasibility to automatically
identify and quantify customer needs by training and
evaluating on previously-labeled Twitter data. To
achieve that, we utilize a supervised machine learning
approach. Our results show that the classification
performances are statistically superior—but can be
further improved in the future.

1. Introduction

The identification and prioritization of customer
needs is crucial for businesses in order to succeed in
the market [1]. By knowing what the needs, wants and
demands of (potential) customers are, commercially
successful products and services can be designed.
Commonly used methods to identify customer needs
are interviews, surveys or observations [2]. While
these methods have proven to be successful, they lack
automation capabilities and, thus, scalability and
continuous monitoring capabilities. Depending on the
scope, they can be very time- and cost-intensive. On
the customer side, it is nowadays common to share
personal information on social media like Twitter,
Facebook or Instagram. As Perrin shows, 65% of all
Americans and 76% of all American Internet users
draw on social media networking services—with a
remarkable growth within the last ten years [3]. In the
group of young American adults (aged 18 to 29),
already 90% use social media. A share of these social
media instances contains valuable insights about the
needs of customers [4]. With a high volume of social
media, e.g. 500 million tweets [5] and 55 million
Facebook status updates [6] per day, these platforms
present a promising data source to gain knowledge

about customer needs in order to design new products
and services.

In previous work, an artifact has been presented
capable of classifying tweets as to whether they
contain customer needs [7]. Such an artifact could be
used in a more comprehensive approach, which
automatically identifies and quantifies customer needs
from micro blog data in general and Twitter data in
particular. While the successful design of a machine
learning based classifier artifact shows that the
automatic identification of “need tweets” is generally
feasible, one major limitation remains. The artifact so
far is only able to identify tweets containing needs, but
not the needs themselves. In order to address this
limitation, this work depicts a Design Science
Research (DSR) cycle [8], in which we apply a
supervised machine learning approach to allow
automatic need quantification. The contribution of this
work is threefold. First, it provides an overview of the
different needs expressed in Twitter for our evaluation
domain of e-mobility. Second, it provides a
classification model, which can automatically assign
new incoming tweets to previously identified
categories. Third, the artifact is deployed as a publicly
available web service for further usage and integration
into other analytical applications.

The remaining paper is structured as follows: After
regarding related work, we present our DSR-based
methodology, which determines the remaining
sections. We elaborate the awareness of the problem,
suggest a three-phase iteration based on a machine
learning process model, implement it and finally
deploy the corresponding web service. We then
evaluate the results and finish with a conclusion.

2. Related Work

Gaining insight from data which is voluntarily
shared by people on the internet has been of soaring
interest in the past years. Social media arrived in most
people’s everyday life and the amount of available
information correspondingly increased [3]. Not only
has it become critical for many businesses to be aware

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50145
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 2046

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of what their costumers expose on social media [9],
but also has the analysis of information been able to
create value in many other areas. For instance,
information systems have been developed to predict
the outcome of political elections [10] or to forecast
movements in the stock market [11]. A distinct aspect
research has drawn significant attention to is the
elicitation of opinions of customers out of customer
reviews or social media data. Although a common use
case of this so-called “opinion mining” [12] is the
examination of costumer critiques of products they
have purchased on e-commerce platforms, opinion
mining has also recently investigated the potential of
accumulating the opinions of users of social media
platforms [13]. However, opinion mining does not
necessarily include machine learning methods. One
established method is to directly search for keywords
which, for instance, determine the opinion of the
writer of a product review [14]. Such a whitelist- based
approach for tweets, i.e. retrieving costumer needs out
of tweets, can be found in Kühl & Goutier [15]. On the
other hand, machine learning systems for automated
text classification have been developed immensely in
the last years [16]. Hence, a broad variety of different
techniques and algorithms exist. A major distinction
can be made between supervised and unsupervised
machine learning. Whereas supervised learning can
allocate new instances to previously defined target
values, unsupervised learning refers to models built to
discover new patterns and relationships [17]. The two
approaches have different advantages and
disadvantages, but both have been investigated in
previous research. For instance, Pang et al. [18]
successfully implemented a supervised machine
learning artifact to determine the sentiment of movie
reviews. Turney [19] conducted an unsupervised
approach to predict whether reviews of different
domains (e.g. movies, cars) recommend the products
they are about. In contrast, the work at hand focuses
on a supervised approach to allocate costumer needs
from tweets, which—to the best of our knowledge—
does not exist so far.

3. Research Design

In order to design a need classification artifact, we

follow the DSR process methodology and its
individual phases according to Vaishnavi & Kuechler
[20]. In terms of knowledge contribution, the
presented work is an exaptation according to Gregor
& Hevner [8], since we apply a mature solution
(supervised machine learning) to the new challenge of
automatic need classification. To evaluate the artifact,
we use a technical experiment as proposed by Peffers
et al. [21]. We evaluate the statistical classification

performances of the models identified. The DSR
research structure according to Vaishnavi & Kuechler
[20] is separated into the steps of problem awareness,
suggestion, development, evaluation and
conclusion—which determines the remainder of this
paper.

4. Prerequisites & Awareness of Problem

While previous work shows the feasibility of

identifying whether or not a tweet contains a need, the
need itself remains undetected. Aiming for a social
information system, which is able to automatically
identify and quantify customer needs from Twitter
data, it is crucial to not only identify the pure existence
of a customer need—but more precisely be able to
display the expressed needs in an aggregated version
for an innovation manager. Two possibilities on how
to tackle this problem arise: supervised and
unsupervised approaches. While unsupervised
approaches have the advantage to not require any
information beforehand, they rely on large amounts of
data—which are not always available. Therefore, we
explore the option to utilize supervised approaches for
a specific evaluation domain as part of this work. A
resulting artifact, once trained on manually labeled
data, would then be able to automatically classify new
incoming tweets regarding their need—and, therefore,
allow to both monitor and quantify specific needs
automatically—over any period of time. Before going
into detail about our chosen approach, we define the
terms customer need as well as our evaluation domain
of e-mobility to lay the foundations of the remaining
work.

