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Abstract

With the increase in community-contributed data avail-
ability, citizens and analysts are interested in identifying
patterns, trends and correlation within these datasets. Var-
ious levels of aggregation are often applied to interpret
such large data schemes. Identifying the proper scales of
aggregation is a non-trivial task in this exploratory data
analysis process. In this paper, we present an integrated
visual analytics environment that facilitates the exploration
of multivariate categorical spatiotemporal data at multiple
spatial scales of aggregation, focusing on citizen-contributed
data. We propose a compact visual correlation represen-
tation by embedding various statistical measures across
different spatial regions to enable users to explore corre-
lations between multiple data categories across different
spatial scales. The system provides several scale-sensitive
spatial partitioning strategies to examine the sensitivity of
correlations at varying spatial extents. To demonstrate the
capabilities of our system, we provide several usage sce-
narios from various domains including citizen-contributed
social media (soundscape ecology) data.

1. Introduction

The focus of most visual analytic techniques (e.g., [3],
[13], [24]) has been on data that are comprised of scalar
values. The utilization of qualitative categorical data, such as
personal opinion, feelings, emotions, for correlative explo-
ration remains a challenging task. These data are often more
complex than scalar data, and can be spatiotemporal, multi-
scale, and comprised of multiple set variables. Examples of
such data include users’ emotional states (e.g., happy and
scared), and crime arrest records where an individual can be

Figure 1: The overall visual analytics system includes a
timeline selection slider, map tools, choropleth map divided
by country or grid, and a correlation matrix interface to
compare correlations between sound tag categories within
the Record the Earth data set.

charged with multiple offense charges for an incident at a
particular location/time. Public safety agencies are interested
in understanding the relationships between different charges
across different scales in order to better design effective
mitigation measures. Other examples include data collected
from the Record the Earth project [29], which is a world-
wide effort to record sounds in the environment in order
to understand underlying coupled natural-human system
dynamics across multiple spatial and temporal scales [26] .

Researchers have utilized visual analytics [34] to assist
casual experts1 in interactively exploring their data in order
to generate new insights (e.g., [25], [35]). These systems en-
able casual experts to form, explore, and validate hypotheses
from their data. These systems are extremely important for
social media and citizen-contributed data, especially when
the goal is to enable the public to explore and analyze these

1. Casual experts: Experts in a domain but not necessarily data sciences.
[27]
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data, which encourages more citizen participation. Although
these systems harness the strengths of both users’ analytical
skills and automated systems, solutions are still needed for
two important challenges: understanding multivariate cor-
relation, especially in multivalued categorical datasets, and
solving cross-scale issues. Identifying the appropriate level
of resolution at which to explore the data is still a funda-
mental challenge. For example, the data to be analyzed may
be collected at a very fine scale/resolution, but the questions
posed of the data may lie at a coarse resolution [20]. An
even more difficult problem occurs when data are captured
at a coarse scale, but the questions that are posed lie at
a finer resolution. These challenges are exacerbated when
the data are comprised of multiple attributes that may have
different inter-correlations across multiple scales. However,
such analyses over the different data dimensions and spa-
tiotemporal scales can yield new insights into the underlying
processes.

To solve these challenges and provide solutions for ca-
sual experts, we have developed a visual analytics approach
that enables the exploratory analysis of spatiotemporal data
across multiple categorical dimensions and geospatial scales.
Our visual analytics system, shown in Figure 1, enables
citizens and casual experts to interactively explore their data
and develop insights into the workings of real world envi-
ronments. Specifically, it provides novel views and methods
for exploring and analyzing potential correlations between
different qualitative data variables under uncertainty across
multiple geospatial scales through an interactive correlation
matrix view that incorporates Venn diagrams and mosaic
plot visualizations [11]. Additionally, we incorporate visual
indicators to encode the uncertainty that occurs from both
the underlying data and the statistical methods. Our system
was designed to enable citizens and soundscape ecologists
to explore the Record the Earth data. However, we note
that the techniques presented in this paper are versatile
and can be adapted to any spatiotemporal data that are
comprised of multi-variate nominal and ordinal attributes,
and is especially valuable to citizen-contributed data and
other social media data. The main contributions of this paper
include the following:

• A visual analytics environment for exploring multi-
scale correlations among spatiotemporal categorical
data with polytomous variables.

• An interactive approach for exploring global/local
correlations among multiple variables under uncer-
tainty.

• A visual analytics process for performing scale sen-
sitive geospatial correlative exploration.

