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Abstract 
 
The elicitation of customer needs is an important 

task for businesses in order to design customer-centric 
products and services. While there are different 
approaches available, most lack automation, 
scalability and monitoring capabilities. In this work, 
we demonstrate the feasibility to automatically 
identify and quantify customer needs by training and 
evaluating on previously-labeled Twitter data. To 
achieve that, we utilize a supervised machine learning 
approach. Our results show that the classification 
performances are statistically superior—but can be 
further improved in the future. 
 
1. Introduction  
 

The identification and prioritization of customer 
needs is crucial for businesses in order to succeed in 
the market [1]. By knowing what the needs, wants and 
demands of (potential) customers are, commercially 
successful products and services can be designed. 
Commonly used methods to identify customer needs 
are interviews, surveys or observations [2]. While 
these methods have proven to be successful, they lack 
automation capabilities and, thus, scalability and 
continuous monitoring capabilities. Depending on the 
scope, they can be very time- and cost-intensive. On 
the customer side, it is nowadays common to share 
personal information on social media like Twitter, 
Facebook or Instagram. As Perrin shows, 65% of all 
Americans and 76% of all American Internet users 
draw on social media networking services—with a 
remarkable growth within the last ten years [3]. In the 
group of young American adults (aged 18 to 29), 
already 90% use social media. A share of these social 
media instances contains valuable insights about the 
needs of customers [4]. With a high volume of social 
media, e.g. 500 million tweets [5] and 55 million 
Facebook status updates [6] per day, these platforms 
present a promising data source to gain knowledge 

about customer needs in order to design new products 
and services.  

In previous work, an artifact has been presented 
capable of classifying tweets as to whether they 
contain customer needs [7]. Such an artifact could be 
used in a more comprehensive approach, which 
automatically identifies and quantifies customer needs 
from micro blog data in general and Twitter data in 
particular. While the successful design of a machine 
learning based classifier artifact shows that the 
automatic identification of “need tweets” is generally 
feasible, one major limitation remains. The artifact so 
far is only able to identify tweets containing needs, but 
not the needs themselves. In order to address this 
limitation, this work depicts a Design Science 
Research (DSR) cycle [8], in which we apply a 
supervised machine learning approach to allow 
automatic need quantification. The contribution of this 
work is threefold. First, it provides an overview of the 
different needs expressed in Twitter for our evaluation 
domain of e-mobility. Second, it provides a 
classification model, which can automatically assign 
new incoming tweets to previously identified 
categories. Third, the artifact is deployed as a publicly 
available web service for further usage and integration 
into other analytical applications. 

The remaining paper is structured as follows: After 
regarding related work, we present our DSR-based 
methodology, which determines the remaining 
sections. We elaborate the awareness of the problem, 
suggest a three-phase iteration based on a machine 
learning process model, implement it and finally 
deploy the corresponding web service. We then 
evaluate the results and finish with a conclusion. 
 
2. Related Work 
 

Gaining insight from data which is voluntarily 
shared by people on the internet has been of soaring 
interest in the past years. Social media arrived in most 
people’s everyday life and the amount of available 
information correspondingly increased [3]. Not only 
has it become critical for many businesses to be aware 
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of what their costumers expose on social media [9], 
but also has the analysis of information been able to 
create value in many other areas. For instance, 
information systems have been developed to predict 
the outcome of political elections [10] or to forecast 
movements in the stock market [11]. A distinct aspect 
research has drawn significant attention to is the 
elicitation of opinions of customers out of customer 
reviews or social media data. Although a common use 
case of this so-called “opinion mining” [12] is the 
examination of costumer critiques of products they 
have purchased on e-commerce platforms, opinion 
mining has also recently investigated the potential of 
accumulating the opinions of users of social media 
platforms [13]. However, opinion mining does not 
necessarily include machine learning methods. One 
established method is to directly search for keywords 
which, for instance, determine the opinion of the 
writer of a product review [14]. Such a whitelist- based 
approach for tweets, i.e. retrieving costumer needs out 
of tweets, can be found in Kühl & Goutier [15]. On the 
other hand, machine learning systems for automated 
text classification have been developed immensely in 
the last years [16]. Hence, a broad variety of different 
techniques and algorithms exist. A major distinction 
can be made between supervised and unsupervised 
machine learning. Whereas supervised learning can 
allocate new instances to previously defined target 
values, unsupervised learning refers to models built to 
discover new patterns and relationships [17]. The two 
approaches have different advantages and 
disadvantages, but both have been investigated in 
previous research. For instance, Pang et al. [18] 
successfully implemented a supervised machine 
learning artifact to determine the sentiment of movie 
reviews. Turney [19] conducted an unsupervised 
approach to predict whether reviews of different 
domains (e.g. movies, cars) recommend the products 
they are about. In contrast, the work at hand focuses 
on a supervised approach to allocate costumer needs 
from tweets, which—to the best of our knowledge—
does not exist so far. 
 
3. Research Design  

 
In order to design a need classification artifact, we 

follow the DSR process methodology and its 
individual phases according to Vaishnavi & Kuechler 
[20]. In terms of knowledge contribution, the 
presented work is an exaptation according to Gregor 
& Hevner [8], since we apply a mature solution 
(supervised machine learning) to the new challenge of 
automatic need classification. To evaluate the artifact, 
we use a technical experiment as proposed by Peffers 
et al. [21]. We evaluate the statistical classification 

performances of the models identified. The DSR 
research structure according to Vaishnavi & Kuechler 
[20] is separated into the steps of problem awareness, 
suggestion, development, evaluation and 
conclusion—which determines the remainder of this 
paper.  

