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Abstract 
 

Today, industrial maintenance is organized as an 
on-call business: Upon a customer’s service request, the 
maintenance provider schedules a service technician to 
perform the demanded service at a suitable time. In this 
work, we address two drawbacks of this scheduling 
approach: First, the provider typically prioritizes 
service demand based on a subjective perception of 
urgency. Second, the pricing of technician services is 
inefficient, since services are priced on a time and 
material basis without accounting for additional service 
quality (e.g. shorter response time). 

We propose the implementation of a technician 
marketplace that allows customers to book technician 
capacity for fixed time slots. The price per time slot 
depends on the remaining capacity and therefore 
incentivizes customers to claim slots that match their 
objective task urgency. 

The approach is evaluated using a simulation study. 
Results show the capabilities of capacity-based pricing 
mechanisms to prioritize service demand according to 
customers’ opportunity costs. 
 
 
1. Introduction 
 
1.1 Motivation 
 

Industrial maintenance—often being outsourced—is 
still the backbone of the industrial service business 
today. When industrial machinery needs to be 
maintained, repaired, or overhauled, customers (the 
manufacturers operating the machine) request a 
maintenance job from a service provider. The provider 
performs the service at a suitable time and prices it 
according to a specific pricing approach: the most 
common ones being “time and material spent” or 
according to a “long-term maintenance contract”. 

Recently, the perception of industrial maintenance 
has changed. Having been considered as a “necessary 
evil” in the past, efficient maintenance is now seen as a 
competitive advantage [1], as maintenance costs 
account for around 28% of total production costs [2]. 
Due to this perception, maintenance providers are in 
need for competitive service delivery, of which the 
performance is greatly influenced by an efficient 
scheduling of jobs. That is, providers need to correctly 
allocate spatially distributed tasks to spatially 
distributed technicians. The process of allocating tasks 
to technicians is subject to many constraints, for 
example, the consideration of skills, customers’ and 
technicians’ locations, and, very important, by the 
priority of the service demand. This task of allocating 
service demand to technicians is called dispatching and 
typically performed by human dispatchers. 
 
1.2 Problem Formulation and Research 
Objective 
 
Today, the dispatching of industrial maintenance 
underlies two major drawbacks: 

First, dispatchers do not follow clear rules on how to 
prioritize service demand in times of technician shortage 
(i.e. situations during which the urgent demand cannot 
be met with the available technician capacity). One 
prominent approach for dealing with this problem is to 
prioritize tasks based on the first-come-first-serve 
(FCFS) principle. Thus, requests are prioritized 
according to their time of arrival. Another common 
approach is to prioritize requests based on customer 
segments: customers who pay a periodic fee to receive 
higher service request are prioritized over regular 
customers. In practice, those customers are often 
referred to as premium customers. Our findings from 
practice, however, do not support the correct application 
of prioritization methods. Often, prioritization does not 
follow clear rules, as it is highly influenced by human 
opinion. For example, customers causing the highest 
trouble (e.g. by often calling the service provider) are 
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prioritized just because they indicate urgency and claim 
high priority. To address such problems, there is a need 
to develop an objective and transparent prioritization 
method for field technician scheduling. 

Second, pricing of maintenance services typically 
follows a cost-plus pricing mechanism. This means that 
service providers set prices according to their costs with 
an additional margin for their profit. 

The impact of these two drawbacks can easily be 
shown with a simple example: There are three broken 
machines that are in need for an urgent repair (i.e. 
service demand). One machine (customer A) is operated 
in an advanced just-in-time production system and its 
downtime results in the shutdown of the entire 
production line. The second and third machines 
(customers B & C) are part of flexible production 
systems in which a short machine failure can be 
compensated (e.g. by the usage of buffers). Given those 
three cases, it is highly likely that customers have 
varying willingness to pay (WTP) for an immediate 
repair as indicated in Figure 1. Today, those three 
machines would be treated equally and the dispatcher 
decides which machine would be served first. Therefore, 
prioritization is not done under consideration of the 
WTP of the customer (and therefore the real urgency of 
the task). Second, as shown in Figure 1, the single 
service price allows customers to realize a high 
consumer surplus (grey area). This is a known issue for 
cost-plus pricing in scenarios in which providers face 
high fixed and low variable costs [3]. 
 

