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Abstract

This paper presents a computationally assisted
method for scaling researcher expertise to large, online
social media datasets in which access is constrained
and costly. Developed collaboratively between social
and computer science researchers, this method is
designed to be flexible, scalable, cost-effective, and to
reduce bias in data collection. Online response to
six case studies covering elections and election-related
violence in Sub-Saharan African countries are explored
using Twitter, a popular online microblogging platform.
Results show: 1) automated query expansion can
mitigate researcher bias, 2) machine learning models
combining textual, social, temporal, and geographic
features in social media data perform well in filtering
data unrelated to the target event, and 3) these results
are achievable while minimizing fee-based queries by
bootstrapping with readily-available Twitter samples.

1. Introduction

Online social media platforms are changing how
researchers study citizen engagement. Through social
media, political discussions have moved from private
affairs to public debates, shedding light on contentious
issues. Broad availability of these platforms have also
provided a forum for the general population to speak
their minds and share their opinions of the day’s events.

Social media data could be a significant boon
to studies of complex political and social systems,
as social media data is generally more abundant
and rapidly produced than surveys or more typical
research instruments. Recent attempts to leverage this
data, however, have raised important methodological
issues regarding data collection, including controlling
sampling bias, applying human expertise to large-scale
data, and minimizing costs. Addressing these concerns
requires strategies that balance comprehensiveness and

limited resources while bounding bias in the system as a
whole [1].

This paper describes a process that integrates such
strategies, optimizing cost, improving efficiency, and
reducing biases. Using the context of a larger effort
to predict violence during elections in Sub-Saharan
Africa, this paper presents an implementation of this
process and its evaluation. This study is grounded in
Twitter, a popular microblogging platform, and focuses
on collecting politically relevant conversation before,
during, and after national elections in six countries
(analysis of datasets built using this process are available
in [2, 3, 4]).

Following a brief discussion of related work,
we formulate this data collection process as a
computationally assisted information retrieval (IR) task
and describe the high-level structure of our technical
framework and its implementation. Comparing across
six elections in Sub-Saharan Africa, we demonstrate
the method’s performance, lessons learned from its
deployment, limitations, and the weaknesses to be
addressed in future work.

2. Related Work: Limitations
and Opportunities

Data made available from the proliferation of online
social media platforms have enabled new applications
of network science at previously intractable scales and
resolutions [5, 6, 7, 8, 9, 10]. Researchers, however,
face a formidable validation challenge in controlling
sampling bias stemming from missing data (textual
content or users/groups). Sampling techniques for these
online social media platforms remain unsatisfactory,
often focusing on unrepresentative convenience samples
of unknown populations using opaque interfaces with
constrained access [11]. These access restrictions
compound omitted data problems by introducing
additional biases from closed-source samples, like
Twitter’s 1% public stream. Although popular due to
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their low cost, it is unclear how these samples are
created, introducing methodological inconsistencies and
hindering inference [12, 13].

Even if a researcher had unconstrained access to
these platforms, however, the expense in analyzing
and filtering the data would likely be both prohibitive
and inefficient given the volume of noise in such
platforms. A conservative estimate suggests at least 90%
of messages in Twitter are unrelated (i.e., noise) to even
high-impact events like terrorist attacks [6].

To extract data relevant to the researcher’s subject
of interest and avoid the need to analyze such
massive collections, researchers generally rely on
keyword-based searches. Using IR techniques,
documents that include these keywords are retrieved for
the researcher’s analysis. These keyword searches help
constrain the dataset but can introduce a new source
of bias in the query construction. Query expansion
mitigates this intrinsic researcher bias by suggesting
new keywords the researcher may have missed.
Pseudo-relevance feedback (PRF) is the most common
method for this expansion, which identifies tokens
(meaningful sequences of characters or parts of text
identified from breaking up documents) absent in the
researcher’s original query and which occur frequently
in a query’s result set [14]. Lexicons are another
common approach. For example, research identifies
tokens that frequently occur in tweets mentioning
disasters across a broad range of crisis events [8].
Others have used content from webpages referenced
in links in tweets for expansion [15]. Challenges
in these methods virtually ensure resulting samples
will have missing data, however, because researchers’
vocabularies significantly vary [16] and brevity in social
media platforms reduces the available context.