 
4. Prerequisites & Awareness of Problem  

 
While previous work shows the feasibility of 

identifying whether or not a tweet contains a need, the 
need itself remains undetected. Aiming for a social 
information system, which is able to automatically 
identify and quantify customer needs from Twitter 
data, it is crucial to not only identify the pure existence 
of a customer need—but more precisely be able to 
display the expressed needs in an aggregated version 
for an innovation manager. Two possibilities on how 
to tackle this problem arise: supervised and 
unsupervised approaches. While unsupervised 
approaches have the advantage to not require any 
information beforehand, they rely on large amounts of 
data—which are not always available. Therefore, we 
explore the option to utilize supervised approaches for 
a specific evaluation domain as part of this work. A 
resulting artifact, once trained on manually labeled 
data, would then be able to automatically classify new 
incoming tweets regarding their need—and, therefore, 
allow to both monitor and quantify specific needs 
automatically—over any period of time. Before going 
into detail about our chosen approach, we define the 
terms customer need as well as our evaluation domain 
of e-mobility to lay the foundations of the remaining 
work.  

There are three main scientific fields which do 
research on needs of customers: Psychology, 
marketing and information systems. In psychology, 
the focus of need research focusses strongly on 
fundamental human needs—but does not take 
economic aspects into account [22]. However, in the 
field of marketing, one of the most important 
challenges is to understand customer needs and ways 
to satisfy them. Kotler & Armstrong [23] separate 
customer needs into three distinct categories (needs, 
wants and demands). Needs are often intangible—for 
example, the needs for mobility or financial security 
can be interpreted and satisfied in many ways. 
Therefore, individuals concertize them implicitly by 
transforming them into wants and demands. 
Additionally, Harding et al. [24] outline that a 
customer need can also be expressed as a requirement 
of a product or service. In the field of information 
systems, research on “requirements engineering” 
states that a need is considered as a high-level 
requirement which has to be transformed into low-
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level requirements to find ways of fulfilling the need 
[25]. For the purpose of this work, there is little to be 
gained differentiating between marketing-oriented 
customer need definitions (needs, wants, demands) or 
need definitions in the context of requirement 
engineering (high-level and low-level requirements): 
In a first step, any information about needs, regardless 
of the level of granularity, is valuable information. For 
simplicity, we, therefore, stick with the term customer 
need—taking all mentioned types into account.  

For testing our approach in an application domain, 
we require candidate domains to be both dependent on 
fast and ongoing monitoring of arising needs and rich 
Twitter data traffic. The domain of electric mobility 
(e-mobility) as defined in Scheurenbrand et al. [26] 
fulfills both our requirements. We further have to 
narrow down the domain to a geographical area with a 
coherent set of laws and regulations, markets as well 
as socio-economic conditions. In addition, we require 
the Twitter data in a unique language, as we need 
consistent semantics to analyze. As a result of these 
requirements on the domain, languages like English 
and Spanish—which cannot be related to one region—
are not suitable. Because of our familiarity with 
German, we focus on the German-speaking region. 
While there is also plenty of research on the analysis 
of micro blog data for English, there is only few 
research on German instances—on Twitter in 
particular [27] and social media in general [28]. 
 
5. Suggestion 
 

First, we have to select an overall process model 
for supervised machine learning. As we regard the 
special case of multiple classification and the need of 
deploying a fully-working prediction model, we 
choose the process model of Hirt et al. [29], as it 
particularly addresses classification model initiation, 
its error estimation and deployment.  
 
5.1. Model initiation 
  

The model initiation starts with the acquisition of 
appropriate data and its labeling, followed by the 
selection of performance measurements to evaluate 
the machine learning process. Additionally, we decide 
how we preprocess our acquired data and choose a 
machine learning algorithm. 
 
5.1.1. Data acquisition & Labeling. The first step in 
the supervised machine learning classification process 
is to gather relevant data which we later use for our 
model training and testing. These manual steps are 
necessary in supervised machine learning before the 

automatic need allocation can be implemented. The 
data should fulfill our requirements for source 
(Twitter), domain (e-mobility) and target value (need). 
Historic data of Twitter is not fully receivable [30]. 
However, it is possible to receive the unfiltered stream 
of real-time tweets via the Twitter Streaming API [31]. 
The only feasible way to acquire all instances (tweets) 
from Twitter is therefore to collect the data from the 
live stream and continuously store it. Since we are only 
interested in tweets in the field of e- mobility, we limit 
the collection of tweets from the data stream based on 
keywords representing our domain of e-mobility and, 
in our case, additionally restricted to a geological 
region and language. Next, we remove non-user 
generated tweets, e.g. from bots or news media. After 
filtering, the remaining tweets need to be classified 
according to whether the message itself contains a 
customer need. To obtain this piece of information in 
an objective way, independent participants take part in 
multiple lab labeling sessions. In these sessions, we 
instruct the participants to classify a set of tweets. 
They are incentivized and paid as described by [32], 
receiving a fixed payment. All participants are given 
the same definition of customer need. Different 
participants classify each tweet three times. The 
outcomes are aggregated for the generation of the final 
data set, regarding only tweets where at least two 
participants agree it contains a need. The remaining 
instances are fulfilling our requirements for source and 
domain—and we know that the instances contain 
needs.  

