
Stochastic Speculative Computation Method and its Application to
Monte Carlo Molecular Simulation

Yasuki Iizuka∗, Akira Hamada, Yosuke Suzuki
Graduate School of Science, Tokai University

Hiratsuka, Japan
∗ iizuka@tokai-u.jp

Abstract
Monte Carlo (MC) molecular simulation has significant

computational complexity, and parallel processing is
considered effective for computation of problems with
large complexity. In recent years, multicore or many-core
processors have gained significant attention as they
enable computation with a large degree of parallelism
on desktop computers. However, in conventional parallel
processing, processes must be synchronized frequently; thus,
parallel computing is not necessarily efficient. In this
study, we evaluate the effect of applying MultiStart-based
speculative parallel computation to MC simulations. Using
probability theory, we performed theoretical verification to
determine if speculative computation is more effective than
conventional parallel computation methods. The parameters
obtained from the theoretical calculations were observed in
experiments wherein the speculative method was applied to
an MC molecular simulation. In this paper, we report the
results of the theoretical verification and experiments, and
we show that speculative computation can accelerate MC
molecular simulations.

Keywords: speculative computing, parallel processing,
molecular simulation

1. Introduction
Recently, computer-based molecular simulations, e.g.,

molecular dynamics (MD) and Monte Carlo (MC)
simulations, that calculate the characteristics of a molecule
have attracted significant attention. Both MD and MC
simulations have considerably large computational
complexity. It is not uncommon for these calculations
to take weeks or months. To make molecular simulation
easier to use, it is essential to speed up the calculation.

The theoretical basis of the MC simulation is an ergodic
Markov chain; thus, MC simulations are similar to the
simulated annealing (SA) algorithm, which is used to solve
combinatorial optimization problems.

Parallel processing can effectively accelerate the
computation of problems with large complexity, e.g.,
combinatorial optimization problems. However, even if m
parallel processes (or threads) are executed, the execution
time will not be reduced to 1/m because (i) only some
of the processes can be parallelized, (ii) the process
generates overhead, and (iii) some processes must be
synchronized. Therefore, the capacity factor of parallel
computing resources will not be 100%.

Parallelization can also be performed using speculative
computation. Speculative computation is to pre-execute
calculations that may not use calculation results in the
future. For example, Multilisp[1] or MultiStart [2] executes
speculative computation simultaneously (or in pseudo
parallel).

The purpose of this research is to develop a computation
method that accelerates molecular simulations. Therefore,
we examine the performance of a MultiStart-based
speculative computation method when it is applied to a
real problem. In this study, the speculative method uses
a stochastic algorithm, such as the SA algorithm or Tabu
search, as the base program. We execute multiple processes
that use a common base stochastic program in parallel with
a different random number seed and select the best solution.

We show the results of advanced theoretical estimations
using probability theory. In addition, we perform an
experiment to computationally solve an actual problem
using the speculative method. The results demonstrate that
speculative computation is more effective than conventional
parallel computing for some problems.

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50095
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 1660

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

���������	
����

�
�
��	
��

��������
������
�

�
�
��	��������
�

�
�
��	
��

Figure 1. Example of a conventional parallelized program

2. Parallel Processing
Many parallel programs are developed from sequential

programs to reduce computation time, i.e., some parts of
sequential programs can be parallelized. Figure 1 shows
an example of a parallelized program. Such programs
incur process generation and synchronization costs. When
synchronization is required, completed processes must wait
for running processes. Processing cannot continue during
this waiting state; thus, computational resources are not
used efficiently. Increasing the number of processes does
not always increase processing speed. For example, if a part
of a program is executed using 10 processes, the execution
time does not necessarily increase by a factor of 10.

The ratio of the part of a program that can be parallelized
relative to the entire program is assumed to be α (0 ≤
α ≤ 1). When this part is parallelized by m processes (or
threads), the computation time is expressed as follows:

α/m + (1 − α) + β, (1)

where β is the process generation time and synchronization
wait time. When α is sufficiently close to 1, the computation
time decreases to 1/m+ β. In many cases, α does not attain
such an ideal value.