2. Related Work

Researchers in the visual analytics field have proposed
numerous approaches for exploring multi-dimensional and
spatiotemporal datasets. Using interactive maps to explore
spatiotemporal dataset at multiple spatial scales is a com-
mon approach. Rich interactions facilitate effective level-
of-detail investigations of patterns hidden in the large-scale

dataset. In this section, we discuss previous works that re-
late to the multi-scale geographical visualization and multi-
dimensional visualization.

2.1. Scale and Geography

In order to gain insights in geographical datasets across
multiple spatial scales, researchers have proposed several
solutions that visualize the statistic results at different lev-
els of aggregation [21]. Goodwin et al. [13] point out
that an overemphasis on global statistics obfuscates local
correlations that may deliver valuable insights for visual-
ization purposes and propose a framework that visualizes
the relationships between multiple variables concurrently
based on various scales. Ferreira et al. [9] propose Birdvis,
a visualization system that analyzes spatiotemporal bird
distribution models. The system facilitates the analysis of
model parameter inter-dependencies, and provides coordi-
nated views for determining local correlations and patterns
in the models. Goodwin et al. [12] explore multivariate data
visualization over various scales in the context of geode-
mographic classifications. In contrast to the previous work,
our system visualizes the correlations of multiple scales
based on several spatial partition strategies and also allows
the users to interactively navigate through different spatial
scales. Moreover, we visualize the correlations at multiple
scales using a compact visual design that seamlessly inte-
grates both global and local scales into a single visualization.

Thom et al. [33] introduce a quadtree-based approach
that performs spatial partition adaptively based on the den-
sity of data points. The partitions effectively indicate the
population density in the geospatial regions. Guo et al. [14]
introduce another quadtree-based algorithm that solves the
overcrowding problem of geographical map glyphs due to
prolonged, continuous scale change. Our application em-
ploys a similar data-driven quadtree-based visualization.

2.2. Multi-dimensional data visualization

Multi-dimensional data visualization is an important re-
search topic in visual analytics. Some related work utilizes
matrix based visualizations and compares two variables
in each cell of the matrix. Im et al. [17] introduce the
Generalized Plot Matrix (GPLOM) to visualize the pair-wise
relationships of variables. Similar work has been proposed
by Emerson et al. [7]. Zhang et al. [39] examine various cor-
relation representation methods. Our application also uses
a half matrix based correlation visualization technique that
utilizes several visual indicators to encode global and local
correlations.

Several previous works also focus on visualizing multi-
ple categorical data variables. Friendly [10] gives a compre-
hensive overview of common techniques used to visualize
categorical data. Horrigan [16] explores visualization and
analysis of multi-dimensional categorical and ordinal data.
Shneiderman et al. [30] develop GRIDL, a two-dimensional
visualization tool based on categorical and hierarchical axes.
Stoffel et al. [32] propose a novel technique to visualize
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two proportions in categorical data, addressing limitations
of choropleth maps. Kolatch and Weinstein [19] develop
CatTrees, an enhancement of Treemaps that creates a hier-
archy of categorical data. Kerbs [18] proposes BLUE, an
interactive visualization system that establishes meaningful
decision trees out of database entries that are made up
of categorical attributes. Our system also displays multiple
categorical variables, and allows analysts to compare the
correlations between polytomous categorical variables using
a matrix view.

Other previous works focus on exploration and vi-
sualization of temporal categorical data. Fails et al. [8]
introduce PatternFinder to visualize temporal patterns of
multivariate and categorical data sets that identifies the
patterns as user-defined event sequences with in-between
time spans. Wongsuphasawat and Shneiderman [36] pro-
pose M&M (Match & Mismatch), a temporal categorical
similarity measure that matches events between a target
and records aligned by sentinel events. They also propose
Similan for visualizing temporal categorical records to allow
parameter customization. Chang et al. [5] introduce WireVis
to visualize correlations between bank accounts and trans-
action keywords over time. Alsakran et al. [1] demonstrate
that entropy-related measures improve the effectiveness of
visualization, since the measures can help interpret categor-
ical data and reduce visual clutter. Ma and Hellerstein [23]
address the difficulty in visualizing categorical values with
no semantic order, and develop an algorithm that orders the
values by identifying relationships between values of distinct
categorical attributes. We also display temporal categorical
data and allow for the selection of a time range to enable the
comparison of categorical attributes at different time ranges.

2.3. Set visualization

Finally, we note that researchers have also explored
different set visualization techniques. Lex et al. [22] propose
UpSet to visualize and analyze set intersections, and propose
several visual encoding to solve multiple scales and scala-
bility issues. Delaney et al. [6] explores the visualization of
a large number of sets using Euler diagrams. Alsallakh et al.
[2] introduce Radial Sets to compare overlapping sets. Our
system utilizes Venn diagrams and mosaic plots to show the
relationships between multiple pairs of sets at a time.