There are three main scientific fields which do
research on needs of customers: Psychology,
marketing and information systems. In psychology,
the focus of need research focusses strongly on
fundamental human needs—but does not take
economic aspects into account [22]. However, in the
field of marketing, one of the most important
challenges is to understand customer needs and ways
to satisfy them. Kotler & Armstrong [23] separate
customer needs into three distinct categories (needs,
wants and demands). Needs are often intangible—for
example, the needs for mobility or financial security
can be interpreted and satisfied in many ways.
Therefore, individuals concertize them implicitly by
transforming them into wants and demands.
Additionally, Harding et al. [24] outline that a
customer need can also be expressed as a requirement
of a product or service. In the field of information
systems, research on “requirements engineering”
states that a need is considered as a high-level
requirement which has to be transformed into low-

Page 2047

level requirements to find ways of fulfilling the need
[25]. For the purpose of this work, there is little to be
gained differentiating between marketing-oriented
customer need definitions (needs, wants, demands) or
need definitions in the context of requirement
engineering (high-level and low-level requirements):
In a first step, any information about needs, regardless
of the level of granularity, is valuable information. For
simplicity, we, therefore, stick with the term customer
need—taking all mentioned types into account.

For testing our approach in an application domain,
we require candidate domains to be both dependent on
fast and ongoing monitoring of arising needs and rich
Twitter data traffic. The domain of electric mobility
(e-mobility) as defined in Scheurenbrand et al. [26]
fulfills both our requirements. We further have to
narrow down the domain to a geographical area with a
coherent set of laws and regulations, markets as well
as socio-economic conditions. In addition, we require
the Twitter data in a unique language, as we need
consistent semantics to analyze. As a result of these
requirements on the domain, languages like English
and Spanish—which cannot be related to one region—
are not suitable. Because of our familiarity with
German, we focus on the German-speaking region.
While there is also plenty of research on the analysis
of micro blog data for English, there is only few
research on German instances—on Twitter in
particular [27] and social media in general [28].

5. Suggestion

First, we have to select an overall process model
for supervised machine learning. As we regard the
special case of multiple classification and the need of
deploying a fully-working prediction model, we
choose the process model of Hirt et al. [29], as it
particularly addresses classification model initiation,
its error estimation and deployment.

5.1. Model initiation

The model initiation starts with the acquisition of
appropriate data and its labeling, followed by the
selection of performance measurements to evaluate
the machine learning process. Additionally, we decide
how we preprocess our acquired data and choose a
machine learning algorithm.

5.1.1. Data acquisition & Labeling. The first step in
the supervised machine learning classification process
is to gather relevant data which we later use for our
model training and testing. These manual steps are
necessary in supervised machine learning before the

automatic need allocation can be implemented. The
data should fulfill our requirements for source
(Twitter), domain (e-mobility) and target value (need).
Historic data of Twitter is not fully receivable [30].
However, it is possible to receive the unfiltered stream
of real-time tweets via the Twitter Streaming API [31].
The only feasible way to acquire all instances (tweets)
from Twitter is therefore to collect the data from the
live stream and continuously store it. Since we are only
interested in tweets in the field of e- mobility, we limit
the collection of tweets from the data stream based on
keywords representing our domain of e-mobility and,
in our case, additionally restricted to a geological
region and language. Next, we remove non-user
generated tweets, e.g. from bots or news media. After
filtering, the remaining tweets need to be classified
according to whether the message itself contains a
customer need. To obtain this piece of information in
an objective way, independent participants take part in
multiple lab labeling sessions. In these sessions, we
instruct the participants to classify a set of tweets.
They are incentivized and paid as described by [32],
receiving a fixed payment. All participants are given
the same definition of customer need. Different
participants classify each tweet three times. The
outcomes are aggregated for the generation of the final
data set, regarding only tweets where at least two
participants agree it contains a need. The remaining
instances are fulfilling our requirements for source and
domain—and we know that the instances contain
needs.

However, our target value is not the binary
decision if one instance contains a need or not, as this
is addressed in previous work [7]. We are rather
interested in which precise need or need category is
mentioned in a tweet. Therefore, we have to label the
remaining data again. We choose the method of
descriptive coding as described by Saldaña [33].
Descriptive coding consists of multiple iterations in
which researchers with domain knowledge analyze the
tweet data, instance for instance, and assign codes to
every tweet independently. These codes represent
customer needs or customer need categories. The first
iteration is focused on gaining an understanding about
the data. We start to assign codes to an instance every
time the instance contains a need. The number of codes
equals the number of mentioned needs in the tweets.
In case the need of one tweet is similar to a need of
another tweet, we use the exact same code. If there is
uncertainty about the meaning of a need or which code
we should use, we tag the tweet with the other code.
After finishing the first iteration, the codes are usually
very broad and represent rather abstract need
categories. We compare our need categories, discuss
and merge them for a common categorization. Based

Page 2048

on the initial iteration we focus on three key features
during later iterations: First, if we find any consistency
based on disjoint of categories or needs, we will
rework our codes from the previous iteration. Second,
we aim at finding sub categories of our last codes to
reveal all needs mentioned. However, we also aim at
finding major need categories as the highest level of
abstraction. In the end we get labels for the needs and
major need categories. Every need label belongs only
to one major need category, whereas a major need
category contains multiple need codes. Third, the
other category contains tweets after the initial
iteration, so we try to find similar tweets in the other
category to build new categories. We continue the
process until all researchers agree on the last coding as
well as all key features are fully executed and fulfilled.
In the end every need in every instance is labeled by a
code which represents the need. Moreover, every code
belongs to one major need category. We can now train
a machine learning algorithm either on the need labels
or on the major need category labels of the tweets. The
only requirement for both options is to have a
sufficient [34] amount of instances for every label in
our dataset.

5.1.2. Performance measure. Before starting with the
machine learning process, we have to choose an
adequate performance measure. We weigh different
possibilities. If we look from an overall statistical
point of view, the area under the ROC curve (AUC)
[35] is generally accepted as a meaningful
classification indicator—and highly preferred over
accuracy [36]. Accuracy does not take class
imbalances of the target class into account—but since
we want to predict minority classes (5-20% share),
accuracy is not specific enough, as it might reveal
good results without actually learning the minority
class well enough. While AUC is statistically
meaningful, it is still worth regarding precision and
recall—as both can vary significantly with similar
AUC results [37]. If aiming for the highest possible
precision (and thus lowest fall-out rate), or aiming for
the highest possible recall, both measures on their own
are not helpful, but need to be regarded in
combination. The balanced compromise between
precision and recall is measured by the F1-score [38].
As we expect innovation managers to neither miss out
on relevant instances, nor get presented with wrong
predictions, we choose the F1-score as our core
performance measure for this work.

5.1.3. Choosing preprocessing & algorithm. The
previous data acquisition and labeling performed
result in a dataset of tweets labeled with their needs,
and every need belongs to one major category. One

general question is therefore whether to build the
models upon the discrete needs or only upon the major
need categories. This mainly depends on the actual
size of the dataset and the amount of needs or need
categories found during the development part. We
therefore discuss this question in the development. For
readability reasons, we continue referring to needs, yet
every step in the suggestion part can generally be
applied to both single needs as well as broader need
categories.