Studies reporting the process to parallelize SA [3], [4]
and Tabu search [5] were published more than 20 years ago.
However, in these studies, synchronization was required in
all iterations.

In speculative parallel computation, a MultiStart [2]
procedure executes several computations speculatively and
simultaneously, including computations that may not be
used. In theoretical analyses using the state transition
matrix of the Markov process, it has been suggested that
MultiStart can realize superlinearity [6], [7]. However, in
these analyses, superlinearity was evaluated using theoretical

comparisons based on a simple random search. To the best
of our knowledge, experiments targeting practical problems
other than benchmarks have not been performed. Note that
it is difficult to realize superlinearity by comparing efficient
algorithms using various heuristics.

Therefore, various speculative computation methods have
been proposed [8], [9], [10]. The line-up competition
algorithm (LCA) [11] is a speculative parallel computation
algorithm that attempts to obtain the best result after
executing many programs. LCA compares solutions among
process groups, which are referred to as a family, at
every iteration that yields an improvement and modifies
the program parameters that are dynamically based on
a comparison of the results. In LCA, this comparison
is performed after each iteration; consequently, frequent
synchronization is required. The synchronization cost of
the speculative computation method used in our experiment
is nearly zero; moreover, it can parallelize the existing
algorithm without modification. In addition, wait time is not
required; thus, nearly 100% of the computational resources
can be used.

The algorithm portfolio method has also been proposed
[12] as a type of promising speculative computation method
for difficult problems. In the algorithm portfolio, some
(one or more) algorithms are executed simultaneously; then,
the algorithm with the best performance is selected. In
our study, only one algorithm was executed in parallel;
this may be a precise analysis of a special example
of an algorithm portfolio. However, assuming only one
algorithm, theoretical calculation of the expected value
becomes possible. Furthermore, in molecular simulations,
multiple algorithms cannot be used and parallel execution of
a homogeneous algorithm is required to maintain the validity
of the simulation.

In previous studies, the effect of speculative computation
was theoretically analyzed using the state-transition matrix
eigenvalues of the Markov process [6], [7]. However, in
an actual problem, it is difficult to obtain an accurate
state-transition matrix. Therefore, only the lower or upper
bound can be considered. In this study, we attempt to
analyze the effect of the speculative method as a simple
probability problem without using a state-transition matrix
and derive parameters that can be observed experimentally;
i.e., we attempt to analyze the application of this method to
a practical problem.

Page 1661

3. Effect of Speculative Computation

3.1. Algorithm

Various successful metaheuristics such as SA, Tabu
search, and genetic algorithms (GA) have been proposed for
combinatorial optimization problems. Such metaheuristics
use the stochastic iterative improvement algorithm as the
base. If these algorithms run for a very long time, the
obtained solution will approach the global optimal solution
[13].

In this paper, we make the following assumption. Here,
let t denote the iteration step, ϵ denote the optimal
solution, and a and b denote constants. The expected
value µ of the solution obtained by the stochastic
iterative improvement algorithm, which solves combinatorial
optimization problems, is expressed as a function of the
iteration step t in the following equation.

µ = a · t−b + ϵ . (2)

This assumption will be verified on each experiment in
Section 4 and 5.

In addition, we assume abundant parallel computing
resources, such as multicore CPUs, many-core CPUs, or a
computer cluster.

In this study, we attempt to analyze the effect of the
speculative computation method as a probability problem.

When the results of a trial S conform to a specific
probability distribution, if the trial is repeated and the
minimum value of the repeated trials is selected as trial M ,
the latter conforms to a probability distribution that differs
from trial S. For example, if the scores are determined by
a dice roll, the probability distribution becomes 1/6 each of
X = {1, 2, 3, 4, 5, 6} with an expected value of 3.5 for µs . If
m dice are thrown simultaneously and the scores resulting
from the minimum value are considered to be trial M , the
probability distribution will be nonuniform; moreover, as the
value of m increases, the expected value µm will become
closer to 1.