3. Exploring multi-variate spatiotemporal cor-
relations across multiple scales

Our system has been designed to enable social scientists,
sound ecologists, and citizens to explore the correlations and
relationships between the different categories of their data
at different spatial scales. Our approach focuses on enabling
users to explore both local and global geospatial trends and
correlations among different data variables while factoring
in the uncertainty that is inherent in the applied statistical
processes (e.g., due to sparse data, statistical significance
tests).

Figure 2: Four Venn diagrams with varying phi-coefficients.

Users can visually and interactively explore the spa-
tiotemporal relationships between different attributes in
polytomous categorical data. For example, variable X (Emo-
tion) with state x1 (Stress) and variable Y (Culture) with
state y1 (Talking) are positively correlated in New York,
but negatively correlated in Texas (Figure 9). Correlation
is usually represented by a quantitative scale (e.g., between
−1 and +1) that indicates the strength of the relationship
between two variables. In our work, since each variable can
have only two possible outcomes - “yes” or “no”, we utilize
the phi-coefficient [38] to measure the correlations between
a pair of data attributes that ranges from −1 to 1. The phi-
coefficient is calculated using Equation 1:

φ =
ad −bc√

(a+b)(c+d)(a+ c)(b+d)
(1)

Here, a, b, c, and d are the number of points that fall into
the corresponding category as shown by the Venn diagram
in Figure 2. We take d into account to factor in for the
conditional probability. For example, if each attribute is
distributed independently with a constant red number of
points, when the red number of points of the entire data
space grows, less of an intersection would be expected.

We note that a high phi-coefficient value does not neces-
sarily indicate that there is a significant correlation between
the two attributes, as it does not take into account the total
number of points. Accordingly, we apply the chi-squared
test (χ2 = Nφ 2) [37], where N is the total number of points.
The correlation is significant when the obtained χ2 value is
higher than the value for the desired significance with 1
degree of freedom.

3.1. Domain Requirements

In this section, we discuss the domain related tasks
and characterize the main challenges faced by users in
their use of spatiotemporal polytomous categorical data.
Our discussions have been motivated by conversations with
experts from the Purdue University Department of Forestry
and Natural Resources, a U.S. research institution, who
study human-environment interactions in order to explore
the impacts of humans on the environment, and vice versa.
One of the main areas of focus was soundscape ecology (i.e.,
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the study of landscape dynamics using sound). The goal of
soundscape ecology is to use the information encoded in
sound to understand the broader impacts of land use, climate
change, and habitat disturbance across different landscapes
and over time. To gather the domain requirements and
to understand challenges associated with ecological and
soundscape data, we conducted several requirements elici-
tation interviews with researchers and scientists from varied
backgrounds, including a seabird biologist, a soundscape
ecologist, a computational musicologist, an environmental
education specialist, and a ecological statistics researcher.
The focus of these discussions was in regard to their use of
spatiotemporal categorical data.

3.1.1. Design Goals. During interview sessions with do-
main experts, we noted a frequently occurring theme which
highlighted the need to explore trends and patterns with spa-
tiotemporal data. There was also an emphasis on the need to
understand relationships between categorical data and their
associated values over the various geospatial scales. Time
was also brought up during the sessions. The domain experts
explained their desire to understand patterns in datasets that
span over many years or decades. Accordingly, we designed
our system with the following goals:

G1 Explore correlations between multiple data
categories: The system should enable exploration
of correlations between different categorical data
variables and their possible values.

G2 Visualize correlations across multiple geospatial
scales: The system should provide the ability to
visually explore correlations between user-selected
categories in geospace across multiple scales of
analysis.

G3 Visualize the set relations between the differ-
ent categories: The system should enable users to
visually explore relationships and the degrees of
overlap between different categories.

G4 Provide significance testing results for multi-
ple correlation computations: The system should
provide users with the ability to visualize statistical
significance of correlation results.

G5 Summarize and provide access to raw data: The
system should provide visual summaries and access
to the original data for further exploration.

3.2. Visual Analytics Environment

Figure 1 shows a snapshot of our visual analytics sys-
tem. The system enables users to explore and analyze their
multi-variate data at multiple spatial scales. The users can
select, filter, and highlight across different views to examine
different perspectives of the dataset.