However, our target value is not the binary 
decision if one instance contains a need or not, as this 
is addressed in previous work [7]. We are rather 
interested in which precise need or need category is 
mentioned in a tweet. Therefore, we have to label the 
remaining data again. We choose the method of 
descriptive coding as described by Saldaña [33]. 
Descriptive coding consists of multiple iterations in 
which researchers with domain knowledge analyze the 
tweet data, instance for instance, and assign codes to 
every tweet independently. These codes represent 
customer needs or customer need categories. The first 
iteration is focused on gaining an understanding about 
the data. We start to assign codes to an instance every 
time the instance contains a need. The number of codes 
equals the number of mentioned needs in the tweets. 
In case the need of one tweet is similar to a need of 
another tweet, we use the exact same code. If there is 
uncertainty about the meaning of a need or which code 
we should use, we tag the tweet with the other code. 
After finishing the first iteration, the codes are usually 
very broad and represent rather abstract need 
categories. We compare our need categories, discuss 
and merge them for a common categorization. Based 
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on the initial iteration we focus on three key features 
during later iterations: First, if we find any consistency 
based on disjoint of categories or needs, we will 
rework our codes from the previous iteration. Second, 
we aim at finding sub categories of our last codes to 
reveal all needs mentioned. However, we also aim at 
finding major need categories as the highest level of 
abstraction. In the end we get labels for the needs and 
major need categories. Every need label belongs only 
to one major need category, whereas a major need 
category contains multiple need codes. Third, the 
other category contains tweets after the initial 
iteration, so we try to find similar tweets in the other 
category to build new categories. We continue the 
process until all researchers agree on the last coding as 
well as all key features are fully executed and fulfilled. 
In the end every need in every instance is labeled by a 
code which represents the need. Moreover, every code 
belongs to one major need category. We can now train 
a machine learning algorithm either on the need labels 
or on the major need category labels of the tweets. The 
only requirement for both options is to have a 
sufficient [34] amount of instances for every label in 
our dataset. 
 
5.1.2. Performance measure. Before starting with the 
machine learning process, we have to choose an 
adequate performance measure. We weigh different 
possibilities. If we look from an overall statistical 
point of view, the area under the ROC curve (AUC) 
[35] is generally accepted as a meaningful 
classification indicator—and highly preferred over 
accuracy [36]. Accuracy does not take class 
imbalances of the target class into account—but since 
we want to predict minority classes (5-20% share), 
accuracy is not specific enough, as it might reveal 
good results without actually learning the minority 
class well enough. While AUC is statistically 
meaningful, it is still worth regarding precision and 
recall—as both can vary significantly with similar 
AUC results [37]. If aiming for the highest possible 
precision (and thus lowest fall-out rate), or aiming for 
the highest possible recall, both measures on their own 
are not helpful, but need to be regarded in 
combination. The balanced compromise between 
precision and recall is measured by the F1-score [38]. 
As we expect innovation managers to neither miss out 
on relevant instances, nor get presented with wrong 
predictions, we choose the F1-score as our core 
performance measure for this work. 
 
5.1.3. Choosing preprocessing & algorithm. The 
previous data acquisition and labeling performed 
result in a dataset of tweets labeled with their needs, 
and every need belongs to one major category. One 

general question is therefore whether to build the 
models upon the discrete needs or only upon the major 
need categories. This mainly depends on the actual 
size of the dataset and the amount of needs or need 
categories found during the development part. We 
therefore discuss this question in the development. For 
readability reasons, we continue referring to needs, yet 
every step in the suggestion part can generally be 
applied to both single needs as well as broader need 
categories.  

Since we need a binary labeling basis in order to 
train a binary classifier, we first assign binary labels to 
each tweet, determining whether or not a tweet 
contains a need, for each need respectively. Every 
tweet can be assigned to more than one need, but we 
do not want our machine learning artifact to be bound 
to combinations of needs, but rather to be able to 
identify every need independently. We hence conduct 
every of the following steps for each need separately. 
We build a classifier using the tweets with the binary 
labels to determine whether a tweet contains this need. 
Prior to training a classifier, we first need to find the 
well-suited preprocessing steps, sampling techniques 
and classification algorithms for this problem instance. 
Although the amount of feasible kinds of 
preprocessing methods is illimitable, we aim to 
systematically choose and evaluate a broad range of 
preprocessing steps. We consider the removal of 
words which do not contain any useful information 
(“stop words”) [39], the removal of words that appear 
very rarely or too frequently to be significant 
(frequency removal), combining n words into one 
feature (n-gram) [40], downcasing or linguistic 
transformations such as stemming [41] or lemmatizing 
[42]. We use a simple bag-of-words concept to build a 
feature vector [14], where one tweet is represented as 
one feature vector. Essentially, this vector contains, 
for all words in the dataset, the number of occurrences 
of words in this tweet. In order to extract the words 
from a tweet, different kinds of tokenization are taken 
into account. The tokenizers are distinguished in the 
manner of how they treat punctuation (e.g. emoticons) 
and in the amount of characters a token must at least 
have to not get removed. We include over-, under- and 
no sampling [43] into our collection of possible pre-
treatments. We also consider whether to use a term 
frequency and inverse document frequency (tf-idf) 
transformer [14], which weights the words in the 
feature vector according to their relative frequency 
distribution. Table 1 shows an overview of the 
preprocessing. Another important aspect clearly is the 
choice of the classification algorithm. We examine 
both a Support Vector Machine (SVM) [44] and a 
Random Forest (RF) Classifier [45]. Following the 
objective to find the most suitable combination of all 
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of these elements, it would be best to try out every 
single permutation with regard to the final model 
performance. Therefore, we combine all these 
elements into a factorial design [46]. However, as the 
amount of different combinations and various values 
for each element is too high and would therefore be 
too computationally expensive, we split this step into 
two runs. In the first run, we gain an overview of the 
influence of the preprocessing steps on the F1-score. 
We are then able to determine the ones that either have 
very little influence or the ones that always lead to the 
best scores across all needs. We keep them fixed for 
the second run, so that we can again try some new 
steps, together with the remaining variables in the first 
run that were not consistent in their influence on the 
F1-score. We finish with comparing the results of each 
need. For consistency reasons, we ultimately 
determine one set of general preprocessing steps that 
are applied to all need classifiers. 
 