This is the principle of speculative computation. In other
words, if a stochastic algorithm is simultaneously executed
m-parallel and the minimum value is selected as the result, it
may be possible to obtain better computational performance.

In this study, a stochastic algorithm is used as the base
and the following extremely simple speculative method is
adopted.

��������	
��������	�

�������	���	�

������

�����

������

���

��������������������	�

Figure 2. An image of speculative computation

Step 1. A stochastic algorithm is executed independently using
multiple parallel processes (or threads), where a
different initial value or different random number seed
is used for each process.

Step 2. All parallel executions are terminated after a fixed time
or fixed number of iterations. Then, the best solution
is selected from the obtained solutions.

The solution obtained by this method varies stochastically
with parameter m. A conceptual diagram of this method
is shown in Figure 2. This method represents a simple
Multi-Start, which we refer to as Stochastic Speculative
Computation (SSpeC). SSpeC has the following features.

1) Process generation is performed once, and the process
generation cost is low.

2) Synchronization is performed once, and the wait time
is short.

3) The program utilizes nearly 100% of the available
computational resources.

4) The program can be parallelized without modifying
the original program.

3.2. Effect of improving a solution

It is assumed that the solution to a stochastic algorithm
S follows the probability distribution of the distribution
function Fs (y) and the probability density function fs (y),
where the minimum solution (or the optimal solution)
is denoted as ϵ . S is executed in an m-parallel manner
speculatively, and the minimum solution is selected from
the obtained solutions. Note that m-parallel execution is
assumed to be independent trial. In this case, the probability
that solution y can be obtained via m-parallel execution
follows the minimum value distribution of the original
probability distribution according to the extreme value
theory. The probability distribution function Fm(y) and
probability density function fm(y) are expressed as follows:

Fm(y) = 1 − (1 − Fs (y))m, (3)

fm(y) = m(1 − Fs (y))(m−1) fs (y). (4)
Page 1662

Here, Fs (y) is sufficiently small, i.e., it is close to the
minimum value of the original probability distribution.
Therefore, it can be approximated as ln(1−Fs (y)) ≈ −Fs (y).
Using this approximation, we can derive the following as an
approximate asymptotic distribution of the minimum value
distribution:

Fm(y) = 1 − (1 − Fs (y))m

= 1 − eln(1−Fs (y))m

≈ 1 − e−mFs (y) . (5)

The shape of the foot portion near the minimum value of
the original distribution characterizes the minimum value
distribution (Eq. (5)). Therefore, generally, by analyzing the
extreme value distribution of the minimum value, a type-III
asymptotic minimum value distribution, which assumes
the existence of a lower limit in the original probability
distribution, is used [14]. For a type-III asymptotic minimum
value distribution, the following simple model, which is a
distribution of the lower limit value ϵ (the optimal value)
and the upper limit value τ, can be considered. Here, the
rise around the minimum value is a power form. This model
is expressed as follows.

Fs (x) =

(x − ϵ
τ − ϵ

)k
=

(x − τ
δ

)k
, (ϵ ≤ x ≤ τ). (6)

fs (x) =
k
δ

(x − ϵ
δ

)k−1
, (ϵ ≤ x ≤ τ). (7)

Here δ = τ − ϵ．Substituting Eq. (6) into the Eq. (5) yields
the following:

Fm(y) = 1 − e−mFs (y)

= 1 − e−m((y−ϵ)/δ)k . (8)

Here, let θ = δ/m1/k . Then, the probability distribution
function is expressed as follows:

Fm(y) = 1 − e−((y−ϵ)/θ)k (9)

fm(y) =
k
θ

(
y − ϵ
θ

)k−1
e−((y−ϵ)/θ)k . (10)

This is a Weibull distribution. The average value of this
probability distribution can be obtained as follows [15]:

E(Ym) =

∫ ∞

ϵ
y

k
θ

(
y − ϵ
θ

)k−1
e−((y−ϵ)/θ)k dy.