Since we need a binary labeling basis in order to
train a binary classifier, we first assign binary labels to
each tweet, determining whether or not a tweet
contains a need, for each need respectively. Every
tweet can be assigned to more than one need, but we
do not want our machine learning artifact to be bound
to combinations of needs, but rather to be able to
identify every need independently. We hence conduct
every of the following steps for each need separately.
We build a classifier using the tweets with the binary
labels to determine whether a tweet contains this need.
Prior to training a classifier, we first need to find the
well-suited preprocessing steps, sampling techniques
and classification algorithms for this problem instance.
Although the amount of feasible kinds of
preprocessing methods is illimitable, we aim to
systematically choose and evaluate a broad range of
preprocessing steps. We consider the removal of
words which do not contain any useful information
(“stop words”) [39], the removal of words that appear
very rarely or too frequently to be significant
(frequency removal), combining n words into one
feature (n-gram) [40], downcasing or linguistic
transformations such as stemming [41] or lemmatizing
[42]. We use a simple bag-of-words concept to build a
feature vector [14], where one tweet is represented as
one feature vector. Essentially, this vector contains,
for all words in the dataset, the number of occurrences
of words in this tweet. In order to extract the words
from a tweet, different kinds of tokenization are taken
into account. The tokenizers are distinguished in the
manner of how they treat punctuation (e.g. emoticons)
and in the amount of characters a token must at least
have to not get removed. We include over-, under- and
no sampling [43] into our collection of possible pre-
treatments. We also consider whether to use a term
frequency and inverse document frequency (tf-idf)
transformer [14], which weights the words in the
feature vector according to their relative frequency
distribution. Table 1 shows an overview of the
preprocessing. Another important aspect clearly is the
choice of the classification algorithm. We examine
both a Support Vector Machine (SVM) [44] and a
Random Forest (RF) Classifier [45]. Following the
objective to find the most suitable combination of all

Page 2049

of these elements, it would be best to try out every
single permutation with regard to the final model
performance. Therefore, we combine all these
elements into a factorial design [46]. However, as the
amount of different combinations and various values
for each element is too high and would therefore be
too computationally expensive, we split this step into
two runs. In the first run, we gain an overview of the
influence of the preprocessing steps on the F1-score.
We are then able to determine the ones that either have
very little influence or the ones that always lead to the
best scores across all needs. We keep them fixed for
the second run, so that we can again try some new
steps, together with the remaining variables in the first
run that were not consistent in their influence on the
F1-score. We finish with comparing the results of each
need. For consistency reasons, we ultimately
determine one set of general preprocessing steps that
are applied to all need classifiers.

Table 1. Overview of preprocessing options

Preprocessing step Short description

stop word removal remove irrelevant words,
such as ”are”, ”the”, ”get”

frequency removal
remove words that have a lower or higher

frequency of occurrences than the specified
threshold

n-gram combine n words into one sequence

stemming reduce words to their stem (root form),
e.g. ”apples” becomes ”apple”

lemmatizing replace words by their lemma,
e.g. ”gone” becomes ”go”

tokenization divide text into units, e.g. single words

oversampling replicate samples of the minority class
towards an equal distribution of both classes

undersampling ignore samples of the majority class
towards an equal distribution of both classes

tf-idf
transformation

weight the words in the feature vector
according to their relative frequency

distribution

5.2. Model error estimation

As an intermediate step between model initiation
and model deployment, we conduct a model error
estimation for each need separately, which later allows
us to use the whole dataset for tuning the
hyperparameters and training the classifiers we
deploy, while still having a statistically safe model
evaluation of every classifier. Tuning the
hyperparameters means to find the optimal values for
the parameters of a classification algorithm (such as
the C and the γ for a SVM) that are not directly learned
from the data during the model training. The classical
approach we use to accomplish this is a grid search,
meaning to exhaustively search through all per-
mutations of manually specified sets of possible values
[47], [48]. The concept we choose for the model error
estimation is a nested cross-validation (CV) [49],

which we initiate by defining a parameter search space
for the hyperparameters of the algorithm selected in
the previous step. For the CV itself, we split the dataset
into equal sized folds while maintaining the overall
class distribution across all folds. In an inner CV, we
tune these hyperparameters with a grid search, and use
the hold-out set of the outer CV to gain information
about the performance measures on unseen data of a
classifier trained with the optimal parameters from the
inner CV. This later enables us to perform a grid
search with the same parameter space, while being
positive that the model performance will be between
the minimum and maximum value of the scores on
every hold-out set of the outer CV. In the model
deployment step, we can therefore omit a global test
set and exploit the whole data set to perform a grid
search (with the same parameter space as in the nested
CV), and simply use the best performing parameters
while still having an unbiased model error estimation.

5.3. Model deployment

As the previous step already results in an overall
model error estimation, we can now use the whole
dataset to perform a final grid search with the same
parameter space as for the nested CV. We identify the
best combination out of the parameter space using a
grid search with a CV and train the classifier on all the
data with this exact combination of parameters. This
classifier is now able to elicit needs out of a new tweet.
Note that we perform these steps separately for each
need, resulting in distinct classifiers for each need. For
further usage, we aim our classifiers to be available for
other users and for integration into other analytical
tools. We therefore choose to implement a web service
which can use the persistently stored and trained
classifiers. Different classifiers of different domains
can be plugged into the web service, too. The web
service provides one endpoint with two parameters,
one for a new tweet and another one for the domain
(e.g. e-mobility). Other services can then access this
(remote) endpoint and the web service returns all the
previously defined needs in the specified domain and
their corresponding probability. Being a lightweight
web service, it is also practicable to integrate it into
other more sophisticated tools. Imaginable solutions
could include other web services, for example one that
can connect to the Twitter Streaming API [31], pass
the tweet onto a service capable of determining
whether a tweet contains a need or not, and again pass
all the need tweets onto the web service developed in
this work. A database could store this information over
a period of time. A user interface would then allow
users (e.g. innovation managers) to analyze different
aspects and, having stored information over a period

Page 2050

of time, analyze the development of needs or the
impact of a marketing campaign.

6. Development

After we suggest an approach to gain labeled data,
initiate a model, estimate its error and deploy it in a
web service, we implement each of the individual
steps in the following subsections.

6.1. Model initiation

We start with collecting tweets from Twitter and
label the needs in the tweets by descriptive coding.
Furthermore, we evaluate different preprocessing
techniques and algorithms by a grid search to select
well-suited preprocessing steps for our dataset.