Table 1. Overview of preprocessing options 

Preprocessing step Short description 

stop word removal remove irrelevant words,  
such as ”are”, ”the”, ”get” 

frequency removal 
remove words that have a lower or higher 

frequency of occurrences than the specified 
threshold 

n-gram combine n words into one sequence 

stemming reduce words to their stem (root form), 
e.g. ”apples” becomes ”apple” 

lemmatizing replace words by their lemma,  
e.g. ”gone” becomes ”go” 

tokenization divide text into units, e.g. single words 

oversampling replicate samples of the minority class 
towards an equal distribution of both classes 

undersampling ignore samples of the majority class 
towards an equal distribution of both classes 

tf-idf 
transformation 

weight the words in the feature vector 
according to their relative frequency 

distribution 
 
5.2. Model error estimation 
  

As an intermediate step between model initiation 
and model deployment, we conduct a model error 
estimation for each need separately, which later allows 
us to use the whole dataset for tuning the 
hyperparameters and training the classifiers we 
deploy, while still having a statistically safe model 
evaluation of every classifier. Tuning the 
hyperparameters means to find the optimal values for 
the parameters of a classification algorithm (such as 
the C and the γ for a SVM) that are not directly learned 
from the data during the model training. The classical 
approach we use to accomplish this is a grid search, 
meaning to exhaustively search through all per- 
mutations of manually specified sets of possible values 
[47], [48]. The concept we choose for the model error 
estimation is a nested cross-validation (CV) [49], 

which we initiate by defining a parameter search space 
for the hyperparameters of the algorithm selected in 
the previous step. For the CV itself, we split the dataset 
into equal sized folds while maintaining the overall 
class distribution across all folds. In an inner CV, we 
tune these hyperparameters with a grid search, and use 
the hold-out set of the outer CV to gain information 
about the performance measures on unseen data of a 
classifier trained with the optimal parameters from the 
inner CV. This later enables us to perform a grid 
search with the same parameter space, while being 
positive that the model performance will be between 
the minimum and maximum value of the scores on 
every hold-out set of the outer CV. In the model 
deployment step, we can therefore omit a global test 
set and exploit the whole data set to perform a grid 
search (with the same parameter space as in the nested 
CV), and simply use the best performing parameters 
while still having an unbiased model error estimation. 

 
5.3. Model deployment 
  

As the previous step already results in an overall 
model error estimation, we can now use the whole 
dataset to perform a final grid search with the same 
parameter space as for the nested CV. We identify the 
best combination out of the parameter space using a 
grid search with a CV and train the classifier on all the 
data with this exact combination of parameters. This 
classifier is now able to elicit needs out of a new tweet. 
Note that we perform these steps separately for each 
need, resulting in distinct classifiers for each need. For 
further usage, we aim our classifiers to be available for 
other users and for integration into other analytical 
tools. We therefore choose to implement a web service 
which can use the persistently stored and trained 
classifiers. Different classifiers of different domains 
can be plugged into the web service, too. The web 
service provides one endpoint with two parameters, 
one for a new tweet and another one for the domain 
(e.g. e-mobility). Other services can then access this 
(remote) endpoint and the web service returns all the 
previously defined needs in the specified domain and 
their corresponding probability. Being a lightweight 
web service, it is also practicable to integrate it into 
other more sophisticated tools. Imaginable solutions 
could include other web services, for example one that 
can connect to the Twitter Streaming API [31], pass 
the tweet onto a service capable of determining 
whether a tweet contains a need or not, and again pass 
all the need tweets onto the web service developed in 
this work. A database could store this information over 
a period of time. A user interface would then allow 
users (e.g. innovation managers) to analyze different 
aspects and, having stored information over a period 
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of time, analyze the development of needs or the 
impact of a marketing campaign. 
 
6. Development 
 
After we suggest an approach to gain labeled data, 
initiate a model, estimate its error and deploy it in a 
web service, we implement each of the individual 
steps in the following subsections. 
 
6.1. Model initiation 
  

We start with collecting tweets from Twitter and 
label the needs in the tweets by descriptive coding. 
Furthermore, we evaluate different preprocessing 
techniques and algorithms by a grid search to select 
well-suited preprocessing steps for our dataset. 

 
6.1.1. Data acquisition & Labeling. The technical 
retrieval of relevant tweets is not part of this work and 
is only explained briefly. A more detailed description 
can be found in Kühl et al. [7], who illustrate an 
approach to automatically detect tweets containing 
customer needs. We conduct the retrieval of relevant 
tweets by using the Twitter Streaming API [31]. We 
collect every instance (tweet) which contains at least 
one word of a predefined keyword list. The list is 
reasoned on the opinion of professionals as part of a 
workshop and on popular electric vehicles in 
Germany. From March 2015 to May 2016 and from 
November to February 2017, over 2 million tweets are 
collected. Based on the language information of 
Twitter, all non-German tweets are sorted out—which 
reduces our dataset to 107,441 instances. After the 
identification of user-generated content [7], the dataset 
amounts to 6,996 possibly relevant tweets. After 
labeling, we finally end up with 1,093 remaining 
instances containing needs, which are only identified 
as such if at least 2 out of 3 labelers agree on the tweet 
containing a need. This resembles the dataset of the 
work at hand. The labeling of the tweets regarding 
their needs and major need categories starts with our 
first look at the 1,093 instances. Researchers with 
knowledge about e-mobility, who were not part of the 
previous labeling process, conduct the descriptive 
coding [33]. We perform five iterations of clustering 
until we reach saturation. In the end, we reveal seven 
major need categories, the category other and 28 
different needs which are depicted in table 2. To 
decide if we train our machine algorithm on the need 
labels or the major need category labels, we have to 
take the amount of instances for every label into 
account. Whereas some needs like car price and 
politics have a large amount of instances, six needs 

have only a single-digit amount of instances. The 
lowest number of instances for a major need category 
is 71, which represent slightly over 5% of all found 
needs. Therefore, we decide to continue to train our 
machine learning algorithm on major need categories. 
 