(11)

The integration range is originally ϵ ∼ τ; however,
computationally, it is ϵ ∼ ∞. Here, we consider the following
variable transformation.

z =

(
y − ϵ
θ

)k
(12)

y = ϵ + θz1/k (13)

dz =

(
k
θ

) (
y − ϵ
θ

)k−1
dy (14)

Then, the integration range y = ϵ ∼ ∞ changes to z = 0 ∼ ∞.
Therefore, the average is expressed as follows.

E(Ym) =

∫ ∞

0

(
ϵ + θz1−1/k

) k
θ

e−z
(
θ

k

)
z−1+1/kdz

=

∫ ∞

0

(
ϵ + θz1/k

)
e−zdz

= ϵ + θ

∫ ∞

0
z1/ke−zdz

= ϵ + θ

∫ ∞

0
z(1+1/k)−1e−zdz

= ϵ + θ Γ(1 +
1
k

). (15)

Here, Γ() is a gamma function and δ and k are parameters
that depend on the shape of the original probability
distribution. In this paper, we want to express the average
value as a function µm(m) of the number of processes m.
By returning θ to its original form, we obtain the following.

µm(m) = E(Ym) = ϵ +
δ

m1/k Γ(1 +
1
k

). (16)

If the expected values of the probability distribution S is
µs , since µm(1) = µs , we simplify (16) as follows.

µs = ϵ +
δ

1(1/k)
Γ(1 +

1
k

)

µs − ϵ = δΓ(1 +
1
k

). (17)

We then substitute this into Eq. (16), and substitute 1/k for
h (h = 1/k) to obtain the following:

µm(m) = ϵ + m−h (µs − ϵ). (18)

Similarly, the distribution σ2
m(m) is expressed as follows:

σ2
m(m) =

(
δ

m1/k

)2 *,Γ
(
1 +

2
k

)
− Γ

(
1 +

1
k

)2+- . (19)

In addition, σ2
m(1) = σ2

s can be used to describe the
distribution as follows:

σ2
m(m) = m−2hσ2

s . (20)

Here, h is an index of the speculative computation effects,
and a greater value of h results in greater speculative

Page 1663

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10

f(
x)

x

m=1 m=2 m=5 m=10 m=20

Figure 3. Conceptual graph of a probability distribution shift by
speculative computation

0

1

2

3

4

0 10 20 30 40
The Number of parallelization m

E
x
p
ec

te
d

v
al

u
e

�
m

= m
�0.51�

�
m

Figure 4. The relationship between the number of parallelization (=
the number of processes) m and the expected value µm when Fs is
the Poisson distribution

computation effects. From Eq. (18), the effects of speculative
computation can be expressed as m−h (the power function of
m). The index of the effects of the speculative computation
h is the inverse of k; therefore, the distribution will follow
the shape of the original probability distribution. When
the parallel number is m → ∞, the expected value µm
approaches ϵ asymptotically.

A conceptual graph of how the probability distribution
of speculative computation changes is shown in Figure
3. Here, a Poisson distribution is assumed to be the
original probability distribution for the parameter λ =
4. In addition, there are the results of the numerical
calculation of the probability distribution when parallelizing
with m = 1, 2, 5, 10, and 20 (m = 1 is the original
probability distribution). When m is increased, the mode
of the probability distribution slightly shifts to the left and

the variance becomes small. Movement of the mode occurs
in the same way even for original non-Poisson probability
distributions.