6.1.1. Data acquisition & Labeling. The technical
retrieval of relevant tweets is not part of this work and
is only explained briefly. A more detailed description
can be found in Kühl et al. [7], who illustrate an
approach to automatically detect tweets containing
customer needs. We conduct the retrieval of relevant
tweets by using the Twitter Streaming API [31]. We
collect every instance (tweet) which contains at least
one word of a predefined keyword list. The list is
reasoned on the opinion of professionals as part of a
workshop and on popular electric vehicles in
Germany. From March 2015 to May 2016 and from
November to February 2017, over 2 million tweets are
collected. Based on the language information of
Twitter, all non-German tweets are sorted out—which
reduces our dataset to 107,441 instances. After the
identification of user-generated content [7], the dataset
amounts to 6,996 possibly relevant tweets. After
labeling, we finally end up with 1,093 remaining
instances containing needs, which are only identified
as such if at least 2 out of 3 labelers agree on the tweet
containing a need. This resembles the dataset of the
work at hand. The labeling of the tweets regarding
their needs and major need categories starts with our
first look at the 1,093 instances. Researchers with
knowledge about e-mobility, who were not part of the
previous labeling process, conduct the descriptive
coding [33]. We perform five iterations of clustering
until we reach saturation. In the end, we reveal seven
major need categories, the category other and 28
different needs which are depicted in table 2. To
decide if we train our machine algorithm on the need
labels or the major need category labels, we have to
take the amount of instances for every label into
account. Whereas some needs like car price and
politics have a large amount of instances, six needs

have only a single-digit amount of instances. The
lowest number of instances for a major need category
is 71, which represent slightly over 5% of all found
needs. Therefore, we decide to continue to train our
machine learning algorithm on major need categories.

Table 2. Quantitative share of the major need

categories and the needs for the regarded
tweets, n=1,093

6.1.2. Choosing preprocessing & algorithm. In
order to implement the models suggested in section 5,
we use the Python programming language and the
well-established machine learning package scikit-
learn [50]. Once we have gathered and labeled the
tweets, we develop a program to systematically
evaluate and choose the best suited kind of
preprocessing steps. We propose several kinds of
possible language processing methods: For word
stemming, we use the SnowballStemmer [51] for
German of the package NLTK [54], a natural language
toolkit for Python. Lemmatizing is done using
TextBlob [53], a Python package built on top of NLTK.
We also develop own methods to replace emoticons,
URLs and usernames with the words “emoji”, “url”,
and “name” using regular expressions. Apart from the
language processing, we take different tokenization
methods into account.

We use the standard scikit-learn tokenizer, which
by default removes all tokens that consist of one
character only and considers any kind of punctuation
characters as word separators. This is the reason why
we replace emoticons, URLs and usernames, instead
of just removing them—as they would get removed by
the tokenizer anyway. In addition to the standard
tokenizer, we implement two variations of this
tokenizer: One which does not remove tokens with the
length 1 and another one which always removes
tokens with less than 3 characters. Moreover, a
TweetTokenizer from NLTK is used. When it comes to
the removal of words containing very little

Unseen
Need Tweet

Need Probability Web Service

trained classifiers

Domain
(e.g. e-mobility)

Exemplary output
{
"need_category":
[

{
"id": 1,
"name": "car characteristics",
"probability": 0.42028053

},
{
"id": 2,
"name": "price",
"probability": 0.07609895

},
...
{
"id": 8,
"name": "range",
"probability": 0.33310777

}
]

}

Twitter
Streaming API

Need Tweet
Identification

User
Interface

Previous workThis work

Analytical
Application …

Future work

Figure 2. Positioning of the web service in a holistic tool among
other components of previous and future research

in Anonymized [7], which illustrates an approach to automat-
ically detect tweets containing customer needs. We conduct the
retrieval of relevant tweets by using the Twitter Streaming API
[33]. We collect every instance (tweet) which contains at least
one word of a predefined keyword list. The list is reasoned on
the opinion of professionals as part of a workshop and popular
electric vehicles in Germany. It consists of eight German1

and five English2 generic terms which are supplemented by
ten electric vehicles3. From March 2015 to May 2016 and
from November to February 2017, over 2 million tweets are
collected.

Based on the language information of Twitter, all non-
German tweets are sorted out—which reduces our dataset to
107,441 instances. After the identification of user-generated
content [7], the dataset has the amount of 6,996 possibly
relevant tweets. After labeling, we finally end up with 1,093
remaining instances containing needs, which are only identi-
fied as such if at least 2 out of 3 labelers agree on the tweet
containing a need. This resembles the dataset of the work at
hand.

The labeling of the tweets regarding their needs and major
need categories starts with our first look at the 1,093 instances.
Researchers with knowledge about e-mobility, who were not
part of the previous labeling process, conduct the descriptive
coding [35]. We perform five iterations of clustering until
we reach saturation. In the end, we reveal seven major need

1e-tankstelle, eauto, elektroauto, elektrofahrzeug, elektromobilitaet, elektro-
mobilität, ladesaeule, ladesäule

2ecar, electric mobility, EV vehicle, e-mobility, emobility
3bmw i3, egolf, eup, fortwo electric drive, miev, nissan leaf, opel ampera,

peugeot ion, renault zoe, tesla model s

Table 3. Quantitative share of the major need categories and the
needs for the regarded tweets, n=1,093

Major Need Category Amount (Share) Need Amount (Share)

price 202 (14.8%)

car price 154 (11.2%)
electrical price 22 (1.6%)
price (other) 22 (1.6%)
oil/gas price 4 (0.3%)

car characteristics 145 (10.6%)

car characteristics (other) 66 (4.8%)
car design 28 (2.0%)
car sound 19 (1.4%)
driving experience 15 (1.1%)
car comfort 7 (0.5%)
car performance 6 (0.4%)
car smell 4 (0.3%)

charging infrastructure 305 (22.3%)

charging infrastructure existence 191 (14.0%)
charging infrastructure availability (technical) 45 (3.3%)
charging infrastructure(general) 43 (3.1%)
charging infrastructure availability (physical) 26 (1.9%)

range 135 (9.9%) range 135 (9.9%)

charging technology 119 (8.7%)

charging interfaces and technologies 55 (4.0%)
charging speed 30 (2.2%)
battery (other) 29 (2.1%)
range extender 5 (0.4%)

environment & health 71 (5.2%)
environmentally friendly car usage 39 (2.8%)
environment & health (other) 29 (2.1%)
environmentally friendly car production 3 (0.2%)

society 283 (20.7%) politics 171 (12.5%)
desire for e-mobility 112 (8.2%)

other 109 (8.0%)
other (miscellaneous) 60 (4.4%)
definable 39 (2.8%)
joke 10 (0.7%)

categories, the category other and 28 different needs which
are depicted in table 3. To decide if we train our machine
algorithm on the need labels or the major need category labels,
we have to take the amount of instances for every label into
account. Whereas some needs like car price and politics have
a large amount of instances, six needs have only a single-digit
amount of instances. The lowest number of instances for a
major need category is 71, which represent slightly over 5%
of all found needs. Therefore, we decide to continue to train
our machine learning algorithm on major need categories.