 
Figure 1: Customer Surplus 
 

The objectives of this work are two-fold: First, we 
aim to develop a pricing strategy that results in objective 
task prioritization by allowing customers to self-signal 
their task urgency through their WTP. Second, we 
propose a more efficient market solution by pricing 
maintenance services based on the added value created 
for the customer. Hence, the developed solution 
simultaneously increases provider’s revenue and results 

in objective task prioritization by exploiting customer’s 
signaling effects. 
 
2. Fundamentals and Related Work 
 

In this section, we first introduce fundamentals of 
industrial maintenance. Second, we give an overview on 
field agent scheduling, before, third, introducing field 
agent scheduling. Fourth, we introduce relevant 
literature on pricing of industrial services, before, 
finally, introducing research on the estimation of costs 
of downtime. 
 
2.1 Fundamentals of Industrial Maintenance 
 

Manufacturers of industrial machinery commonly 
support their customers with supplementary 
maintenance, repair and overhaul (MRO) services. 
Geraerds [4] defines these services as ''[...] all activities 
aimed at keeping an item in or restoring it to the physical 
state considering necessary for the fulfilment of its 
production function''. Service in the context of industrial 
maintenance can further be categorized as (a) plannable, 
preventive services (e.g. machine installations, periodic 
maintenance, overhaul), and (b) unplannable, corrective 
services (e.g. breakdown). Manufacturing companies 
generally provide these services through distributed 
field service technicians. The efficient utilization of 
their limited capacity is an important success factor for 
their service departments [5]. 

The process of industrial maintenance is 
traditionally structured as follows: Once a machine 
requires service the customer manually opens a service 
request. Thereafter, the service provider tries to identify 
the required service activities to be performed which 
approximately determines the priority of the task 
(relatively to all other unfulfilled requests), the expected 
service duration and the required technician 
qualifications. When this information is known, the task 
is handed over to dispatchers. Dispatchers assign 
spatially distributed service demand to spatially 
distributed field technicians. This is a highly complex 
task and will be further explained in the next section. 
Once assigned, the task service is delivered. 

Traditionally, such services are priced based on their 
required time and material spent. Recently, however, 
customers increasingly demand agreements that are 
closer aligned with their needs [6]. Examples of such 
long-term engagements are full-service (e.g. [7], [8]), 
availability- (e.g. [9], [10]), or performance- (e.g. [11], 
[12]) based maintenance contracts. The contracted 
service levels of such agreements can theoretically act 
as a proxy to prioritize the service demand of customers 
in the dispatching process. However, expert interviews 
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have shown a poor consideration of those requirements 
in day-to-day dispatching decisions. Therefore, 
generally customers pay standardized prices 
disregarding individual circumstances [7]. 
 
2.2 Field Service Scheduling 
 

Dispatching is not limited to industrial maintenance, 
as other industries have similar problems (e.g. 
transportation in health care, telecommunication 
technician services, etc.). However, each industry 
introduces its own characteristics. Whereas some 
industries rely on highly automated dispatching 
systems, dispatching in industrial maintenance is often 
done by human dispatchers with little technical support. 

Dispatching is done under consideration of multiple 
constraints. For example, dispatchers must consider 
technician skills, task priority, routing, and working 
times during decision making. In addition, industrial 
maintenance underlies much uncertainty. First, 
maintenance providers do not know future service 
demand. Second, even if they are aware of a service 
task, they cannot predict their duration exactly. In 
practice, dispatchers have different strategies to deal 
with uncertainty, most of them being based on 
individual experience. 