We calculated the expected value µm of the probability
distribution with increasing m. Figure 4 shows the result of
the calculation when the trial of Figure 3 is parallelized.
The approximate curve µm = m−0.51λ has been added to
Figure 4. Here, h in Eq.(18) can be obtained from this curve.
Such reduction of the expected value is not limited to the
case where the original probability distribution is Poisson.
The results of our numerical analysis indicate that when
the original probability distribution is a bell curve (similar
to a normal distribution), h is in the range 0 < h < 1.
When the original probability distribution has a long tail
(similar to geometric or exponential distributions), h > 1
may be observed. If h > 1, the effect of speculative
computation is superlinear. In other words, h becomes
large when the distribution of the original probability
distributions is large. If the original probability distribution
Fs (x) is distributed uniformly, the distribution Fm(x) of
the speculative computation becomes a beta distribution and
h = 1.

Generally, when a problem is difficult, the distribution
of the solution of a stochastic algorithm becomes large,
i.e., the effect of speculative computation is significant for
difficult problems. Further, it is important that h, an index
of the effect of speculative computation, is observable from
experimental results as shown in Figure 4.

3.3. Effect of reducing the execution time

When using a stochastic algorithm, it is assumed that the
expected value of the computation time and solutions have a
relation as that described in Eq. (2). In conventional parallel
computing, it is assumed that computation time is reduced by
Eq. (1). With the same computation time t0, the conventional
parallel computing is possible to calculate for a time longer
by 1/(α/m+ (1−α)+ β) times than non-parallel computing.
Therefore, the expected value of a solution can be expressed
as follows:

µp = a ·
(

t
α/m + (1 − α) + β

)−b
+ ϵ . (21)

On the other hand, with SSpeC, the expected value µm (Eq.
(18)) of a solution is obtained using the same computation
time t0. For speculative computation to be more effective

Page 1664

�

��

���

���

���

���

���

���

���

���

0 200 400 600 800 1000 1200

A
v

e
ra

g
e
 s

o
lu

ti
o

n
 v

a
lu

e
s

The number of iterations t

Figure 5. The relationship between the number of iterations t and
obtained solution values when the program is executed in a single
thread

than the conventional parallelization method, µm must be
smaller than µp .

a ·
(

t
α/m + β + 1 − α

)−b
+ ϵ > ϵ + m−h (µs − ϵ).

(22)

We assume that conventional parallelization can be
parallelized in an ideal state. In other words, all parts can be
parallelized and the overhead is 0. Under ideal conditions,
α = 1 , β = 0, and ϵ = 0 for simplicity, Eq. (22) can be
transformed as follows:

a · (mt)−b > a · t−b · m−h . (23)

Thus, the required condition is

b < h. (24)

When Eq. (24) is satisfied, it is expected that the speculative
computation result will be better than that obtained with
conventional parallel computing. Note that b and h depend
on the problem and algorithm combinations. However, b and
h can be easily observed experimentally.

4. Experiment with a Combinatorial
Optimization Problem

To quantify the effect of the speculative computation,
we used the weighted graph coloring (cost minimization)
combinatorial optimization problem with the stochastic
algorithm to investigate whether b < h or b > h. Here,
the topology of the graph is random, the number of nodes

80

90

100

110

120

130

140

150

160

0 200 400 600 800 1000 1200

A
v

e
ra

g
e
 s

o
lu

ti
o

n
 v

a
lu

e
s

The number of processes m

Figure 6. The relationship between the number of processes m and
obtained solution values by speculative computation at the fixed 500th
iteration point of Figure 5

is 40, the number of edges is 200, the weight is 1∼3,
and the number of colors is 3. We used a stochastic
iterative improvement algorithm as the base algorithm which
transitions to a bad solution with a probability of 0.001.
It can also be regarded as the SA algorithm with constant
temperature. This algorithm is similar to the one used in the
MC molecular simulation using in Section 5.