6.1.2 Choosing preprocessing & algorithm. In order to
implement the models suggested in section 5, we use the
Python programming language and the well-established ma-
chine learning package scikit-learn [53]. Once we have
gathered and labeled the tweets, we develop a program to
systematically evaluate and choose the best suited kind of
preprocessing steps. We propose several different kinds of pos-
sible language processing methods: For word stemming, we
use the SnowballStemmer [54] for German of the package
NLTK [55], a natural language toolkit for Python. Lemmatizing
is done using TextBlob [56], a Python package built on top
of NLTK. We also develop own methods to replace emoticons,
URLs and usernames with the words ”emoji”, ”url”, and
”name” using regular expressions. Apart from the language
processing, we take different tokenization methods into ac-
count. We use the standard scikit-learn tokenizer, which
by default removes all tokens that consist of one character
only and considers any kind of punctuation characters as word
separators. This is the reason why we replace emoticons,
URLs and usernames, instead of just removing them —as they
would get removed by the tokenizer anyway. In addition to
the standard tokenizer, we implement two variations of this
tokenizer: One which does not remove tokens with the length
1 and another one which always removes tokens with less than
3 characters. Moreover, a TweetTokenizer from NLTK
is used. When it comes to the removal of words containing
very little information, we work with the German NLTK stop-

Page 2051

information, we work with the German NLTK
stopwords. Other variables we take into consideration
are the lowest and highest threshold of frequency
removal, or the value for n in n-grams. Over– and
undersampling is done using the Python package
imbalanced-learn [54]. For the tf-idf transformation of
the feature vector, we use the built-in tfidfTransformer
of scikit-learn.

Our goal now is to determine which of these
methods promise the best overall model performance.
We therefore perform a 3-fold CV (with equal class
distributions for each fold) with every reasonable
combination of all of these methods, including the
possibility to not use a step, such as no stop word
removal. Since we cannot yet determine which
classification algorithm to use, we do it for both a
SVM and a RF Classifier—without tuning their
hyperparameters at this point. Generally working with
separate binary classification models, we run this
process for each need category individually. As
described in section 5, we split this part into two runs.
We use random seeds whenever it is necessary, in
order to be able to shuffle or randomly split the data,
while maintaining comparability among the two runs.

In a first run, we consider whether to remove stop
words, downcasing, removing words that appear in
less than 1% or 5%, and in more than 50% or 75% of
the documents, uni-grams and bi-grams, the NLTK
TweetTokenizer against the scikit-learn default
tokenizer, stemming, lemmatizing and different
combinations of emoticon-, url- and name-
replacement. For each need category and for each
classification algorithm, we make a list of the ten best
performing combinations in regard to the F1-score.
Based on a majority of occurrences in the top ten lists
of the first run, we decide to always use stop words,
lowercase, stemming, no lemmatizing, uni-gram, as
well as emoticon- url- and name- replacement. The
results are not consistent in terms of the classification
algorithm, tokenizer and frequency removal, which we
therefore keep in the set of possible methods for the
second run. In the second run, we additionally try
over- and undersampling as well as tf-idf / no tf-idf
transformation of the feature vector. Again, for every
need category, we calculate the performance (F1-
score) of all possible combinations and rank them. As
we consider each need category as one binary
classification problem, we have to perform this task
for each need category separately.

Interestingly, the rankings are slightly different for
each need category, meaning that each need category
has its own set of preprocessing steps that leads to the
best scores. Nevertheless, we are able to single out the
best preprocessing combinations they have in
common, in order to have a general preprocessing that

we can apply to every tweet, no matter which need
category it is assigned to. Clearly, as we generalize the
preprocessing across all need categories, we cannot
use the individual preprocessing that would be best for
each need category on its own. In addition to the steps
selected based on the first run, our pre-treatment in the
end includes a tf-idf transformation and oversampling.
We do not perform any frequency removal, however,
the best tokenizer removes all tokens with a single
character. With this preprocessing, a SVM in terms of
algorithm choice yields to better scores.

6.2. Model error estimation

To gain evaluation scores of the upcoming grid
search, we define a parameter search space and
perform a nested CV. This allows us to estimate the
model error of the following grid search performed to
tune hyperparameters of the SVM. Concretely, we
optimize the C-value, the gamma, the kernel and the
degree (in case of a polynomial kernel). We consider
the preprocessing elements from the previous step as
given and use the same implementations. In an outer
loop, we split the data into ten outer folds and perform
a grid search on nine folds with three inner folds. This
results in a best parameter set, which we use to train a
new classifier. This classifier is then tested on the
hold-out set of the outer loop. Ten outer folds result in
ten iterations through the outer loop, each iteration
with its own results on the hold-out data set. Lastly,
we determine the mean, the standard deviation and the
minimum and maximum values of these ten scores.

6.3. Model deployment

After the model error estimation step, we perform
a final grid search with the same parameter grid as in
the previous step using the built-in scikit-learn grid
search, and train the final classifier on the whole data
set. As we use a SVM as classification algorithm, this
classifier would only be able to determine whether a
tweet contains a need category or not. We hence take
advantage of scikit-learn’s option to additionally carry
out the Platt scaling algorithm [55] in order to be able
to calculate the probability of a tweet containing a
need category later. As we want to make the classifiers
publicly available for integration into other tools, we
store the classifiers on a web server. To make them
accessible, we implement a RESTful web service,
using the Python Flask web framework.

Page 2052

7. Evaluation

The evaluation is divided into two parts: First, we
focus on the performance measures of the model error
estimation and the final grid search. Second, we point
out the real-world usability of the web service.

7.1. Model error estimation

As stated before, we conduct a nested CV for each
need category to obtain a model error estimation of the
possible classifiers. The ten outer folds of this nested
CV result in ten different F1-scores of different
classifiers on unseen data. Table 3 shows the
minimum, maximum, mean and standard deviation of
these ten scores for each need category. The minimum
and maximum values compose the confidence interval
for the F1-score of the finally deployed classifier.
Indeed, as in the final training, we use the same
parameter space as in the nested cross validation, the
scores for each need category lie within the confidence
intervals of the nested CV.