Table 2. Quantitative share of the major need 

categories and the needs for the regarded 
tweets, n=1,093

 

6.1.2. Choosing preprocessing & algorithm. In 
order to implement the models suggested in section 5, 
we use the Python programming language and the 
well-established machine learning package scikit-
learn [50]. Once we have gathered and labeled the 
tweets, we develop a program to systematically 
evaluate and choose the best suited kind of 
preprocessing steps. We propose several kinds of 
possible language processing methods: For word 
stemming, we use the SnowballStemmer [51] for 
German of the package NLTK [54], a natural language 
toolkit for Python. Lemmatizing is done using 
TextBlob [53], a Python package built on top of NLTK. 
We also develop own methods to replace emoticons, 
URLs and usernames with the words “emoji”, “url”, 
and “name” using regular expressions. Apart from the 
language processing, we take different tokenization 
methods into account.  

We use the standard scikit-learn tokenizer, which 
by default removes all tokens that consist of one 
character only and considers any kind of punctuation 
characters as word separators. This is the reason why 
we replace emoticons, URLs and usernames, instead 
of just removing them—as they would get removed by 
the tokenizer anyway. In addition to the standard 
tokenizer, we implement two variations of this 
tokenizer: One which does not remove tokens with the 
length 1 and another one which always removes 
tokens with less than 3 characters. Moreover, a 
TweetTokenizer from NLTK is used. When it comes to 
the removal of words containing very little 

Unseen
Need Tweet

Need Probability Web Service

trained classifiers

Domain
(e.g. e-mobility)

Exemplary output
{
"need_category":
[ 

{ 
"id": 1, 
"name": "car characteristics", 
"probability": 0.42028053

},
{ 
"id": 2, 
"name": "price", 
"probability": 0.07609895

}, 
...
{ 
"id": 8, 
"name": "range", 
"probability": 0.33310777

}
] 

}

Twitter 
Streaming API

Need Tweet
Identification

User 
Interface

Previous workThis work

Analytical
Application …

Future work

Figure 2. Positioning of the web service in a holistic tool among
other components of previous and future research

in Anonymized [7], which illustrates an approach to automat-
ically detect tweets containing customer needs. We conduct the
retrieval of relevant tweets by using the Twitter Streaming API
[33]. We collect every instance (tweet) which contains at least
one word of a predefined keyword list. The list is reasoned on
the opinion of professionals as part of a workshop and popular
electric vehicles in Germany. It consists of eight German1

and five English2 generic terms which are supplemented by
ten electric vehicles3. From March 2015 to May 2016 and
from November to February 2017, over 2 million tweets are
collected.

Based on the language information of Twitter, all non-
German tweets are sorted out—which reduces our dataset to
107,441 instances. After the identification of user-generated
content [7], the dataset has the amount of 6,996 possibly
relevant tweets. After labeling, we finally end up with 1,093
remaining instances containing needs, which are only identi-
fied as such if at least 2 out of 3 labelers agree on the tweet
containing a need. This resembles the dataset of the work at
hand.

The labeling of the tweets regarding their needs and major
need categories starts with our first look at the 1,093 instances.
Researchers with knowledge about e-mobility, who were not
part of the previous labeling process, conduct the descriptive
coding [35]. We perform five iterations of clustering until
we reach saturation. In the end, we reveal seven major need

1e-tankstelle, eauto, elektroauto, elektrofahrzeug, elektromobilitaet, elektro-
mobilität, ladesaeule, ladesäule

2ecar, electric mobility, EV vehicle, e-mobility, emobility
3bmw i3, egolf, eup, fortwo electric drive, miev, nissan leaf, opel ampera,

peugeot ion, renault zoe, tesla model s

Table 3. Quantitative share of the major need categories and the
needs for the regarded tweets, n=1,093

Major Need Category Amount (Share) Need Amount (Share)

price 202 (14.8%)

car price 154 (11.2%)
electrical price 22 (1.6%)
price (other) 22 (1.6%)
oil/gas price 4 (0.3%)

car characteristics 145 (10.6%)

car characteristics (other) 66 (4.8%)
car design 28 (2.0%)
car sound 19 (1.4%)
driving experience 15 (1.1%)
car comfort 7 (0.5%)
car performance 6 (0.4%)
car smell 4 (0.3%)

charging infrastructure 305 (22.3%)

charging infrastructure existence 191 (14.0%)
charging infrastructure availability (technical) 45 (3.3%)
charging infrastructure(general) 43 (3.1%)
charging infrastructure availability (physical) 26 (1.9%)

range 135 (9.9%) range 135 (9.9%)

charging technology 119 (8.7%)

charging interfaces and technologies 55 (4.0%)
charging speed 30 (2.2%)
battery (other) 29 (2.1%)
range extender 5 (0.4%)

environment & health 71 (5.2%)
environmentally friendly car usage 39 (2.8%)
environment & health (other) 29 (2.1%)
environmentally friendly car production 3 (0.2%)

society 283 (20.7%) politics 171 (12.5%)
desire for e-mobility 112 (8.2%)

other 109 (8.0%)
other (miscellaneous) 60 (4.4%)
definable 39 (2.8%)
joke 10 (0.7%)

categories, the category other and 28 different needs which
are depicted in table 3. To decide if we train our machine
algorithm on the need labels or the major need category labels,
we have to take the amount of instances for every label into
account. Whereas some needs like car price and politics have
a large amount of instances, six needs have only a single-digit
amount of instances. The lowest number of instances for a
major need category is 71, which represent slightly over 5%
of all found needs. Therefore, we decide to continue to train
our machine learning algorithm on major need categories.