First, we ran the algorithm using a single thread. Figure
5 shows the relationship between the number of iterations
t and solution values. Note that each point is the average
of 30 experimental results. This curve can very closely
approximate Eq. (2). Note that parameter b can be calculated
from this result. An approximate curve is shown in Figure
5. From this curve, in this case, b = 0.387 (coefficient
of determination r2 = 0.969) in Eq. (2) was obtained. As
described in the previous section, from this b, the maximum
effect of conventional parallelization can be calculated using
Eq.(21) without parallelized execution. This b is compared
with the effect obtained by speculative computation in the
following experiment.

Next, we executed speculative computation SSpeC, which
executed one algorithm in m-parallel with independent
random number seeds and independent initial state. The
algorithms and parameters used in SSpeC are the same as
single-threaded experiments above. After a fixed number
of iterations, SSpeC selects the best solution from the
obtained solutions. The results are shown in Figure 6. It
shows the relationship between the number of processes
m and the obtained solution at the fixed 500th iteration

Page 1665

point. Since the horizontal axis of Figure 6 is a number
of processes m, the point where the horizontal axis is 1
(m = 1) is the same as the single thread experimental
result of Figure 5. As m is increased, the obtained solution
sharply decreases. Here, each point is the average of 30
experimental results; h = 0.765 (r2 = 0.946) in Eq.(18) was
obtained from the approximate curve shown in the figure.
In this experiment, the condition h > b of Eq.(24) was
satisfied, although the result was not superlinear. Therefore,
speculative computation can be considered to be more
effective than conventional parallelization for this problem.

Although h > b in this experiment, when the number of
iterations was greater, the solution converged and h tended to
decrease. This is because h is considered to be proportional
to the dispersion of the solution.

This simple example problem is computable until the
optimal solution is found. In a problem for which finding the
optimal solution is difficult, the variation of the solutions is
large. In such a case, the condition of h > b will be satisfied
and the effect of speculative computation will be remarkable.

5. Application of Speculative Computation to
MC Molecular Simulation

In the previous section we examined the effect
of speculative computation on experimental problems.
However, the effect of speculative computation depends
on the difficulty of the problem and the base algorithm.
Therefore, it is important to conduct experiments with
practical problems. In this section, we report the application
of speculative computation to an MC molecular simulation.

5.1. Molecular simulation

A molecular simulation is a numerical simulation that
calculates the movement of a molecule or analyzes the
structure of a molecule. The MD and MC simulations
are commonly used in such molecular simulations. In MD
simulation, the equations of motion of each atom are
solved numerically and the position, speed, energy, and
other characteristics of each atom are analyzed. In MC
simulation, the state of the molecule in thermal equilibrium
is statistically calculated. The calculation principle of the
MC simulation is premised on the ergodic Markov process,
similar to the case of the stochastic iterative improvement
algorithm for a combinatorial optimization problem.

-30

-20

-10

0

10

20

30

40

0 200000 400000 600000 800000 1000000

E
n

e
rg

y

Number of iterations t

Figure 7. The relationship between the number of iterations t and the
energy values obtained by single thread MC simulation

���

���

���

���

���

���

���

���

� �� �� �� 	� ��
� ��

E
n
e
rg

y

The number of processes m

Figure 8. The relationship between the number of processes m and
the energy values obtained by speculative computation at the fixed
200,000th iteration point of Figure 7

In MC simulation, computation begins from a certain
initial molecular state and reaches a stationary state after
multiple state transitions. After reaching the stationary
state, the molecule states are sampled while repeating state
transitions. The state of a molecule is analyzed by calculating
the average of these samples. Here, we use speculative
computation to accelerate the process of reaching the
near-steady state. In other words, speculative computation
solves the problem as a combinatorial optimization problem
to find a small energy state.

5.2. Application of speculative computation to MC
simulation

Although the speculative computation algorithm
assumes abundant computational resources, such

Page 1666

as multicore or many-core CPUs, we conducted a
pseudo-parallel experiment to analyze the effect of
speculative computation on MC simulation. In this
experiment, we used the single amino acid potential
(SAAP) [16], [17] simulator program as the base MC
simulator, and we simulated the structural analysis of
chignolin. Chignolin is a peptide comprising 10 amino
acids (H-Gly-Tyr-Asp-Pro-Glu-Thr-Gly-Thr-Trp-Gly-OH),
which is called the smallest protein. We set the temperature
to 300 K in the simulation, and the number of iteration was
200,000.