Table 3. F1-scores of the nested CV for the
model error estimation

The scores for charging infrastructure, range,
price and society show that it is possible to
automatically allocate major need categories from
tweets. Being the harmonic mean of precision and
recall, a high F1-score means that the classifiers are in
most cases able to correctly identify whether a tweet
contains a need category or not. This can certainly add
substantial value to companies and help innovation
managers in their decision making. The results differ
notably between the individual need categories. One
influencing factor is that the class distributions for
each need category vary: For the need category
environment & health for example, only 66 tweets
have been labeled as containing a need category, in
contrast to 298 for charging infrastructure. Different
class distributions among the need categories are also
one reason why they have (slightly) different best

parameter sets, since the nested CV and the grid
search in the model deployment phase are conducted
for each need category separately. Indeed, the
parameters are optimal for each need category, but—
in addition to differing class distributions—different
classifiers with different (optimal) parameters might
behave differently and are therefore another reason
why the scores for each need category are
heterogeneous. Nevertheless, further investigation on
the influencing factors responsible for the varying
results is required. The low score for the category
other is consistent with the fact that this category is of
very diverse content—making it difficult for the
classifier to find the right patterns which determine
whether a tweet belongs to this category or not.

7.2. Model deployment

After manually performing the necessary steps like
data gathering, labeling and deciding upon the
preprocessing, we successfully implement a stand-
alone web service that is capable of automatically
allocating a tweet to the probabilities of each need
category in the specified domain. The REST API
makes it in general convenient to embed this service
into more sophisticated analytical tools. A user
interface for innovation managers, allowing them to
analyze their costumer needs, could be developed.
Interesting aspects, such as the distribution of
costumer needs over time, could then be visualized. As
the web service calculates the probabilities of
containing a need category, an element empowering
the user to define a “probability threshold” could be
placed on the user interface. The managers could then
decide by themselves, “how certain” the estimates
must be in order to be taken into account for the
visualization. For them, this might be much more
meaningful than the F1-scores discussed in the
previous section.

8. Conclusion

In the work at hand we explore the option to
automatically identify and quantify customer needs
from a predefined set. To achieve that, we first code
over 1,000 German tweets containing customer needs
in the field of e-mobility with a descriptive coding
approach. With this labeled data at hand, we choose
the preprocessing steps, estimate the model error and
train different supervised machine learning models for
predicting the need category of incoming, unseen
tweets. We encapsulate this functionality into a web
service, which allows an automatic prediction of eight
need categories for the e-mobility domain. If

for the sake of delivering information about the current status
of the web server and of errors that may have occurred. The
answers of the server are formatted in JSON, since it is an
open and standardized format almost every other tool and
database can easily deal with, while still maintaining human-
readability.

7 Evaluation

The evaluation is divided into two parts: First, we focus
on the performance measures of the model error estimation
and the final grid search. Second, we point out the real-world
usability of the web service.

7.1 Model Error Estimation

As stated before, we conduct a nested CV for each need
category to obtain a model error estimation of the possible
classifiers. The ten outer folds of this nested CV result in
ten different F1-scores of different classifiers on unseen data.
Table 4 shows the minimum, maximum, mean and standard
deviation of these ten scores for each need category. The min-
imum and maximum values compose the confidence interval
for the F1-score of the finally deployed classifier. Table 4
also shows the baseline scores achieved by a random guess
classifier. The scores of the grid search which determine the
parameters for the final training on the whole dataset are
depicted in table 5. Indeed, as in the final training, we use
the same parameter space as in the nested cross validation,
the scores for each need category lie within the confidence
intervals of the nested CV.

The scores for charging infrastructure, range, price and
society show that it is possible to automatically allocate major
need categories from tweets. Being the harmonic mean of
precision and recall, a high F1-score means that the classifiers
are in most cases able to correctly identify whether a tweet
contains a need category or not. This can certainly add
substantial value to companies and help innovation managers
in their decision making.

The results differ notably between the individual need
categories. One influencing factor is that the class distribu-
tions for each need category vary: For the need category
environment & health for example, only 664 tweets have
been labeled as containing a need category, in contrast to
2984 for charging infrastructure. Different class distributions
among the need categories are also one reason why they
have (slightly) different best parameter sets, since the nested
CV and the grid search in the model deployment phase
are conducted for each need category separately. Indeed,
the parameters are optimal for each need category, but—in
addition to differing class distributions—different classifiers

4In case one tweet contains multiple needs that belong to the same need
category, only one instance is used in the implementation. Therefore, the
effective frequencies of tweets containing need categories is slightly different
than the total amounts shown in table 3.

Table 4. F1-scores of the nested CV for the model error estimation

Need Min Max Mean

Standard

Deviation

Base-

line

Impro-

vement

price 0.524 0.737 0.642 0.059 0.264 +143.18%
car
charac. 0.308 0.600 0.471 0.089 0.199 +136.68%

charging
infras. 0.719 0.871 0.783 0.043 0.353 +128.13%

range 0.538 0.917 0.721 0.122 0.199 +262.31%
charging
enviro. 0.222 0.444 0.360 0.078 0.174 +106.90%

enviro.
& health 0.125 0.800 0.543 0.203 0.107 +407.48%

society 0.452 0.746 0.543 0.080 0.333 +63.01%
other 0.171 0.457 0.278 0.079 0.167 +66.47%

with different (optimal) parameters might behave differently
and are therefore another reason why the scores for each need
category are heterogeneous. Nevertheless, further investigation
on the influencing factors responsible for the varying results is
required. The low score for the category others is consistent
with the fact that this category is of very diverse content—
making it difficult for the classifier to find the right patterns
which determine whether a tweet belongs to this category or
not.