6.1.2 Choosing preprocessing & algorithm. In order to
implement the models suggested in section 5, we use the
Python programming language and the well-established ma-
chine learning package scikit-learn [53]. Once we have
gathered and labeled the tweets, we develop a program to
systematically evaluate and choose the best suited kind of
preprocessing steps. We propose several different kinds of pos-
sible language processing methods: For word stemming, we
use the SnowballStemmer [54] for German of the package
NLTK [55], a natural language toolkit for Python. Lemmatizing
is done using TextBlob [56], a Python package built on top
of NLTK. We also develop own methods to replace emoticons,
URLs and usernames with the words ”emoji”, ”url”, and
”name” using regular expressions. Apart from the language
processing, we take different tokenization methods into ac-
count. We use the standard scikit-learn tokenizer, which
by default removes all tokens that consist of one character
only and considers any kind of punctuation characters as word
separators. This is the reason why we replace emoticons,
URLs and usernames, instead of just removing them —as they
would get removed by the tokenizer anyway. In addition to
the standard tokenizer, we implement two variations of this
tokenizer: One which does not remove tokens with the length
1 and another one which always removes tokens with less than
3 characters. Moreover, a TweetTokenizer from NLTK
is used. When it comes to the removal of words containing
very little information, we work with the German NLTK stop-
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information, we work with the German NLTK 
stopwords. Other variables we take into consideration 
are the lowest and highest threshold of frequency 
removal, or the value for n in n-grams. Over– and 
undersampling is done using the Python package 
imbalanced-learn [54]. For the tf-idf transformation of 
the feature vector, we use the built-in tfidfTransformer 
of scikit-learn.  

Our goal now is to determine which of these 
methods promise the best overall model performance. 
We therefore perform a 3-fold CV (with equal class 
distributions for each fold) with every reasonable 
combination of all of these methods, including the 
possibility to not use a step, such as no stop word 
removal. Since we cannot yet determine which 
classification algorithm to use, we do it for both a 
SVM and a RF Classifier—without tuning their 
hyperparameters at this point. Generally working with 
separate binary classification models, we run this 
process for each need category individually. As 
described in section 5, we split this part into two runs. 
We use random seeds whenever it is necessary, in 
order to be able to shuffle or randomly split the data, 
while maintaining comparability among the two runs. 

In a first run, we consider whether to remove stop 
words, downcasing, removing words that appear in 
less than 1% or 5%, and in more than 50% or 75% of 
the documents, uni-grams and bi-grams, the NLTK 
TweetTokenizer against the scikit-learn default 
tokenizer, stemming, lemmatizing and different 
combinations of emoticon-, url- and name- 
replacement. For each need category and for each 
classification algorithm, we make a list of the ten best 
performing combinations in regard to the F1-score. 
Based on a majority of occurrences in the top ten lists 
of the first run, we decide to always use stop words, 
lowercase, stemming, no lemmatizing, uni-gram, as 
well as emoticon- url- and name- replacement. The 
results are not consistent in terms of the classification 
algorithm, tokenizer and frequency removal, which we 
therefore keep in the set of possible methods for the 
second run. In the second run, we additionally try 
over- and undersampling as well as tf-idf / no tf-idf 
transformation of the feature vector. Again, for every 
need category, we calculate the performance (F1-
score) of all possible combinations and rank them. As 
we consider each need category as one binary 
classification problem, we have to perform this task 
for each need category separately.  

Interestingly, the rankings are slightly different for 
each need category, meaning that each need category 
has its own set of preprocessing steps that leads to the 
best scores. Nevertheless, we are able to single out the 
best preprocessing combinations they have in 
common, in order to have a general preprocessing that 

we can apply to every tweet, no matter which need 
category it is assigned to. Clearly, as we generalize the 
preprocessing across all need categories, we cannot 
use the individual preprocessing that would be best for 
each need category on its own. In addition to the steps 
selected based on the first run, our pre-treatment in the 
end includes a tf-idf transformation and oversampling. 
We do not perform any frequency removal, however, 
the best tokenizer removes all tokens with a single 
character. With this preprocessing, a SVM in terms of 
algorithm choice yields to better scores. 

 
6.2. Model error estimation 
  

To gain evaluation scores of the upcoming grid 
search, we define a parameter search space and 
perform a nested CV. This allows us to estimate the 
model error of the following grid search performed to 
tune hyperparameters of the SVM. Concretely, we 
optimize the C-value, the gamma, the kernel and the 
degree (in case of a polynomial kernel). We consider 
the preprocessing elements from the previous step as 
given and use the same implementations. In an outer 
loop, we split the data into ten outer folds and perform 
a grid search on nine folds with three inner folds. This 
results in a best parameter set, which we use to train a 
new classifier. This classifier is then tested on the 
hold-out set of the outer loop. Ten outer folds result in 
ten iterations through the outer loop, each iteration 
with its own results on the hold-out data set. Lastly, 
we determine the mean, the standard deviation and the 
minimum and maximum values of these ten scores. 