First, we examined the relationship between the number
of iterations and the obtained energy value using a single
thread. Figure 7 shows the relationship between the number
of iterations t and the average obtained energy values. We
obtained b = 0.235 (r2 = 0.984) in Eq. (2) from the
approximate curve shown in Figure 7.

Next, we conducted experiments of speculative
computation in the same way as in the previous section.
The relationship between the number of processes m and
the average obtained energy values as experimental results
at the fixed 200,000th iteration point is shown in Figure 8.
As in Figure 6, the horizontal axis of Figure 8 is a number
of processes m, and the point where the horizontal axis is 1
(m = 1) is the same as the experimental result of the single
thread of Figure 7. From the approximate curve shown in
the figure, h = 0.763 (r2 = 0.951) in Eq.(18) was obtained.
Therefore, the condition b < h of Eq.(24) was also satisfied
in this molecular simulation. Speculative computation can
accelerate MC molecular simulations in this case. However,
h is sensitive to problem and algorithm conditions; thus,
more detailed experiments are required.

5.3. Discussion

The solution of a stochastic iterative improvement
algorithm can be modeled as an ergodic Markov chain.
SSpeC executes a stochastic iterative improvement algorithm
in parallel. When the frequency distribution of each process
solution has converged, can the solution be considered global
optimal? From the model of the stochastic process of the
Markov chain, this cannot be proved theoretically. However,
if Eq. (2) can be assumed and if m is sufficiently large, the
converged value can be considered as the near global optimal
solution.

Can we confirm this experimentally? As shown in Figure

6, the number of processes m was increased and the obtained
solution converged near the optimal solution. However, in
the MC molecular simulation, this method is infeasible
for determining the minimum energy value. Even with
1,500,000,000 iterations, the solution obtained by running
100 parallelisms did not converge. Approximately 160 h
were consumed for computing a single process on an Intel
Core i7-4790 CPU @ 3.6 GHz. Note that in MC molecular
simulations, even the smallest protein has a very large
problem space.

We consider that the speculative computation method is
suitable for MC molecular simulations. In this experiment,
we used speculative computation to accelerate the simulation
process of reaching the near-steady state. The idea of
choosing the best result after the computation is finished
will be applicable to the simulation itself. Therefore, the
following MC simulation experiment was conducted.

Here, the temperature was set to 300 K, the number
of iterations was 1,500,000,000, and 20,000 samples were
extracted. Chignolin is a peptide whose natural structure
is known; thus, the closeness between the obtained sample
and the known natural structure was measured using root
mean square deviation (RMSD). The distance between the
natural structure and the best simulation result obtained
from 100 processes was computed to be 1.53Å, and the
average distance obtained in 100 processes was 3.79Å. Thus,
we confirm that satisfactory results were obtained for both
force field energy and RMSD distance. However, theoretical
verification of the effect of speculative computation on
sample results remains a future problem.

6. Conclusion

In previous studies [6], [7], the effect of speculative
computation was calculated theoretically using the
state-transition matrix of the Markov process. However,
in practical problems, it is difficult to accurately obtain
the state-transition matrix. Thus, in this paper, we
investigated the effect of the speculative computation method
theoretically based on probability theory; moreover, we
derived the parameters that can be observed experimentally.
The experimental results obtained for the two problems
considered in this study demonstrate that it was possible
to obtain numerical values for these parameters. In
addition, we found that simple speculative computation

Page 1667

is effective for such problems. Thus, we confirmed the
effectiveness of speculative computation with regards to
practical real-world problems. This is the beginning of our
speculative computation research. Various algorithms can
be considered from the idea of speculative computation. In
the future, we would like to improve MC algorithms using
this result in order to facilitate the realization of high-speed
molecular simulations.