Table 5. Scores of the grid search that determined the parameter
for the final training on the whole dataset

Need Best F1-score C gamma kernel

price 0.621 0.25 1.8 sigmoid
car characteristics 0.462 0.50 1.8 sigmoid
charging infrastructure 0.742 0.40 1.8 sigmoid
range 0.717 0.10 1.8 sigmoid
charging infrastructure 0.386 0.10 2 sigmoid
environment & health 0.513 0.35 1.8 sigmoid
society 0.535 0.15 2.6 sigmoid
other 0.284 0.10 2.6 sigmoid

7.2 Model deployment

After manually performing the necessary steps like data
gathering, labeling and deciding upon the preprocessing, we
successfully implement a stand-alone web service that is
capable of automatically allocating a tweet to the probabilities
of each need category in the specified domain. The web service
is running steadily and can be accessed on an internet browser
under a public url5. With the parameter domain, we allow
future extensions to other domains besides e-mobility. In the
future, classifiers for other domains are trained and can simply
be stored on the web server. For other services or applications
that invoke this web service, no adjustments are required, since
the parameter is already part of the API. The REST API
makes it in general convenient to embed this service into more
sophisticated analytical tools. A user interface for innovation
managers, allowing them to analyze their costumer needs,
could be developed. Interesting aspects, such as the distribu-
tion of costumer needs over time, could then be visualized.
As the web service calculates the probabilities of containing
a need category, an element empowering the user to define a

5http://needminer.com/api/machine-learning/clustering?text=this+tweet+
should+be+in+German&domain=e-mobility

Page 2053

implemented into a larger analytical social
information system, this web service can assist
innovation managers and alike in their daily operations
of researching and possibly prioritizing different
innovation ventures.

The work has several limitations. We only explore
a supervised approach and only do so for the field of
e-mobility. Consequently, the customer needs need to
be identified once before the automatic identification
can be enabled and non-identified categories cannot be
revealed. Additionally, new classifiers need to be
trained if other domains are regarded outside of e-
mobility. Also, the data set is rather small and for
single categories the results of the error estimation
show a high variance and therefore the possibility of
model over-fitting. Especially for unstructured text
data from social media, the choice of the appropriate
preprocessing steps (including feature selection and
dimensionality reduction) is critical but also
challenging. Although we evaluate a broad range of
preprocessing methods, a more detailed evaluation on
how to tailor the preprocessing of unstructured Twitter
data to the particular use case is needed. In any case,
this requires manual evaluation and decision-making.
On the technical side, we utilize the Twitter Streaming
API, which allows us to receive all tweets containing
the mentioned keywords as long as the fetched data
does not exceed more that 1% of all tweets [30].
However, when receiving the tweets, our results are
limited to the selected keywords as well as the ability
of Twitter to identify the language—since our
language identification relies on the received meta
data. By doing so, we cannot capture tweets which are
written in mixed language (e.g. English and German)
as well as tweets from Germans tweeting in a different
language (e.g. English). Furthermore, as we only
examine tweets in German, future work needs to
explore the adaptability to other languages.

Nonetheless, we are able to show the feasibility of
supervised machine learning to provide a solution for
the challenge of automatable need identification and
quantification, which can provide businesses
additional insight into the needs of their customer in
the future. By providing a social information system
which utilizes the proposed web service, innovation
managers do not need to manually scan possibly
relevant tweets anymore, as the system would
automatically assign single tweets to a broader
category. By doing so, we would allow them to
continuously monitor the needs expressed on Twitter
for a certain domain—without any manual effort. This
could be a step change for the field of innovation
management, since most traditional approaches of
customer need identification and quantification lack in
scalability and automation capabilities. The

exploration of further options, including unsupervised
approaches, yields an interesting and promising field
of research.

9. References

[1] D. Limehouse, “Know your customer,” Work Study, vol. 48, no.
3, pp. 100–102, 1999.
[2] J. R. Hauser and A. Griffin, “The Voice of the Customer,”
Marketing Science, vol. 12, pp. 1–27, 1993.
[3] A. Perrin, “Social Media Usage: 2005-2015: 65% of Adults
Now Use Social Networking Sites – a Nearly Tenfold Jump in the
Past Decade,” Pew Research Center, no. October, pp. 2005–2015,
2015.
[4] F. Misopoulos, M. Mitic, A. Kapoulas, and C. Karapiperis,
“Uncovering customer service experiences with Twitter: the case
of airline industry,” Management Decision, vol. 52, no. 4, pp.
705–723, 2014.
[5] Twitter, “About Twitter,” 2016,
https://about.twitter.com/de/company/ press/milestones, last
accessed 2016-08-02.
[6] R. Cuthbertson, P. I. Furseth, and S. J. Ezell, Innovating in a
Service- Driven Economy: Insights, Application, and Practice.
Palgrave Macmillan UK, 2015
[7] N. Kühl, J. Scheurenbrand, and G. Satzger, “Needmining:
Identifying Micro Blog Data Containing Customer Needs,”
Proceedings of the 24th European Conference of Information
Systems, 2016.
[8] S. Gregor and A.R. Hevner, “Positioning and Presenting
Design Science Research for Maximum Impact,” MIS Quarterly,
vol. 37, no. 2, pp. 337– 355, 2013.
[9] J. H. Kietzmann, K. Hermkens, I. P. McCarthy, and B. S.
Silvestre, “Social media? get serious! understanding the
functional building blocks of social media,” Business horizons,
vol. 54, no. 3, pp. 241–251, 2011.
[10] A. Bermingham and A. F. Smeaton, “On using twitter to
monitor political sentiment and predict election results,” 2011.
[11] R. Chen and M. Lazer, “Sentiment analysis of twitter feeds
for the prediction of stock market movement,” stanford.edu.
Retrieved January, vol. 25, p. 2013, 2013.

[12] D. Lee, O.-R. Jeong, and S.-g. Lee, “Opinion mining of
customer feedback data on the web,” in Proceedings of the 2nd
international conference on Ubiquitous information management
and communication. ACM, 2008, pp. 230–235.
[13] H. Chen and D. Zimbra, “Ai and opinion mining,” IEEE
Intelligent Systems, vol. 25, no. 3, pp. 74–80, 2010.
[14] A. N. Srivastava and M. Sahami, Text mining: Classification,
clustering, and applications. CRC Press, 2009.  

[15] N. Kühl and M. Goutier, “Needmining: Evaluating a
whitelist-based assignment method to quantify customer needs
from micro blog data,” Operations Research Proceedings 2016—
Selected Papers of the Annual International Conference of the
German Operations Research Society (GOR), August 30 -
September 2, 2016 2016.  

[16] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends,
perspectives, and prospects,” Science, vol. 349, no. 6245, pp.
255–260, 2015.  

[17] G. James, D. Witten, T. Hastie, and R. Tibshirani, An
introduction to statistical learning. Springer, 2013, vol. 6.  