Specific to querying for election-related content,
recent work detects relevant messages with a neural
network, increasing query size by 200%, and uses
automated techniques to reduce noise [17]. The
approach outlined herein differs in cost-efficiency by
leveraging free social media samples. In an alternative
approach, Vosecky et al. improve their queries using
models that detect both latent structure through topics
and word order through language (topic language
models) but do not seek to reduce biases due to
omitted data [18]. All of these approaches generally
assume access to the full population data, free from
constraints imposed by data resellers. Moreover, many
such approaches are fundamentally dependent on seed
vocabularies and textual characteristics, which can be
difficult to define as concepts become more complex.

The proposed computationally assisted process
addresses these weaknesses and uses textual, social,
and geographic attributes to perform query expansion.
Leveraging free data for cost-effectiveness, human
expertise to identify relevant content across countries,
and machine learning models to automate this expertise
allows for a more efficient and scalable approach than
those above.

To ground this method’s development, its use
case is drawn from a larger research effort for a
typical quantitative political science research question:
do frustrations with economic, social or political
inequalities attributed to governing authorities change
during elections? Previous assessments [19, 20, 21]
have used static instruments (like structural data or
surveys) to capture perceptions, yet political discourse
is dynamic and sensitive to changing events, particularly
online [22, 23]. Leveraging social media to capture
these perceptions provides a new avenue for advancing
research. More importantly, the comparative nature
of this research question requires diverse contexts,
ranging from Botswana to Nigeria to Zambia, and from
extremely violent to relatively peaceful elections. To
our knowledge, a flexible, easy-to-implement technical
framework that can bound systems of citizens discussing
desired concepts during target events (like elections)
across multiple countries has not been sufficiently
presented in the literature. Rather than proposing a
new lexicon for studying elections or other social or
political phenomena; this effort presents a new process
to capture representative and relevant social media data
of the system in a rigorous, replicable, and scalable
approach.

3. Computationally Assisted, Scalable
Data Collection for Social Media

As previously mentioned, studying social and
political systems via social media data imposes unique
constraints on IR tasks. This section presents an
overview of the proposed process and how it addresses
these constraints. To set up this task, it expects the
researcher to have a desired social or political research
concept, to include: a textual description, location, and
timeframe. With this initialization data, this framework
retrieves a more comprehensive and less biased set of
messages from a target online social media platform,
subject to the following constraints and implementation
details.

Page 1986



3.1. Search Constraints

A high-quality dataset should be unbiased, or
representative of the true population, and relevant to the
target concept. Collecting such a dataset is complicated
by three chief constraints: 1) descriptions are always
incomplete; 2) data access is restricted and costly; and
3) human expertise is limited. First, even given multiple
experts on a topic, an exhaustive description of a concept
is difficult to construct. For instance, when searching
for keywords describing an event, an expert must make
judgments with limited information and use cognitive
heuristics to aid decision-making in the face of high
volumes of information [24]. Identifying a perfect set of
keywords is a “near-impossible task” for human experts,
and even the most sophisticated text analysis systems are
limited in practice by bias in these selections. Multiple
experts are likely to uncover different information
related to the same concept when describing even simple
phenomena nearly 90% of the time [25]. Human experts
also have implicit associations that may bias keyword
selection [26], depending on their perceptions of the
concept’s related actors and the context in which they
are situated. This proposed method supports these likely
incomplete queries by automatically supplementing
information.

This automated expansion, however, is still subject
to constraints in the data or data source. Often, such
data sources are opaque and incomplete. Small, public
data samples (like Twitter’s public sample stream)
may be adequate for some questions, but research
has shown their closed sampling processes introduce
new, unknowable biases [12, 13]. Moreover, the
small samples limit access to rare features, such as
geolocation (estimated to be in just 3% of Twitter),
or important aspects of communication, such as those
between a small but influential group of users. Clever
query strategies can alleviate some of these issues, but
such methods generally rely on real-time access to
the target platform, and are therefore limited in utility
for retrospective search tasks [27, 28]. Furthermore,
many search interfaces further restricts public access
by imposing strict limits on query sizes. Twitter is no
exception, generally restricting access to 1% of the full
dataset.

Contracting for access to the full historical dataset
is the best way to overcome these obstacles but also
introduces a different set of restrictions. As mentioned
in the description of Gnip’s query interface and cost
structure for instance, queries must be optimized before
execution to create as complete a sample as possible. As

such, the technical framework must control for costly,
query-based access to the full dataset rather than relying
solely on arbitrary access.