Field service scheduling is explored in a variety of 
interconnected research fields. The domain of 
operations research focuses on algorithmically solving 
vehicle routing problems—a superset of field service 
planning. Based on a literature review of peer-reviewed 
taxonomies, Vössing [13] provides an overview of the 
many facets of vehicle routing problems addressed in 
the operations research domain. Additionally, he 
outlines how the complex, dynamic, and stochastic real-
world field service planning motivates the need for 
novel planning approaches. 

Obviously, both the transactional process and the 
established business models of industrial maintenance 
highly limits the short-term flexibility ideally required 
to quickly response to urgent customer requests. This is 
further complicated as dispatchers simultaneously 
pursue two contradictory goals: high technician 
utilization and flexible capacity for short-term service 
demand. Today, many dispatchers apply individual, 
loosely defined dispatching strategies. Even though 
scheduling algorithms are available, most dispatchers 
follow simple strategies as outlined by Hill [14]. 
Especially the prioritization of service requests has little 
guidelines and oversight, therefore many companies can 
improve their dispatching processes with advanced 
prioritization concepts. 
 
 

2.3 Pricing Strategies for Industrial Services 
 

Previous research has shown that industrial service 
pricing is more challenging than the pricing of industrial 
products [15]. 

Three main dimensions of pricing are traditionally 
researched in the literature. First, pricing objectives (e.g. 
maximize profit or maximize market shares) that define 
the provider’s pricing goals. Second, pricing methods 
(e.g. cost-, competition-, and value-based pricing 
approaches) that describe the logic how prices are being 
determined. Third, pricing policies (e.g. list prices, 
differentiated pricing, or yield management) that define 
the way prices are presented to the customer. 

A literature review by Avlonitis and Indounas [16] 
shows that most industrial services are priced based on 
the cost-plus (cost-based pricing) or the market-based 
(competition-based pricing) approach. Further studies in 
industrial pricing include contributions on the success of 
service pricing companies and their pricing approaches 
[17], and in which environment industrial service 
providers adopt pricing policies, such as skimming, 
penetration, and competitive pricing [18]. Finally, 
Indounas [19] analyzes how the choice of a pricing 
strategy influences industrial service provider’s 
performance. 
 
2.4 Costs of Downtime 
 

Around 80% of industrial companies are unable to 
accurately predict their cost of downtime. Usually, 
enterprises underestimate their costs significantly such 
that the actual costs of downtime are two to three times 
higher than expected [20]. 

Researchers differentiate between direct and indirect 
costs of downtime. Direct costs of downtime are costs 
that can directly be associated with the repair of a broken 
asset (i.e. time and material spent for repairing the 
asset). Indirect downtime costs are consecutive costs of 
an asset’s failure due to idle labor force, opportunity 
costs due to reduced production quantity, or even 
monetarized loss in reputation. 

So far, research has focused on determining the costs 
of downtime for individual machine failures, as, for 
example, in Fox et al. [21] and Vegunta and Milanovic 
[22]. In addition, these studies on specific use-cases are 
supplemented with a qualitative studiy on how 
companies deal with the determination of costs of 
downtime [23].  

The estimation of downtime costs prior to a machine 
failure is only approached by Wolff and Schmitz [24]. 
Their work presents a model for calculating the costs of 
downtime based on production losses for simple 
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production systems. They formulate the need of further 
research on the estimation of downtime costs. 

 
3. Design of the Marketplace 
 
3.1 Introduction to the Marketplace 
 

This work proposes the concept of a marketplace to 
realize both research objectives: The marketplace gives 
customers the possibility to book technician capacity for 
predetermined time windows. Hence, the marketplace 
gives customers complete control about the time at 
which field service technicians provide the requested 
service. In addition, by using price variations the 
marketplace will result in higher revenue for the 
provider. The following analysis focuses on the 
dispatching of urgent service requests only (i.e. 
breakdowns). In addition, we assume that industrial 
manufacturers want their equipment repaired as soon as 
possible, thus ignoring any additional influence factors. 