Our system is comprised of several interactive linked
views. The main view of our system is the map view
that enables users to geospatially visualize the correlations
between different data categories (Section 3.2.1). The sys-
tem also utilizes an interactive correlation matrix view that

(a) Uniform rectangular grids (b) Quad-Tree

Figure 3: Choropleth map. A color scale shows the relation-
ship between “frogs” and “insects” using a (a) square grid
or (b) quad-tree method.

provides a compact visual design to enable the exploration
of correlations between data categories (Section 3.2.2). We
also provide an interactive time series view that visualizes
the evolution of the data volume over time using a bar chart
(Figure 1). This view enables users to perform temporal
filtering by specifying a temporal range on the bar chart.
Finally, the system provides several different filtering op-
tions to enable users to examine different data perspectives.
Users can choose to filter by specific keywords using a
search bar to explore the semantic knowledge hidden in
the dataset. They can also perform geospatial filtering by
drawing a polygonal region or specifying certain spatial
units for filtering. The system also provides users with the
ability to filter their data by the different associated data
categories and their corresponding values.

3.2.1. Map View. The map view enables users to visualize
the correlations between any two user-selected categories
geospatially. Users can select the categories using the inter-
active correlation matrix view (Section 3.2.2). The system
fragments geospace using a user-selected geospatial aggre-
gation technique and computes the correlation value between
the two data categories for each sub-region.

In order to facilitate the exploration of the data at
multiple spatial scales, the system provides several spatial
aggregation strategies, including:

• Uniform rectangular grids: In this scheme, we frag-
ment geospace into evenly divided regular rectangu-
lar grids (Figure 3a).

• Density-based quad-trees: The geospace is evenly
and recursively divided into quarters in order to
ensure that the data volume inside each spaital grid
is below a pre-defined threshold (Figure 3b).

• Man-made spatial regions: The geospace is divided
based on man-made administrative partitions (e.g.,
census blocks, voting districts, countries (Figure 1)).
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(a) Content Lens (b) Tag Map

Figure 4: Language tools. The content lens (a) shows most
common words within in a small region while the tag map
(b) shows the most common words across all regions within
the window extent.

• Contour areas based on the data density: The
geospace is divided into areas of high, medium, and
low density.

Dividing the map into uniform rectangular grids enables
users to visually explore the geospatial correlations. Both
the uniform rectangular grids and density-based quad-tree
visualizations are adaptive to the scope of the data within the
current view and geospatial scale. As users zoom in on the
map, the size of each sub-region in the uniform rectangular
grid mode automatically changes to a finer scale allowing
users to explore more local patterns. Similarly, zooming out
enables users to explore the global correlation patterns. The
system also provides users with the ability to interactively
change the size of the sub-regions; thereby, dynamically
changing the number of data points in each sub-region and
hence the corresponding results. The density-based quad-
tree approach is also sensitive to the data contained in the
scope of the map. In this mode, the geospatial regions are
divided into quarters to ensure that the data are more evenly
distributed throughout each sub-region. While the quad tree
aproach typically shows the same overall trends, it does a
better job at showing the data at the resolution of data we
have. There is a minimum size for the regions to ensure they
remain readable.

However, a potential drawback of utilizing the quad-tree
approach is that regions with sparse data can be large and
more prominent. To solve this challenge, we provide a verti-
cal bar for each sub-region on its right side to encode either
the data volume or uncertainty (i.e., statistical significance).

The contour area lines has the advantage of being gen-
erated from the data, and as a result gives a better picture of
how the data is distibuted. These areas are generated based
on the total number of points so if there are fewer points
in the data set, fewer points are needed for a region to be
considered high density.

The map view also employs several other visualization
techniques to help users explore the semantic information in
different geographical regions. These include glyph based
visualizations to show the distribution of the incidents.

(a) Positive Correlation (b) Negative Correlation

Figure 5: Correlation histogram and Venn diagrams. Chart
(a) indicates a mostly positive correlation between “birds”
and “wind” while (b) indicates a mostly negative correlation
between “relax” and “talking”.

We also utilize the content lens [4] technique that is an
interactive lens that changes with the mouse movement to
show the most representative keywords extracted from the
textual data for the points inside the lens using a word
cloud layout. (Figure 4a). Finally, we provide a tag map
visualization [31] that utilizes a context-aware approach and
shows the representative keywords of the data points in a
global view. (Figure 4b).