While access to the full dataset is valuable, it also
creates a problem of scale: While much of the sample
created will likely be irrelevant, an unknown but large
portion is likely noise. Human input is required to
draw appropriate meanings for complex concepts across
diverse contexts in this data. The sheer scale of social
media data in general, and Twitter in particular, makes
human assessment intractable for all but a fraction of
the content, as well as prohibitively expensive. For
example, Amazon’s Mechanical Turk platform has a
minimum per-task charge of $0.03, and requires at
least two coders for reliability, leading to more than
$30K in costs for a single long-term event. Finally,
an appropriate technical framework must scale to the
volume of data.

3.2. Algorithm Overview

A computationally assisted framework to support
social science-oriented search must therefore balance
reducing bias, costs of acquiring data, and efforts to
incorporate human expertise. This framework balances
these issues by extending query axes to include textual,
social, and spatial attributes; by integrating public
Twitter archives to bootstrap queries; and by developing
machine learning models to capture human expertise for
judging relevant content.

In the process’s first stage, three assumptions are
made. First, the researcher has access to a set of
social media messages T and identifies a particular
event E to study (or concept within an event, such as
grievances during elections). Second, the researcher
provides an expert description of the event E or concept,
including the timeframe of interest [dstart, dend]. This
description should include keywords, phrases, hashtags,
user accounts Qo, relevant to the event or concept but
non-exhaustive, and a geographic area G covering the
target population, if one exists. Third, access to the
dataset T is restricted to a query interface (i.e., the
researcher can not run arbitrary queries on the dataset).

The process, as shown in Algorithm 1, takes the
expert description, the data archive T , and query
expansion rounds as primary inputs. It then extracts
a random sample Tsample from T in the time period
of the event. To address the issue of incomplete data
archives, this process bootstraps samples by expanding
the relevant keyword set QE and identifying the most
central or authoritative users A taking part in the event’s
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discussion, as described below. This social expansion is
especially key: research shows small samples of Twitter
data preserve significant network structure [12].

The algorithm then turns to the full dataset T
and extracts messages matching the expanded query
(Tq), messages authored by or mentioning the central
accounts (Ta), and messages posted from the geographic
region during the target timeframe (Tg), as the scarcity
of geocoded messages on Twitter ensures this set will
be limited. The framework then samples an equal
number of messages from each query type — keywords,
central accounts, and geocoded — and passes each set
to human coders. The human coders assess each set of
tweets for relevance to the event or concept, producing
labels. These labels train a classifier to differentiate
between relevant and non-relevant content at scale,
addressing the cost of human assessment of millions of
tweets. Irrelevant data is removed from the message
set Tall with this classifier to create a comprehensive,
highly-relevant dataset.

4. Methodology for Twitter Sampling

The design of this technical framework is intended to
support flexibility and easy implementation to address
a range of social and political research problems on
social networking platforms. Query expansion and
account centrality can be performed in many ways.
This section discusses implementation details and data
sources for sampling content from Twitter across six
diverse countries in Sub-Saharan Africa, including
query formats and methods for incorporating human
expertise through sampling and machine learning.
Events used in this evaluation focus on elections in
these countries because such events provide a succinct
timeframe in which grievances are popular and salient
[20]. Social media is thus an ideal medium to test
whether such event-driven and reactive communication
[6, 29] has predictive potential.

4.1. Expert Descriptions of Concepts/Events

To capture content about a social or political concept
or event on Twitter, our technical framework’s first
phase (Algorithm 1, line 1) incorporates an initial set of
expert-provided parameters. These parameters include
an initial set of keywords for which to search, a list
of relevant social media accounts, and the geographic
and temporal bounds (e.g., start and end dates) specific
to the research question. For these election cases,
this input includes: a summary of individuals involved
(such as leaders, candidates, journalists, and activists),

associated organizations, supporting constituencies,
issues leading to contentious actions, and specific events
in the relevant time period (e.g., protests, rallies, court
cases, voter registration problems, candidate or party
announcements, scandals, or political violence).

These summaries are distilled into topics and
sub-topics, and keywords are generated through an
iterative search process. For each topic, researchers
choose keywords describing the target concept, while
avoiding those that would overlap with other events
(e.g., several elections use the hashtag #elections2014)
where possible. These search terms then constitute an
initial query set, which can be searched on Twitter’s
public user interface to identify hashtags and accounts
for these topics. Within this sample, researchers then
identify additional potential topics and iterate until no
additional topics, central users, or hashtags seem to be
uncovered, with the maximum iterations taking 8-10
hours.