 
6.3. Model deployment 
  

After the model error estimation step, we perform 
a final grid search with the same parameter grid as in 
the previous step using the built-in scikit-learn grid 
search, and train the final classifier on the whole data 
set. As we use a SVM as classification algorithm, this 
classifier would only be able to determine whether a 
tweet contains a need category or not. We hence take 
advantage of scikit-learn’s option to additionally carry 
out the Platt scaling algorithm [55] in order to be able 
to calculate the probability of a tweet containing a 
need category later. As we want to make the classifiers 
publicly available for integration into other tools, we 
store the classifiers on a web server. To make them 
accessible, we implement a RESTful web service, 
using the Python Flask web framework. 
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7. Evaluation 
 

The evaluation is divided into two parts: First, we 
focus on the performance measures of the model error 
estimation and the final grid search. Second, we point 
out the real-world usability of the web service. 

7.1. Model error estimation 
  

As stated before, we conduct a nested CV for each 
need category to obtain a model error estimation of the 
possible classifiers. The ten outer folds of this nested 
CV result in ten different F1-scores of different 
classifiers on unseen data. Table 3 shows the 
minimum, maximum, mean and standard deviation of 
these ten scores for each need category. The minimum 
and maximum values compose the confidence interval 
for the F1-score of the finally deployed classifier. 
Indeed, as in the final training, we use the same 
parameter space as in the nested cross validation, the 
scores for each need category lie within the confidence 
intervals of the nested CV. 

Table 3. F1-scores of the nested CV for the 
model error estimation 

 

The scores for charging infrastructure, range, 
price and society show that it is possible to 
automatically allocate major need categories from 
tweets. Being the harmonic mean of precision and 
recall, a high F1-score means that the classifiers are in 
most cases able to correctly identify whether a tweet 
contains a need category or not. This can certainly add 
substantial value to companies and help innovation 
managers in their decision making. The results differ 
notably between the individual need categories. One 
influencing factor is that the class distributions for 
each need category vary: For the need category 
environment & health for example, only 66 tweets 
have been labeled as containing a need category, in 
contrast to 298 for charging infrastructure. Different 
class distributions among the need categories are also 
one reason why they have (slightly) different best 

parameter sets, since the nested CV and the grid 
search in the model deployment phase are conducted 
for each need category separately. Indeed, the 
parameters are optimal for each need category, but—
in addition to differing class distributions—different 
classifiers with different (optimal) parameters might 
behave differently and are therefore another reason 
why the scores for each need category are 
heterogeneous. Nevertheless, further investigation on 
the influencing factors responsible for the varying 
results is required. The low score for the category 
other is consistent with the fact that this category is of 
very diverse content—making it difficult for the 
classifier to find the right patterns which determine 
whether a tweet belongs to this category or not. 

7.2. Model deployment 
  

After manually performing the necessary steps like 
data gathering, labeling and deciding upon the 
preprocessing, we successfully implement a stand-
alone web service that is capable of automatically 
allocating a tweet to the probabilities of each need 
category in the specified domain. The REST API 
makes it in general convenient to embed this service 
into more sophisticated analytical tools. A user 
interface for innovation managers, allowing them to 
analyze their costumer needs, could be developed. 
Interesting aspects, such as the distribution of 
costumer needs over time, could then be visualized. As 
the web service calculates the probabilities of 
containing a need category, an element empowering 
the user to define a “probability threshold” could be 
placed on the user interface. The managers could then 
decide by themselves, “how certain” the estimates 
must be in order to be taken into account for the 
visualization. For them, this might be much more 
meaningful than the F1-scores discussed in the 
previous section. 
 
8. Conclusion 
 

In the work at hand we explore the option to 
automatically identify and quantify customer needs 
from a predefined set. To achieve that, we first code 
over 1,000 German tweets containing customer needs 
in the field of e-mobility with a descriptive coding 
approach. With this labeled data at hand, we choose 
the preprocessing steps, estimate the model error and 
train different supervised machine learning models for 
predicting the need category of incoming, unseen 
tweets. We encapsulate this functionality into a web 
service, which allows an automatic prediction of eight 
need categories for the e-mobility domain. If 

for the sake of delivering information about the current status
of the web server and of errors that may have occurred. The
answers of the server are formatted in JSON, since it is an
open and standardized format almost every other tool and
database can easily deal with, while still maintaining human-
readability.

7 Evaluation

The evaluation is divided into two parts: First, we focus
on the performance measures of the model error estimation
and the final grid search. Second, we point out the real-world
usability of the web service.

7.1 Model Error Estimation

As stated before, we conduct a nested CV for each need
category to obtain a model error estimation of the possible
classifiers. The ten outer folds of this nested CV result in
ten different F1-scores of different classifiers on unseen data.
Table 4 shows the minimum, maximum, mean and standard
deviation of these ten scores for each need category. The min-
imum and maximum values compose the confidence interval
for the F1-score of the finally deployed classifier. Table 4
also shows the baseline scores achieved by a random guess
classifier. The scores of the grid search which determine the
parameters for the final training on the whole dataset are
depicted in table 5. Indeed, as in the final training, we use
the same parameter space as in the nested cross validation,
the scores for each need category lie within the confidence
intervals of the nested CV.

The scores for charging infrastructure, range, price and
society show that it is possible to automatically allocate major
need categories from tweets. Being the harmonic mean of
precision and recall, a high F1-score means that the classifiers
are in most cases able to correctly identify whether a tweet
contains a need category or not. This can certainly add
substantial value to companies and help innovation managers
in their decision making.