When maintenance is required, customers can search 
for technician capacity on the marketplace. Prior, 
customers must state the location the service is required 
at, the service duration, and the required skillset. 
 

 
Figure 2: Exemplary Current Technician 
Schedules 
 

At all times, the marketplace holds a valid current 
schedule for all technicians, as exemplarily shown in 
Figure 2. We see that daily work times are split into a 
series of time slots of predetermined length (here 15 
minutes). Travel times are denoted by ( T ). As shown, 
any technician activity (e.g. travelling, repair) needs to 
start and end with time slots but can include a series of 
them. If needed, activities are extended to the next time 
slot. Hence, in this case, a travel time of 17 minutes 
requires two consecutive time slots. 

Based on the specified service request of the 
customer and the current technician schedules, the 
marketplace searches for possible time slots to perform 
the service. For example, Figure 2 shows potential times 

to perform a requested service of 90 minutes (hence 6 
time slots) by the dotted areas. Technician #02 cannot 
perform the service, since the additional required travel 
times would exceed his available time. Using available 
technician capacity, possible service times are identified 
that each have a price—but no technician—associated 
to them. Here, there are six possible service times—as 
shown in Figure 2 in the Possible Service Time i column, 
with prices ps,i, i ϵ [1, 2, …, 6] associated to them. As 
the service duration is determined by the task to be 
performed, possible service times are identified by a 
unique start time ts and the price ps associated with it. 
The price ps is the price for the service to be performed 
at the given time. Hence, the marketplace provides the 
customer with the list of possible service times and 
associated prices as shown below. 
 

[(ts,1, ps,1), (ts,2, ps,2), …, (ts,n, ps,n)] 
 

For the given example, the possible service times 
given to the customer are: 
 

[(08:30, ps,1), (08:45, ps,2), (09:00, ps,3),  
(09:15, ps,4), (09:30, ps,5), (09:45, ps,6)] 

 
Once possible services times are transmitted, 

customers freely decide at which of the possible service 
times the service will be fulfilled. A rational customer 
chooses the earliest possible service time that has a price 
smaller or equal than his WTP—and as explained 
later—therefore minimizes his total costs. Once a 
service time is chosen, the marketplace assigns the task 
to an available technician for the given time and bills the 
customer according to the price associated with that 
service time.  

Following the above explanation, the marketplace 
consists of the following modules: First, the input 
module that allows customers to provide required data 
for the service request (e.g. service duration, location, 
and required skillset). Second, the marketplace has an 
algorithm that identifies possible service times for the 
required service. Third, the marketplace has a 
mechanism to determine prices associated to possible 
service times, and, finally, the marketplace needs the 
capability to reserve the chosen technician capacity 
based on the previously proposed service times. 
 
3.2 Customer’s Willingness to Pay 
 

In this section, we want to explain how the WTP of 
a customer can be modelled. For the following, we 
assume that customers want their machinery repaired as 
soon as possible and act as rational decision makers, 
thus try to minimize their own total costs. 
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As introduced in the related work section, the 
customer faces two cost categories in the case of a 
machine breakdown, namely direct and indirect 
downtime costs. In this work, we limit direct costs to 
labor costs (ignoring other aspects such as material 
costs, as they must be paid regardless of service time and 
thus, are a fixed add-on that do not influence decision 
making) and indirect costs to opportunity costs arising 
from reduced production output (lost revenue). From 
now on, we refer to direct costs as service costs cs, and 
indirect costs to opportunity costs co. Using this 
terminology, the total costs ct for a machine breakdown 
are calculated as shown below. 
 