4.2. Data Sources

Nearly half a billion tweets are shared on Twitter
daily, but researchers cannot directly access this full
volume. Instead, Twitter monetizes this content
through “data resellers,” or companies that provide
more complete, fee-based access. For this effort, we
use Gnip, Twitter’s chief data reseller, which offers
access to all historical tweets via their Historical
Powertrack interface. Users pay for a subscription
to this resource that provides an allocation of tweets
and/or timeframes per month. Even with this interface,
hoewver, researchers can only access data through
queries, which can contain keywords, user accounts,
geolocation bounds, hashtags, and other rules1. Cost
is based on the number of days a query spans as well
as the number of tweets retrieved: running new queries
over the same timeframe increases costs, rendering
the platform costly for use for query expansion. We
alleviate these costs by maintaining an archive of
Twitter’s 1% public sample stream, as an analog for
the second step (line 2 in Figure 1) of our technical
framework. The sample stream is the primary source
many researchers use for Twitter analysis, and while
containing biases, research has shown network structure
is generally preserved [12], making it an adequate
platform for identifying central accounts. Researchers
can also access the Internet Archive’s Twitter Stream
Grab, and Gnip’s Powertrack API has a sample function

1http://support.gnip.com/apis/historical_
api2.0/
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Algorithm 1: Social Science Event Retrieval in Large-Scale, Restricted Microblog Collections
Data: T,E(dstart, dend, Q0, G, queryExpansionRounds)
Result: a set of microblog messages relevant to the target event

1 begin
2 Tsample ←− sample(T, dstart, dend) ; /* randomly sample T in target timeframe */
3 QE ←− Q0 ;
4 A←− List() ;
5 while i < queryExpansionRounds do
6 QE ←− expandQuery(Tsample, QE) ; /* expand the initial query using PRF */
7 A←− processNetwork(Tsample, QE) ; /* identify socially relevant users */

8 Tq ←− queryKeywords(T, dstart, dend, QE) ; /* keywords-based textual query */
9 Ta ←− queryAccounts(T, dstart, dend, A) ; /* user-based social query */

10 Tg ←− queryGeo(T, dstart, dend, G) ; /* geolocation-based spatial query */
11 Tall ←− Tq ∪ Ta ∪ Tg ;
12 Tcandidates ←− balancedSample(Tq, Ta, Tg) ; /* sample equally from each set */
13 Tlabeled ←− labelTweets(Tcandidates) ; /* human assessments for relevance */
14 Clf ←− trainClassifier(Tlabeled) ; /* train a classifier with the labeled data */

15 return filter(Clf, Tall) ; /* use the classifier to filter data */

allowing subscribers to take random and repeatable
samples of the full Twitter archive if no public archive
is available for the timeframe or the 1% sample is too
sparse for a given research concept.

4.3. Multi-dimensional Query Expansion

The next phase in the technical framework expands
the query along textual and social dimensions and
integrates the spatial dimension (lines 5-7 and line
10). Textual expansion identifies keywords whose
frequencies in the set of matching messages are much
higher than in the general sample (line 6). While
typical query expansion finds unigrams and/ or bigrams
that co-occur with keywords in the original query, our
method leverages the samples to calculate high-signal
keywords through a technique called Kullback-Leibler
(KL) divergence [30] and finds keywords that occur
more frequently in the set of query matches than in
the sampled set. We find all messages in the random
sample that match the original query, tokenize these
messages into bags of words, rank words by how
prevalent they are, and add the top ten words not
present in the original query. Only unigrams are
included as preliminary experimentation showed tokens
in highly-divergent bigrams were often captured by top
unigrams as well.

To identify highly-relevant users, we convert
Twitter’s retweet and mention activity into a directed
graph of interactions. Vertices in this graph represent

Twitter users, and edges denote mentions where vertex
A has a directed edge to vertex B if A mentions
or retweets B. Research shows highly followed or
retweeted users are often not the most influential users
[31], so we follow Kwak et al. and use a version
of Google’s PageRank algorithm to identify important
accounts in this network [32] (other centrality measures
could be used here as well). We then rank users by their
PageRank score and append the top five users to the list
of central accounts. We also perform only one round
of query expansion, as preliminary results suggested
additional query expansion rounds became too noisy.