3.2.2. Correlation Matrix View. Since the map view only
shows the correlation between two variables at a time, we
introduce a correlation half matrix view that visualizes the
correlations of multiple categorical variables to enable the
exploration of global and local trends. The matrix view
provides a compact visual design that couples a global
matrix layout along with several types of charts/glyphs that
are embedded in the cell of the matrix. The matrix consists
of an n by n grid where n is the number of selected attributes.
The matrix view allows the users to flexibly add or remove
attributes in the matrix so that they can focus only on a
subset of variables of their interest. Inside each cell of the
matrix, we utilize several visual designs to indicate both the
global and local correlations across multiple spatial scales.
We now discuss the different visual components embedded
in each cell (Figure 5) of the matrix view.

Global correlation: Rectangular representation. The rect-
angle on the top left of each cell shows the global cor-
relation of the corresponding two variables. The color of
the rectangle encodes the phi-coefficient value based on the
aforementioned divergent color scheme. The rectangle is
drawn with a thick black colored border if the phi-coefficient
value is statistically significant (Figure 5).

Global relationship: Venn diagram. In the top right of the
cells shown in Figure 5, we utilize an area-proportional Venn
diagram to indicate the relationship of the corresponding
two variables. The size of the two circles in the Venn
diagram encodes the volume of the corresponding data
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(a) Venn Diagram (b) Mosaic Plot

Figure 6: Example of Venn diagram (a) and mosaic plot
(b) from Record the Earth showing relationship between
the tags “birds” and “happy”. Points with “birds” are more
likely to have “happy” than without.

variables . Note that the color of the circles is consistent
with the color of the labels for the corresponding attribute.
The Venn diagram visually indicates the quantitative value
of the union, intersection, and difference between the two
variables. Our Venn diagrams are area proportional; that is,
the ratio between the area of the circles and their intersection
is the same as the ratio between the corresponding data
volume. We choose the Venn diagram in our work because
it is a popular visual representation for logical relationships
of statistical variables.

Our system also employs mosaic plots to visualize the
relationships between data variables [15]. Mosaic plots are
used to show the correlations between two attributes by
showing their relative frequencies and overlaps. Mosaic
plots are area proportional representations of all the data
points . Figure 6b shows an example of the mosaic plot
and compares it with its corresponding Venn diagram visu-
alization. Mosaic plots enable users to discern if an attribute
occurs more or less often than another attribute [11].

Local correlations: Bar chart. We integrate the bar chart
visualization in the matrix cell that is positioned at the
bottom of the cell to reveal the correlations related to dif-
ferent local regions. The bar chart visualizes the correlation
distribution across the local geospatial regions in the current
scope of the map view. The x-axis represents the correlation
value from purely negative (−1) to purely positive (+1),
while the y-axis represents the summed data volume inside
all the regions of the corresponding correlations. The y-
axis is normalized based on the maximum value across the
entire matrix. Figure 5a shows an example where most of
the regions are positively correlated for the sounds that are
tagged with attributes “birds” and “wind”, while Figure 5b
provides an example of mainly negative correlations for
the sounds tagged with attributes “relax me” and “talking”.
The correlation bar charts allow users to select a range on
the x-axis to filter the geospatial regions with the selected
correlation values. This action also filters the other cells of
the matrix view to reflect the selection.

Uncertainty visualization: Line chart. Finally we add a
line chart layer on top of the bar charts to show the statistical
significance of the local correlations shown by the bar charts
in each cell of the matrix. The value of the line chart for the
corresponding correlation value encodes the percentage of
points in regions whose correlation values obtained are sta-
tistically significant with p< .05. The underlying correlation
bar charts enable analysts to visually explore the correlation
distribution of the data over geospace. Correspondingly, the
uncertainty line chart visualization provide analysts with the
results of the statistical significance tests for each correlation
value (Figure 5).

4. Case Studies

In this section, we utilize the data from the Record the
Earth [29] project to demonstrate the capabilities of our
system. We also briefly explain a use case with criminal
arrest records from Tippecanoe County, Indiana.

4.1. Soundscapes: Record the Earth Case Study

Here, we explore the relationships between different data
categories in this dataset [29]. The data utilized in this sub-
section comes from the sounds and the associated meta-data
uploaded by people through a publicly available mobile ap-
plication, crowdsourcing both sounds and options/emotions
about the sound. Before uploading a sound, users must go
through a list of categories and tag the associated sounds
that are relevant for the recording being uploaded. The
fields in this dataset include the date, time, and location
of the sound, user-generated free-form text description, and
categories that describe the sound, including the emotion
(e.g., happy, relaxed, stressed), sounds that animals make
(e.g., birds, mammals), geophysical sounds (e.g., rain, water,
thunder), manmade sounds (e.g., vehicles, airplanes, trains),
and cultural sounds (e.g., talking, instruments, singing).
In this discussion, we will refer to the values for these
categories (e.g., happy, talking, birds, etc.) as tags. We now
provide a scenario where a soundscape ecologist is utilizing
our system to explore the relationships between different
data categories over multiple geospatial scales.