The results differ notably between the individual need
categories. One influencing factor is that the class distribu-
tions for each need category vary: For the need category
environment & health for example, only 664 tweets have
been labeled as containing a need category, in contrast to
2984 for charging infrastructure. Different class distributions
among the need categories are also one reason why they
have (slightly) different best parameter sets, since the nested
CV and the grid search in the model deployment phase
are conducted for each need category separately. Indeed,
the parameters are optimal for each need category, but—in
addition to differing class distributions—different classifiers

4In case one tweet contains multiple needs that belong to the same need
category, only one instance is used in the implementation. Therefore, the
effective frequencies of tweets containing need categories is slightly different
than the total amounts shown in table 3.

Table 4. F1-scores of the nested CV for the model error estimation

Need Min Max Mean

Standard

Deviation

Base-

line

Impro-

vement

price 0.524 0.737 0.642 0.059 0.264 +143.18%
car
charac. 0.308 0.600 0.471 0.089 0.199 +136.68%

charging
infras. 0.719 0.871 0.783 0.043 0.353 +128.13%

range 0.538 0.917 0.721 0.122 0.199 +262.31%
charging
enviro. 0.222 0.444 0.360 0.078 0.174 +106.90%

enviro.
& health 0.125 0.800 0.543 0.203 0.107 +407.48%

society 0.452 0.746 0.543 0.080 0.333 +63.01%
other 0.171 0.457 0.278 0.079 0.167 +66.47%

with different (optimal) parameters might behave differently
and are therefore another reason why the scores for each need
category are heterogeneous. Nevertheless, further investigation
on the influencing factors responsible for the varying results is
required. The low score for the category others is consistent
with the fact that this category is of very diverse content—
making it difficult for the classifier to find the right patterns
which determine whether a tweet belongs to this category or
not.

Table 5. Scores of the grid search that determined the parameter
for the final training on the whole dataset

Need Best F1-score C gamma kernel

price 0.621 0.25 1.8 sigmoid
car characteristics 0.462 0.50 1.8 sigmoid
charging infrastructure 0.742 0.40 1.8 sigmoid
range 0.717 0.10 1.8 sigmoid
charging infrastructure 0.386 0.10 2 sigmoid
environment & health 0.513 0.35 1.8 sigmoid
society 0.535 0.15 2.6 sigmoid
other 0.284 0.10 2.6 sigmoid

7.2 Model deployment

After manually performing the necessary steps like data
gathering, labeling and deciding upon the preprocessing, we
successfully implement a stand-alone web service that is
capable of automatically allocating a tweet to the probabilities
of each need category in the specified domain. The web service
is running steadily and can be accessed on an internet browser
under a public url5. With the parameter domain, we allow
future extensions to other domains besides e-mobility. In the
future, classifiers for other domains are trained and can simply
be stored on the web server. For other services or applications
that invoke this web service, no adjustments are required, since
the parameter is already part of the API. The REST API
makes it in general convenient to embed this service into more
sophisticated analytical tools. A user interface for innovation
managers, allowing them to analyze their costumer needs,
could be developed. Interesting aspects, such as the distribu-
tion of costumer needs over time, could then be visualized.
As the web service calculates the probabilities of containing
a need category, an element empowering the user to define a

5http://needminer.com/api/machine-learning/clustering?text=this+tweet+
should+be+in+German&domain=e-mobility
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implemented into a larger analytical social 
information system, this web service can assist 
innovation managers and alike in their daily operations 
of researching and possibly prioritizing different 
innovation ventures.  

The work has several limitations. We only explore 
a supervised approach and only do so for the field of 
e-mobility. Consequently, the customer needs need to 
be identified once before the automatic identification 
can be enabled and non-identified categories cannot be 
revealed. Additionally, new classifiers need to be 
trained if other domains are regarded outside of e-
mobility. Also, the data set is rather small and for 
single categories the results of the error estimation 
show a high variance and therefore the possibility of 
model over-fitting. Especially for unstructured text 
data from social media, the choice of the appropriate 
preprocessing steps (including feature selection and 
dimensionality reduction) is critical but also 
challenging. Although we evaluate a broad range of 
preprocessing methods, a more detailed evaluation on 
how to tailor the preprocessing of unstructured Twitter 
data to the particular use case is needed. In any case, 
this requires manual evaluation and decision-making. 
On the technical side, we utilize the Twitter Streaming 
API, which allows us to receive all tweets containing 
the mentioned keywords as long as the fetched data 
does not exceed more that 1% of all tweets [30]. 
However, when receiving the tweets, our results are 
limited to the selected keywords as well as the ability 
of Twitter to identify the language—since our 
language identification relies on the received meta 
data. By doing so, we cannot capture tweets which are 
written in mixed language (e.g. English and German) 
as well as tweets from Germans tweeting in a different 
language (e.g. English). Furthermore, as we only 
examine tweets in German, future work needs to 
explore the adaptability to other languages. 

Nonetheless, we are able to show the feasibility of 
supervised machine learning to provide a solution for 
the challenge of automatable need identification and 
quantification, which can provide businesses 
additional insight into the needs of their customer in 
the future. By providing a social information system 
which utilizes the proposed web service, innovation 
managers do not need to manually scan possibly 
relevant tweets anymore, as the system would 
automatically assign single tweets to a broader 
category. By doing so, we would allow them to 
continuously monitor the needs expressed on Twitter 
for a certain domain—without any manual effort. This 
could be a step change for the field of innovation 
management, since most traditional approaches of 
customer need identification and quantification lack in 
scalability and automation capabilities. The 

exploration of further options, including unsupervised 
approaches, yields an interesting and promising field 
of research. 
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