We also experimented with named entity extraction
from journalistic media to provide an additional frame
of reference. Many entities extracted from journalistic
media, however, were either already identified in the
initial description or were place names that were rarely
mentioned on Twitter.

4.4. Full Query Methods

Once new keywords and central accounts are
extracted from the random sample, Gnip’s full historical
data archive is queried using the expanded query and
a descriptor of the target geographic region (lines 8-10
in Figure 1). Messages in the subset Tq are retrieved
by matching keywords, phrase, and substrings from the
full set of expanded keywords. Messages from central
accounts Ta gather important discussants in the network
and contain messages authored by, is a retweet of, or
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mentions a user in A (we also account for users who
may have changed their Twitter handles over time). Tg

matches the spatial dimension and includes all tweets
with geocodes indicating the tweet was published from
the region of interest. Our experiments focus on specific
countries, so we construct a bounding box that covers
the entire country. This technique introduces noise,
since most countries are not rectangular in shape,. While
the resulting tweet set Tall is likely to have lower
precision than an unexpanded dataset, the following
section discusses semi-automated methods for filtering
this irrelevant data.

One tradeoff in this design is including a broad set
of queries. Methods exist for developing better query
sets, such as overlap filters [27], but these methods are
motivated by limitations on the number of queries one
can include in Twitter’s public search APIs. Gnip has a
much higher limit, allowing for thousands of such rules
to be applied in a single Gnip query, so this motivation
is not as strong in our research. In addition, we are more
constrained by the number of days our searches cover
than the number of tweets we retrieve, so high-precision
queries are less critical.

4.5. Scaling Up Human Expertise

Finally, noisy data is filtered to enhance precision
(lines 11-14), a necessary step since one should assume
many of the tweets acquired in query expansion are
noise. Prior to constructing a classifier to filter this
noise, the algorithm first incorporates human relevance
feedback as training data. These relevance assessments
are generated for candidate tweets Tcandidates
extracted from a balanced sample of approximately 300
tweets from each query type Tq , Ta, and Tg . Balancing
these sets addresses the scarcity of geocoded tweets
and the likelihood that many more messages will match
keywords than either geolocation or central accounts.

This balanced set of candidate tweets and the event
description are passed to a pair of human coders,
who rate them as relevant, irrelevant, or unknown/not
English. We then assess agreement between coders
using Cohen’s K: for each country-specific task, if K
is less than 0.61 for the first pair of coders, a new
annotator is added rather than retraining the original pair
of coders. This process continues until K is greater
than 0.61 for the highest-scoring pair of annotators, after
which, the most-agreeing pair of coders iterate on the
data until agreement exceeds 0.75 (which we achieved
in at most one additional coding round). Replacing
rather than retraining coders in these cases seemed

to be an artifact of using non-native-English speakers
for assessment, as non-native English speakers had
difficulty understanding the brief content.

After this training, we perform an additional round
of manual validation on a subsample of tweets. Tweets
agreed to be relevant and irrelevant Tlabeled are then
saved for classifier training, with all other messages
being discarded (i.e. messages with inconsistent labels
or messages labeled as unknown/non-English).

The last step (line 13) is to scale up relevance
assessment, which is accomplished by training a
classifier on human-labeled tweets and filtering the full
set of tweets using this classifier (line 14). Each tweet
is featurized into a bag of words and weighted by
term frequency-inverse document frequency (TF-IDF)
to avoid bias toward frequent terms. In this
implementation,we train a set of Gradient Boosted Trees
(GBTs), an ensemble classifier, on these feature vectors
and their relevance labels [33]. GBTs consist of a
series of iteratively-trained decision trees, and in each
iteration, the training set is re-labeled to boost the
importance of incorrectly labeled instances. We use
a maximum of 100 iterations in our implementation.
Other classifiers were considered as well (support
vector machines, random forests, etc.), which performed
equivalently, but GBTs were easier to distribute across
clusters with parallel processing. Researchers without
access to distributed processing systems can leverage
existing analysis-as-service platforms from Amazon or
Microsoft or can run these models locally. Depending
on data sizes, ensemble methods like random forests
work well in a serialized, non-cluster environment.