4.1.1. Global Trends. The analyst begins by utilizing the
matrix view with the intent to investigate whether sounds
with tags “stress”, “birds”, and “vehicles” have any corre-
lations over a region of interest (Figure 7). She observes an
overall statistically significant positive correlation between
“birds” and “vehicles”. This indicates that the sounds tagged
with birds usually also contain vehicular sounds. She also
notices a negative correlation between “birds” and “stress”.
While the level of confidence in these correlation values is
lower, she notes that this conforms to what she would expect
as she hypothesizes that bird sounds should generally tend to
have a positive influence on peoples’ behaviors. Finally, she
notes a positive correlation between “stress” and “vehicles”
with high statistical significance (Figure 7b). She observes
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Figure 7: Choropleth map and matrix interface comparing
multiple tag categories in the Record the Earth data set.
On the left the “vehicles” vs. “stress” window is selected,
the map shows a distribution of positive and negatively
correlated regions across the United States. A filter is ap-
plied highlighting only regions with negatively correlated
“vehicles” and “birds”. The right side shows updated regions
on the map and changes in the matrix reflect the updated
map distribution. The correlation between “vehicles” and
“stress” is now much higher.

that vehicular and traffic sounds have a tendency to cause
stress in people.

The analyst now chooses to visualize the correlation
between the tags “stress” and “vehicles” over geospace
by clicking on the corresponding view in the matrix view
(Figure 7b). Given the uneven geospatial distribution of the
uploaded sounds, she selects the quad-tree spatial division
technique (Section 3.2.1) to visualize the results on the
map. She observes that the sounds with “vehicles” ex-
hibit a relatively higher correlation with “stress” in Europe,
whereas the correlations observed in the United States are
more uniform (i.e., different regions exhibit both positive
and negative correlations). To investigate this further, she
applies a geospatial filter to select only the sounds in the
United States using the region selection tool (Section 3.2).
The resulting correlation bar graph (Figure 8a) confirms
that “stress” and “vehicles” is more uniformly distributed.
The corresponding Venn diagram (Figure 8a) also shows
that more than half of the sounds with “stress” also have
“vehicles” in the United States. Upon further investigation,
the analyst observes that the regions of positive correlation
in the U.S. gravitate more toward highly populated cities
(e.g., New York City, San Francisco), whereas the negatively
correlated regions are located near less populated areas (e.g.,
Wyoming ).

Next, the analyst applies the geospatial filter to focus
on the European regions. The resulting bar graph obtained
(Figure 8b) shows that “stress” and “vehicles” are positively
associated with an overall p < .05, and that they have a
positive association in many of the regions. The correspond-
ing Venn diagram also shows that almost all sounds tagged
with “stress” are also tagged with “vehicles”. She notes that
the reason for these observations might be because of the
higher population density in urban areas of Europe, along
with the fact that most of the sounds recorded through this
project in Europe originate in larger cities. While Europe
does have many fewer sounds in the database than the US,

(a) United States (b) Europe

Figure 8: Correlation matrix comparing “stress” and “vehi-
cles” using regional selection in (a) the United States and
(b) Europe. The histogram for Europe has been scaled to
match.

the distribution of sounds there is significantly different.
Next, the analyst returns to the global geospatial view of

the whole world by removing the applied geospatial filters.
She uses the matrix view to filter out the regions where
“birds” and “vehicles” are positively correlated (Figure 7c)
by selecting the negative range inside the window “birds”
and “vehicles”. The results from this action are shown in
Figure 7d. She observes that the tags “stress” and “vehicles”
are now more positively correlated (Figure 7e). She notes
that since the positive effect of “birds” has now been reduced
by applying this filter, the relationship between “vehicles”
and “stress” gets amplified. However, she finds that the
correlation between “birds” and “stress” does not change
by much (by comparing Figure 7f and 7a). This indicates
that removing the sounds that have “vehicles” and “birds”
as positively correlated does not have much effect on the
relationship between “birds” and “stress”. That is, the cor-
relation between “birds” and “stress” in the filtered regions
is only minimally influenced by “vehicles”. She decides to
further investigate this phenomena and listens to the sound
files using our system. After her analysis, she concludes
that in these sounds birds are much more noticeable than
vehicles which tend to be heard from a distance. As a result,
the analyst can get insights into the underlying correlations
between these different variables over geospace.