𝑐" = 𝑐$ + 𝑐& 
 

The marketplace provides the customer with a set of 
possible service times. For each possible service time 𝑖, 
the customer calculates the total costs ct,i. The 
opportunity costs co,i are determined by the sum of 
opportunity costs that are incurred over time until the 
machine is fixed. Opportunity costs can be calculated by 
fixed costs based on time-units or based on the current 
production plan. However, the estimation of opportunity 
costs is not part of this work. The service cost cs,i is the 
price of the possible service time 𝑖. The determination 
of the service costs cs,i is explained in the following 
section. The customer now uses the total costs ct,i of the 
possible service times to prioritize them according to his 
point of view. 

Knowing the total costs ct,i for all possible service 
times 𝑖, the customer is willing to pay as much as the 
price of the possible service time 𝑖 that has the lowest 
total costs. 
 
3.3 Pricing of Service Times 
 

Using the marketplace, the provider aims at selling 
different services to different customer segments. For 
example, customers with high opportunity costs and 
customers with medium opportunity costs might both 
represent a segment. In this case, the services are 
characterized by different response times. Customers 
with high opportunity costs are addressed with services 
with a short response time, whereas customers with low 
opportunity costs are addressed with services with 
longer response times. Of course, the services are priced 
differently. In other words, the provider aims at selling 
a certain amount of capacity to different segments at 
different times ahead of time. 

As the provider does not know which customer 
belongs to which segment, he needs customers to signal 
their segment belonging. Customers of the different 
segments have different WTPs due to their different 

opportunity costs. Hence, it makes sense for the 
provider to differentiate segments by the pricing policy. 
Using capacity-based pricing mechanisms, the price of 
a service depends on the remaining technician capacity 
at that time, what means that booking of technician 
capacity at peak times is more expensive than the 
booking of technician capacity during off-peak times. 
Unfortunately, as service times are a series of 
consecutive time slots, available technician capacity 
does not necessarily remain constant during the entire 
service time (see Figure 1: technician availability 
changes between 09:00-09:15 and 10:30-10:45). 
Therefore, we propose to determine the price of a 
possible service time i (ps,i) based on the sum of prices 
for the time slots j the possible service is composed of. 
Given individual prices pts,j for time slot j, the service 
time price for alternative i is calculated as shown below. 
 

𝑝$,* = 𝑝"$,+
+	-	*

 

 
However, we did not explain how the price pts, j of a 

time slot j is determined. For individual time slots, we 
are able to calculate technician availability. Depending 
on the remaining available capacity, the time slot price 
pts is either discounted or increased. Those effects are 
realized using a base price pb that is multiplied by a 
capacity-based factor. The capacity based factor can be 
modelled using a function, such that in short, the price 
pts,j of time slot j is calculated as shown below. 
 

𝑝"$,+ = 𝑓 𝑐/01,+, 𝑐+, … ∗ 𝑝4 
 

Here, cmax,j is the maximum technician capacity 
during time slot j and cj represents the remaining 
technician capacity during time slot j. If needed, the 
pricing function can incorporate additional parameters 
as denoted by “…”. 𝑝4 denotes the base price for the 
demanded service. 

At this point we want to clarify the available 
capacity. Available technician capacity is defined as 
technician time that can be used to do revenue-
increasing tasks, hence that can be used to fulfil 
additional service tasks. Therefore, travelling 
technicians, even though they are currently not 
performing a service task on a customer’s site, are 
accounted for as being unavailable. Using Figure 1, for 
example, the technician capacity available during the 
time slot from 9:00-09:15 is 75%, whereas the time slots 
from 10:00-10:15 and 10.15-10:30 both have an 
available technician capacity of 50%, even though in the 
first one, one technician is marked as travelling. 

Relating to the related work on industrial service 
pricing, the pricing objective of the proposed approach 
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is a higher revenue for the service provider and the task 
prioritization by customers based on a monetarized 
point of view. The pricing method is value-based, as the 
base price pb is oriented on the mean customer added 
value by a repair. Adaption to the customer segment is 
achieved by the multiplier. Finally, the pricing policy 
used on the marketplace, capacity-based pricing, is a 
combination of service demand based pricing under the 
consideration of customer price. 