Once the classifier is trained, the framework applies
it to the full set of tweets Tq , Ta, and Tg and returns all
instances classified as relevant, completing the search
algorithm.

5. Application to Sub-Saharan
African Elections

Two case studies are presented here to explore
information retrieved across query types, and to test this
method across long-term samples from countries with
relatively recent elections in Sub-Saharan Africa. The
first case study explores six 90-day periods, shown in
Table 1. These cases include national-level elections
in Botswana (2014), Ghana (2012), Kenya (2013),
Nigeria (2015), South Africa (2014), and Zambia
(2015). The election samples draw from two months
prior to the vote, and one month after. All elections take
place in countries with Twitter populations that tweet
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predominantly in English and have some presence on
Twitter in the time period.

Table 1: Sub-Saharan African Election Periods
Country Date of Election Time Period
Botswana 24 October 2014 1 Sep — 18 Nov
Ghana 7 December 2012 10 Oct — 2 Jan
Kenya 4 March 2013 8 Jan — 3 Apr
Nigeria 28 March 2015 28 Jan — 28 Apr
South Africa 7 May 2014 15 Mar — 14 Jun
Zambia 20 January 2015 26 Nov — 18 Feb

5.1. Query Dimensions: Textual, Social,
Spatial

The first study explores the relevance of information
across query types: keywords, central accounts, and
geographic location. We test whether each query type
contributes relevant information, and if so, what volume,
comparatively.

To answer these questions, we apply this technical
framework to each of the six elections in Table 1, using
queries shown in Table 2. For each election, we evaluate
Cohen’s K and find the task of assessing relevance
achievable for humans annotating the balanced set
Tcandidates. Tables 3 below shows the precision,
recall, F1, and F2 scores per query dimension per
country. Precision, recall, and F-scores are widely-used
in machine learning metrics.2 To assess the classifier, we
calculate average precision P , recall R, F1 score and F2
score using 10-fold cross validation on the set of labeled
messages Tcandidates. The F2 score is the primary
metric for evaluation because it lends more weight
to recall, consistent with the priorities of retrieving a
sample with high recall to ensure full coverage of the
population and discourse around the election.

The tables show each dimension contributes to
generating relevant content within the corpus of
contentious communication during election periods.
However, the textual dimension (expanded keywords)
generally outperforms the social dimension (central
accounts), which generally outperforms the spatial
dimension (geolocation), except for Kenya, where
social outperforms textual, and Botswana, where spatial
outperforms social. We find that these exceptions are
likely due to the relative low Internet penetration rates
and social media usage rates in Botswana, which are
conversely quite high in Kenya, but not nearly as high
as Nigeria or South Africa. Yet each brings a different
type of information to bear that would otherwise be

2Recall measures the ratio of true positives out of actual positives,
while precision measures the ratio of predicted positives. The F1 score
is the harmonic mean of precision and recall, while the F2 score is
similar but gives more weight to recall.

omitted from the dataset. This is key for valid inference
for research questions about social and political systems
online.

5.2. Classifying Relevance

Second, we determine how well human relevance
decisions can be recovered using the GBT classifier.
Our success in classifying relevance in two stages,
across query types, is presented with two metrics:
weights and Area Under the Precision Recall Curve
(AUCPR) in Table 4. AUCPR shows how well we
can classify based on human annotations, and feature
weights show how much each dimension contributes
to this classification. The AUCPR statistic shows a
classifier using all four dimensions achieves a mean
score of 0.9725 for classifying relevant information.

6. Lessons Learned and Limitations

The major implication of this work is demonstrated
in the per-query-type scores: combining the textual,
social, and geographic dimensions of relevance (i.e.,
keyword queries, central accounts, and geographic
bounds) yields superior performance (in terms of
F2 score) than standard keyword queries. This
computationally assisted framework achieves
performance while minimizing fee-based queries
by bootstrapping the query process with free (or
cheaply acquired) Twitter samples. Such samples can
be developed in-house or taken from online sources like
the Internet Archive3.

High variance in relevant coverage across elections
is an expected part of our recall orientation, which
we address through human annotation and relevance
feedback. This feedback provides a method for filtering
these large datasets even when relevance is low.