4.1.2. Regional Trends. In this example, our analyst is
interested in investigating the relationships between the tags
“stress” and “talking” in the Record the Earth data. She is
specifically interested in exploring the correlations between
the western and eastern regions of the United States. In
order to explore the data, she utilizes the region selection
tool of our system to select the two regions of interest. She
fragments the geospace using uniform grids (Section 3.2.1)
for this analysis and obtains the results shown in Figure 9.
She notes that the eastern half of the country has more
regions that have positive correlation. She also finds that
certain regions in the East Coast (e.g, Maine) tend to be
more positively correlated for the selected tags. She observes
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Figure 9: Comparison of “stress” and “talking” in United
States. The eastern half of the country is selected in (a) and
the western half of the country is selected in (c). (b) shows
a close up of view of New York City and (d) shows a close
up in Arizona usiing the content lens.

that the region surrounding New York city has a slightly
positive correlation between stress and talking. She decides
to investigate further and zooms into this region. The system
adapts the scale to the new zoom level automatically (Fig-
ure 9b). This micro scale analysis reveals that although the
coarse scale analysis indicates a positive correlation, certain
regions at the fine scale have a strong negative correlation
with respect to the selected tags of “talking” and “stress”.

The analyst notices similar trends in the western part of
the country (Figure 9c). She finds that the regions in Texas
have a negative correlation between stress and talking. She
also notes the regions covering the states of Arizona and
New Mexico (at a global scale) have an overall positive cor-
relation. However, when she zooms in further to this region,
she finds a particular region where the sounds are negatively
correlated for the tags stress and talking (Figure 9d). She
uses the content lens feature of our system (Section 3.2.1) to
investigate the textual content of the sound uploads and finds
the keywords “thunder”, “beautiful”, “rain”, and “airplane”.
She decides to listen to a few sounds from this region using
our system and determines that these sounds have probably
been uploaded by vacationers who do not find talking to
be a stressful activity. The system therefore enables her to
explore both micro and macroscopic trends using the data.

4.2. Crime Data Case Study

We now further demonstrate the system’s capabilities
through examining the criminal arrest records from Tippeca-
noe County, Indiana. We present the discoveries from our
analyst exploring the connections between different criminal
charges. The analyst first filtered and utilized criminal inci-
dents with two or more associated charges, then studied the
correlations between different charges and geospatial rela-
tionships. The analysts discovered a strong positive correla-
tion between both theft and vandalism, and theft and fraud,
signaling these charges are often associated. One theory is
the possibility of thieves fraudulently selling stolen goods
to other people. The analyst observed that the correlations
between trespassing and theft tend to center around 0 in
more densely populated regions near the city center, but
are more positive around rural areas indicating theft charges
may be more likely to occur in conjunction with trespassing

charges. Finally, our analyst looked into the associations
between operating while intoxicated (OWI) and driving
while suspended offenses through geospatially aggregating
the data using the quad-tree approach, and discovered that
high-density population areas and the more rural areas in
the south of Lafayette have a stronger positive association
between OWI and driving while suspended. These are sev-
eral examples of how our system enables analysts to gain
new insights using different geospatial aggregations.

5. Domain Expert Feedback

Our system was assessed by six domain experts in
the Department of Forestry and Natural Resources at a
U.S. research center. The system was presented to them
with the Record the Earth data. For each user we con-
ducted a brief training session involving demonstrations and
explanations of the different functions and assistance as
they explored data of their interest, after which we asked
for their feedback. While our analysts found the system
useful and appreciated the visual analytics support, one
analyst expressed a slight concern on the interface being
too complex for her less analytical-focused need. We wish
to later perform a formal qualitative study with citizens to
better evaluate the system usability. Aside from that, the
researchers noted that most of their analysis was usually
performed using spreadsheets or statistical packages such as
R [28], so they found our interactive visual analytics system
to be a welcome addition. They stressed the need to conduct
their analyses over multiple scales of aggregation. During
one interview, a seabird ecologist noted that his analysis on
seagull populations usually spanned over multiple geospatial
regions and required him to explore the data across multiple
geospatial scales (e.g., cities, countries, continents) in order
to correlate the different seagull data categories (e.g., seagull
health, demographics) with human demographics data (e.g.,
population, income, pollution).

This feature in particular, that the system enabled them
to visualize correlations between variables in geospace (Sec-
tion 3.2.1) at various scales, was viewed as a strong benefit
by the researchers. One researcher commented: “In biology
we have several scales of processes. We study species,
communities, ecosystems, and biomes, and there are dif-
ferent processes between these levels of organization. We
are reductionists and need to look for trends at level of
communities, and at the level of species. Tools like this can
help us visualize trends using data taken at the level of the
species and look at bigger processes happening in our data.”