[18] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?
Sentiment classification using machine learning techniques,” in

Page 2054

Proceedings of the ACL- 02 conference on Empirical methods in
natural language processing- Volume 10. Association for
Computational Linguistics, 2002, pp. 79– 86.  
[19] P. D. Turney, “Thumbs up or thumbs down?: semantic
orientation applied to unsupervised classification of reviews,” in
Proceedings of the 40th annual meeting on association for
computational linguistics. Association for Computational
Linguistics, 2002, pp. 417–424.  
[20] V. Vaishnavi and B. Kuechler, “Design Science Research in
Information Systems Overview of Design Science Research,” Ais,
p. 45, 2004.
[21] K. Peffers, M. Rothenberger, T. Tuunanen, and R. Vaezi,
“Design Science Research Evaluation,” Design Science Research
in Information Systems. Advances in Theory and Practice, pp.
398–410, 2012.  

[22] K. M. Sheldon, A. J. Elliot, Y. Kim, and T. Kasser, “What is
satisfying about satisfying events? testing 10 candidate
psychological needs.” Journal of personality and social
psychology, vol. 80, no. 2, p. 325, 2001.
[23] P. Kotler and G. Armstrong, Principles of Marketing.
Prentice Hall, 2001, vol. 9.
[24] J. A. Harding, K. Popplewell, R. Y. Fung, and A. R. Omar,
“An intelligent information framework relating customer
requirements and product characteristics,” Computers in Industry,
vol. 44, no. 1, pp. 51– 65, 2001.
[25] E. Hull, K. Jackson, and J. Dick, Requirements engineering.
Science & Business Media, 2010. Springer
[26] J. Scheurenbrand, C. Engel, F. Peters, and N. Kuehl,
“Holistically Defining E-Mobility: A Modern Approach to
Systematic Literature Reviews,” in Proceedings of the First
Karlsruhe Service Summit Workshop, Karlsruhe, Germany, 2015,
pp. 17–27.  

[27] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M.
Welpe, “Predicting elections with twitter: What 140 characters
reveal about political sentiment.” ICWSM, vol. 10, no. 1, pp. 178–
185, 2010.  
[28] D. Maynard, K. Bontcheva, and D. Rout, “Challenges in
developing opinion mining tools for social media,” Proceedings
of the@ NLP can u tag# usergeneratedcontent, pp. 15–22, 2012.  

[29] R. Hirt, N. Kühl, and G. Satzger, “An end-to-end process
model for supervised machine learning: From problem to
deployment in information systems,” in 12th International
Conference on Design Science Research in Information Systems
and Technology (DESRIST). Springer, 2017.  

[30] Twitter, “Twitter streaming api,” 2015,
https://twittercommunity.com/t/best-solution-for-fetching-tweets-
mentioning-hundreds-of-terms/28294, received on 12-18-2015.  

[31] A. Bifet and E. Frank, “Sentiment knowledge discovery in
twitter streaming data,” in International Conference on Discovery
Science. Springer, 2010, pp. 1–15.  

[32] O. Kvaløy, P. Nieken, and A. Schöttner, “Hidden benefits of
reward: A field experiment on motivation and monetary
incentives,” European Economic Review, vol. 76, pp. 188–199,
2015.  
[33] J. Saldaña, The coding manual for qualitative researchers.
SAGE Publications, 2015.
[34] G. I. Webb, M. J. Pazzani, and D. Billsus, “Machine learning
for user modeling,” User modeling and user-adapted interaction,
vol. 11, no. 1, pp. 19–29, 2001.
[35] A. P. Bradley, “The use of the area under the roc curve in the
evaluation of machine learning algorithms,” Pattern recognition,
vol. 30, no. 7, pp. 1145–1159, 1997.

[36] C. X. Ling, J. Huang, and H. Zhang, “Auc: a statistically
consistent and more discriminating measure than accuracy,” in
IJCAI, vol. 3, 2003, pp. 519–524.
[37] M. Kuhn and K. Johnson, Applied predictive modeling.
Springer, 2013, vol. 26.
[38] D. M. Powers, “Evaluation: from Precision, Recall and F-
measure to ROC, Informedness, Markedness and Correlation,”
Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37–
63, 2011.
[39] C. Silva and B. Ribeiro, “The importance of stopword
removal on recall values in text categorization,” in Neural
Networks, 2003. Proceedings of the International Joint
Conference on, vol. 3. IEEE, 2003, pp. 1661– 1666.
[40] W. B. Cavnar and J. M. Trenkle, “N-gram-based text
categorization,” Ann Arbor MI, vol. 48113, no. 2, pp. 161–175,
1994.
[41] N. O. Andrews and E. A. Fox, “Recent developments in
document clustering,” Technical report, Computer Science,
Virginia Tech, Tech. Rep., 2007.
[42] V. Balakrishnan and E. Lloyd-Yemoh, “Stemming and
lemmatization: a comparison of retrieval performances,” Lecture
Notes on Software Engineering, vol. 2, no. 3, p. 262, 2014.
[43] N. V. Chawla, “Data mining for imbalanced datasets: An
overview,” in Data mining and knowledge discovery handbook.
Springer, 2005, pp. 853–867.
[44] I. Steinwart and A. Christmann, Support vector machines.
Springer Science & Business Media, 2008.
[45] L. Breiman, “Random forests,” Machine learning, vol. 45,
no. 1, pp. 5–32, 2001.
[46] D. C. Montgomery, Design and Analysis of Experiments,
eighth edi ed. Hoboken, Arizona: Wiley, 2013.
[47] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl,
“Algorithms for hyper-parameter optimization,” in Advances in
Neural Information Processing Systems, 2011, pp. 2546–2554.
[48] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to
support vector classification,” 2003.
[49] G. C. Cawley and N. L. Talbot, “On over-fitting in model
selection and subsequent selection bias in performance
evaluation,” Journal of Machine Learning Research, vol. 11, no.
Jul, pp. 2079–2107, 2010.
[50] F. Pedregosa, G. Varoquaux, A. Gramfort, and others,
“Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.
[51] M. Porter, “Snowball: A Language for Stemming
Algorithms.” 2001,
http://www.snowball.tartarus.org/texts/introduction.html, last
accessed 2017-06-01.
[52] S. Bird, E. Klein, and E. Loper, Natural language processing
with Python: analyzing text with the natural language toolkit.
”O’Reilly Media, Inc.”, 2009.
[53] S. Loria, “TextBlob,” 2017,
http://textblob.readthedocs.io/en/dev/index.html, last accessed
2017-06-02.
[54] G. Lemaître, F. Nogueira, and C. K. Aridas, “Imbalanced-
learn: A python toolbox to tackle the curse of imbalanced datasets
in machine learning,” Journal of Machine Learning Research,
vol. 18, no. 17, pp. 1–5, 2017.
[55] J. Platt, “Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods,” Advances in
large margin classifiers, vol. 10, no. 3, pp. 61–74, 1999.

Page 2055