This work further demonstrates the value of
non-textual signals of relevance, which are essential
given the difficulty in creating unbiased event or concept
descriptions [16, 34, 24]. Social and spatial dimensions
of relevance reduce dependence on keyword sets and
expand the set of content to which annotators are
exposed. Using a sample of the social network, we
identify accounts that play a major role in the event’s
discussion regardless of the verbiage they use, and the
spatial dimension allows us to target users who are
located near the event of interest. While PRF-based
expansion is helpful, we demonstrate that social and
spatial expansions add value as well, with approximately

3http://archive.org
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Table 2: Sub-Saharan African Elections: Representative Keywords and Central Accounts
Country Keywords Hashtags Central Accounts

Botswana botswana∗, ward∗, gaborone,
wins∗, south∗, khama

#botswana, #elections2014,
#bwelections2014

@BDPnews, @BCPBotswana,
@BWGovernment, @iecbw

Ghana ghana∗ elect∗, “Akufo-Addo”,
“Atta-Mills”

#Ghanadecides, #Ghanaelections,
#Mahama, #mahama100

@jdmahama, @ghanaelections,
@GhanaDecides, @NAkufoAddo

Kenya Kenya, election, kenyatta, nairobi,
presidential, doctored

#Kenya, #JubileeGovt, #election,
#Kenyatta

@IEBCKenya, @marthakarua,
@Peter Kenneth, @JamesOleKiyiapi

Nigeria nigeria∗, elect∗, postpon∗,
Goodluck Jonathan

#NigeriaDecides, #2015Elections,
#BringBackJonathan

@GEJonathan, @ThisIsBuhari,
@PDPNigeria, @INECNigeria

South Africa south africa∗, elect∗, corrupt∗ #elections2014, #Ayisafani,
#Siyanqoba, #MyVoteSA

@SAPresident, @helenzille,
@Julius S Malema

Zambia zambia∗, elect∗, lusaka, snap
election, president∗

#zambiadecides, #edgarlungu, #lungu,
#guyscott, #hichilema

@FDDZambia, @NAREPzambia,
@ZambiaElections, @mmdzambia

Table 3: Per-Feature Relevance Classification Performance
Prec Recall

Botswana 0.260 0.696
Ghana 0.296 1
Kenya 0.489 0.701
Nigeria 0.556 0.495
South Africa 0.401 0.298
Zambia 0.396 0.772
Mean 0.416 0.660

F1 0.511
F2 0.591

(a) Text Analysis

Prec Recall
Botswana 0.215 0.152
Ghana 0.412 0.774
Kenya 0.433 0.190
Nigeria 0.535 0.383
South Africa 0.409 0.512
Zambia 0.335 0.215
Mean 0.400 0.371

F1 0.380
F2 0.375

(b) Network Analysis

Prec Recall
Botswana 0.224 0.205
Ghana 0.427 0.130
Kenya 0.384 0.134
Nigeria 0.533 0.131
South Africa 0.356 0.182
Zambia 0.340 0.198
Mean 0.377 0.163

F1 0.228
F2 0.184

(c) Spatial Analysis

Table 4: Relevance Classifier Performance
(Weights and AUCPR)

Election Textual Social Spatial Time All
Botswana 2.5/ 1.0 0.5/ 0.8 0.2/ 0.7 0.0/ 0.3 0.96
Ghana 1.9/ 1.0 0.5/ 0.9 0.0/ 0.7 0.0/ 0.5 0.98
Kenya 2.1/ 1.0 1.0/ 0.9 -0.04/ 0.6 -0.0/ 0.3 0.98
Nigeria 2.0/ 1.0 1.2/ 0.9 0.11/ 0.7 -0.5/ 0.6 0.96
South 2.2/ 1.0 0.3/ 0.9 0.0/ 0.4 0.0/ 0.4 0.96
Africa
Zambia 1.7/ 1.0 0.9/ 0.9 0.3/ 0.7 -0.2/ 0.4 0.99
Mean 2.1/1.0 0.7/0.9 1.0/0.7 -0.1/0.4 0.97

100,000 and 1.6 million additional relevant tweets
captured, respectively, that were originally missed by
standard query expansion approaches.

Like central accounts, spatial queries (matching
all tweets posted from the target region regardless of
keywords) introduce unique information and address
bias by exposing human annotators to new content,
but the loss in scores and increased financial cost
of acquiring them cast doubt on their value. Since
geolocation queries are essentially a pseudo-random
sample of the full Twitter stream, this low precision is
consistent Twitter’s limited coverage of major events
[35]. One can mitigate the cost of geolocation queries
by reusing them in other contexts: researchers interested
in multiple events in a given country and timeframe need
only pull this data once.