Acknowledgment
We are grateful to Professor Michio Iwaoka, who provided

the SAAP MC simulation program for our experiment.

References
[1] R. B. Osborne, Speculative computation in multilisp,

pp. 103–137. Berlin, Heidelberg: Springer Berlin Heidelberg,
1990.

[2] R. Martí, Multi-Start Methods, pp. 355–368. Boston, MA:
Springer US, 2003.

[3] A. Sohn, Z. Wu, and X. Jin, “Parallel simulated annealing
by generalized speculative computation,” in Parallel and
Distributed Processing, 1993. Proceedings of the Fifth IEEE
Symposium on, pp. 416–419, Dec 1993.

[4] K. L. Wong and A. G. Constantinides, “Speculative
parallel simulated annealing with acceptance prediction,” IEE
Proceedings - Computers and Digital Techniques, vol. 143,
pp. 219–223, Jul 1996.

[5] I. D. Falco, R. D. Balio, E. Tarantino, and R. Vaccaro,
“Improving search by incorporating evolution principles
in parallel tabu search,” in 1994 IEEE Conference on
Evolutionary Computation, pp. 823–828, 1994.

[6] R. Shonkwiler and E. Van Vleck, “Parallel speed-up of
monte carlo methods for global optimization,” Journal of
Complexity, vol. 10, no. 1, pp. 64–95, 1994.

[7] X. Hu, R. Shonkwiler, and M. C. Spruill, Random restarts in
global optimization. Georgia Institute of Technology, 2009.

[8] M. Samadi, A. Hormati, J. Lee, and S. Mahlke, “Paragon:
Collaborative speculative loop execution on gpu and cpu,” in
Proceedings of the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units, GPGPU-5, (New
York, NY, USA), pp. 64–73, ACM, 2012.

[9] V. Krishnan and J. Torrellas, “Hardware and software
support for speculative execution of sequential binaries on a
chip-multiprocessor,” in Proceedings of the 12th International
Conference on Supercomputing, ICS ’98, (New York, NY,
USA), pp. 85–92, ACM, 1998.

[10] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F.
Ngai, “A cost-driven compilation framework for speculative
parallelization of sequential programs,” SIGPLAN Not.,
vol. 39, pp. 71–81, June 2004.

[11] L. Yan, “Solving combinatorial optimization problems with
line-up competition algorithm,” Computers & Chemical
Engineering, vol. 27, no. 2, pp. 251 – 258, 2003.

[12] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artif.
Intell., vol. 126, pp. 43–62, 2001.

[13] E. Aarts and J. Korst, Simulated annealing and boltzmann
machines. New York, NY; John Wiley and Sons Inc., Jan
1988.

[14] Y. Iizuka and K. Iizuka, “Exceeding the efficiency
of distributed approximate algorithms enabling by the
multiplexing method,” in Knowledge-Based and Intelligent
Information and Engineering Systems, vol. 6883 of Lecture
Notes in Computer Science, pp. 366–377, Springer Berlin /
Heidelberg, 2011.

[15] W. Weibull et al., “A statistical distribution function of wide
applicability,” Journal of applied mechanics, vol. 18, no. 3,
pp. 293–297, 1951.

[16] K. Dedachi, T. Shimosato, T. Minezaki, and M. Iwaoka,
“Toward structure prediction for short peptides using the
improved saap force field parameters,” Journal of Chemistry,
vol. 2013, Article ID 407862, 2013.

[17] M. Iwaoka, N. Kimura, D. Yosida, and T. Minezaki, “The saap
force field: Development of the single amino acid potentials
for 20 proteinogenic amino acids and monte carlo molecular
simulation for short peptides,” Journal of computational
chemistry, vol. 30, no. 13, pp. 2039–2055, 2009.

Page 1668