Another benefit called out by the researchers was the
different levels of aggregation that the system provides,
specifically the multiple methods to spatially aggregate the
data (e.g., using a shapefile, quad-tree, regular grids) in order
to perform their correlation exploration was discussed:

“This part of the analysis process is kind of a game,
to play with the data to explore and search for trends. In
this sense the part of the tool that allows you to easily
break down space into sub-samples without going back to
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the database to manually break down the space, is really
helpful.”

The analysts noted that our method of using the geospa-
tial bars to encode either the geospatial density distribu-
tion or statistical significance was effective, and they could
visually associate them with the corresponding correlation
values. They commented that statistical significance testing
was also important in their analysis and were pleased that
our system provided them with a visual way to explore the
same.

The analysts had positive feedback for the matrix view
(Section 3.2.2). Analysts said that although the matrix view
was quite information dense and a bit overwhelming at
first, they quickly got used to the different visual encodings.
They found the ability to visualize the correlations between
the multiple categories in the unified matrix view to be
important. Analysts especially liked that we had used the
same color scheme for the correlation histogram visualiza-
tion as that of the map visualization. They also found the
correlation view to be highly interactive and it allowed them
to filter the geospace by the correlation values. With respect
to the uncertainty visualization, the analysts found the line
graph visualization on top of the correlation histogram vi-
sualization to be confusing at first; however, after further
explanation, they were able to relate the correlation values
to the results of the statistical significance testing. They
also stated that scaling the uncertainty line graph differently
than the correlation histogram (as opposed to scaling them
to the corresponding histogram bar height) (Section 3.2.2)
was beneficial as it highlighted the statistically significant
regions irrespective of the number of data points contained
within them. We note, however, that although we have
received largely positive feedback on our visual design to
encode the uncertainty in the matrix correlation view, we
believe that further evaluations are needed to fully under-
stand their efficacy in communicating the correlation values
and their corresponding uncertainty. We leave this as future
work.

The analysts also provided positive feedback regarding
the Venn diagram visualizations and found them to be
intuitive. However, they found the mosaic plot visualization
to be cumbersome and preferred the Venn diagram visual-
ization. Although a few analysts commented that the mosaic
plot visualization was helpful in allowing them to examine
and compare the “yes-yes” relationships between the differ-
ent variables, they largely preferred the Venn diagram visu-
alizations. We believe that this is because people are more
accustomed to Venn diagrams. However, the benefits of the
mosaic plot over the Venn diagram visualization remain to
be tested, and accordingly we leave this as future work. The
analysts also had positive feedback for the timeline view and
especially liked that they could temporally filter their data
using this view. Finally, we note that all the analysts wanted
to apply our system onto their other ecological datasets and
suggested that we provide a data input interface that would
enable them to upload their data into our system. We leave
this as future work.

6. Conclusion and Future Work

This paper presents a visual analytics approach for
categorical spatiotemporal data that can be comprised of
multiple set based variables (e.g., polytomous variables).
Our system enables users to explore data for potential corre-
lations between the different data categories and their values
over time and across multiple geospatial scales of analysis.
We provide several linked views, including an interactive
map view, data selection tools, and a correlation half matrix
view that utilizes visual design elements to encode the global
and local correlation values. We also utilize uncertainty vi-
sualizations directly in the geospatial view and in aggregate
within each correlation window within the matrix view. We
have provided several case studies that demonstrate how our
system can be used to help find relationships in polytomous
categorical datasets such as the soundscape ecology project
Record the Earth data. Expert feedback has pointed out
benefits of our interactive data exploration system such as
finding global or regional pairwise correlations in multi-
variate categorical data and a simple method for selecting
and aggregating data across macro and micro spatial scales.
We note that our system is extendable to other polytomous
categorical spatiotemporal datasets.

Future work includes extending our system to enable the
exploration of multivariate correlations. Our current system
is based on the users selecting only two categories at one
time in order to explore their relationships in geospace. We
also plan on extending our work to enable the exploration of
correlations over multiple temporal scales. These include the
exploration of spatiotemporal data over multiple temporal
aggregations (e.g., by day, week, month, year) and different
temporal regions for the same temporal aggregation level.
This will enable users to explore the changes withing these
different relationships between variables over time. We plan
on performing a qualitative study on the effectiveness and
the usability of the system, especially of citizens. Finally,
we plan on investigating automated methods that provide
guidance to users for selecting appropriate geospatial and
temporal scales and variables to examine, and implementing
in-system training tools to teach new users how to use the
system.
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