Despite these advantages, this technique’s precision
is limited by the performance of the machine learning
model. While it addresses the untenable task of
annotators reading millions of messages, its reliance
links performance to that of the classifier. While GBTs

perform well in recovering human labels, false positives
are still present, especially in the long-term events.
For instance, elections occur in multiple countries
simultaneously, and since we focus on long-term events,
the classifier can incorrectly identify tweets about
elections in the United States and India as relevant
(the hashtag #elections2014 was particularly popular
across several national elections). Likewise, references
to voting tended to result in a relevant label, leading
to acquiring tweets about several vote-based reality
television shows. Early results suggest using the social
structure in the retrieved data to filter information about
unrelated events; e.g., Twitter users discussing US
elections tend to form a community in the Twitter graph
that is well-separated from those users discussing an
election in South Africa. This community analysis is
an open and promising research area.

Besides precision, we also cannot ensure our
algorithm is retrieving all possible relevant messages.
Results demonstrate including central accounts and
geolocation mitigate this recall issue by capturing
unique messages, but without human assessment of
every single message posted (impractical given volume
and access restrictions), one cannot be sure all data has
been captured. A possible solution could use Gnip to
acquire all tweets posted during our short-term events
and use our classifiers to infer relevance, but with more
than half a billion tweets posted per day, our monthly
allocation would only allow us to acquire about one
hour’s worth of data for a single event. As such, the

Page 1992



samples collected through querying must be sufficient.
These queries are also implicitly connected to our
evaluations: Since many query expansion mechanisms
exist, other approaches (e.g., co-occurrence networks)
may exhibit equivalent recall, which also could be
explored in future work. Crowdsourcing and hidden
stream methods could address this issue to some degree,
but one would need to know the event of interest at time
of collection.

Recall and precision aside, we present our technical
framework as a general approach for retrieving relevant
information on social media for concepts in social and
political systems that are location-based (e.g. elections)
and show it performs well for our purposes. The
presented technical framework addresses three needs:
1) reducing bias in retrieved data, 2) reducing data
acquisition costs, and 3) supporting relevance evaluation
at scale. Results show we can reduce query costs
by leveraging public Twitter archives, expand keyword
queries by identifying users who are central in an event’s
discussion, and support relevance evaluation at scale
with machine learning models. By tracking central users
and analyzing geolocated tweets, we retrieve thousands
of relevant tweets that would be missed if one relied
solely on keywords and keyword expansion. Combining
standard keyword expansion queries with the social
dimension also achieves the highest F2 scores in our
evaluations, regardless of event duration. Furthermore,
integrating human relevance feedback on a few hundred
messages allows us to train a classifier to identify
relevant content at scale and with high accuracy.

While there is no substitute for human input when
identifying relevant information in microblogs, and
open issues still exist, the procedure outlined herein
supports the unique constraints of large-scale sampling
for social science topics. Different events or research
subjects may vary in affordances (e.g., not all subjects
may have a geographic component), but this framework
is sufficiently flexible as to support different contexts.
By codifying this process, this work can accelerate
research into and replicability of microblog analysis in
socially and politically relevant research across a broad
spectrum of questions.
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[20] H. Fjelde and K. Höglund, “Electoral Institutions and
Electoral Violence in Sub-Saharan Africa,” British
Journal of Political Science, vol. 46, no. 2, pp. 297–320,
2016. [Online]. Available: http://journals.cambridge.
org/article S0007123414000179

[21] D. Miodownik and L. Nir, “Receptivity to
Violence in Ethnically Divided Societies: A
Micro-Level Mechanism of Perceived Horizontal
Inequalities,” Studies in Conflict & Terrorism,
vol. 39, no. 1, pp. 22–45, 2015. [Online]. Available:
http://dx.doi.org/10.1080/1057610X.2015.1084162

[22] F. Diaz, M. Gamon, J. M. Hofman, E. Kcman,
and D. Rothschild, “Online and Social Media Data
As an Imperfect Continuous Panel Survey,” PLoS
ONE, vol. 11, no. 1, p. e0145406, Jan. 2016.
[Online]. Available: http://dx.doi.org/10.1371/journal.
pone.0145406

[23] D. Garcia, A. Kappas, D. Küster, and F. Schweitzer, “The
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