It is important to note that any customer is still able 
to book service capacity at any time desired. However, 
the customer needs to have a WTP higher than the 
service price demanded. Therefore, the service price ps 
is used as an approach of self-segmenting customers in 
urgency categories. In addition, the effectiveness of the 
pricing function on the desired research objective, the 
determination of the real urgency of a task, increases 
with the number of segments. Ideally, every customer is 
characterized by his own customer segment. However, 
it is doubtable that this is practically feasible. 
 
4. Evaluation of the Marketplace 
 
4.1 Methodology 
 

The impact of a technician marketplace is evaluated 
using a simulation experiment. From the many 
simulation approaches available, discrete event 
simulation fits our case best. Activities can be 
discretized to certain events, for example, the working 
time can be modelled as an event it begins at and as an 
event it is finished. In between, the status of neither the 
technician, nor the machine changes. The simulation is 
implemented in Python using the SimPy1 framework. 
Using simulation techniques to evaluate effects of 
changes on field service scheduling is a common 
approach and has already been applied by multiple 
researchers (e.g. [25], [26], [27]). A comprehensive 
review of simulation in maintenance (including 
scheduling) is given by Alrabghi and Tiwari [28]. 

The simulation experiment is structured as follows: 
There are two scenarios, A and B, that only differ in the 
time slot pricing function. Scenario A represents 
industrial maintenance as done today under FCFS 
dispatching. This means that a repair is scheduled as 
soon as possible for a fixed price. Scenario B represents 
the industrial maintenance market using a technician 
marketplace with a capacity-based price function. The 
determination of the pricing function is explained in a 
following section. 

To achieve higher generalizability of results, both 
scenarios are simulated fifteen times, each time having 
                                                
1 https://simpy.readthedocs.io/en/latest/ 

different random seed values (hence introducing new 
pseudo-randomness). One simulation run covers an 
entire year, during which the first three month are 
regarded as settling time and not included in analysis. 
 
4.2 Introduction to the Simulation Model 
 

The simulation consists of manufacturing units that 
fail over time. Once failed, the equipment (the 
customer) demands available repair times (i.e. possible 
service times) along with their prices. As mentioned 
before, the customer then decides on the time window 
based on rational decision making, hence the time 
window minimizing total costs. Prices for time windows 
are determined following the defined price function. 
Once the repair time window is chosen, the 
manufacturing equipment remains broken and is reset 
once a technician arrived and completely performed the 
repair work. For simplicity, machines are assumed to 
work continuously (e.g. three shifts) and that technicians 
work from 8:00 until 16:00. All days are assumed to be 
normal working days (no bank holidays or weekends). 
 
Table 1: Category’s Opportunity Cost 
Distribution Parameters 

 high medium low 
µ 5.0 2.0 1.0 
s 1.2 0.5 0.25 

 
As introduced before, we assume that different 

customers have different WTPs. As the WTP is 
influenced by the opportunity costs co of a customer, we 
distinguish between three groups of customer categories 
during the simulation. First, we have customers that 
have low opportunity costs co. Second, and third, we 
have customers with medium and high opportunity 
costs. The opportunity costs per time slot of a category 
follow a normal distribution with the distribution 
parameters as shown in Table 1. Those prices may be 
interpreted as absolute values or as a factor of the 
multiple of a mean opportunity cost over all customers. 

To model travel times correctly, the simulation uses 
a set L of 5000 locations. For each pair of location o, j ϵ 
L and o ¹ j, we determined a random and symmetric 
travel time. The travel times (in minutes) between each 
pair o, j ϵ L follow a N(60, 15) distribution. 

Additionally, the parameters shown in Table 2 were 
used for the simulation model. The number of machines 
and technicians are chosen such that—assuming the 
given mean time until failure after repair and around two 
tasks performed per technician per day—the technician 
capacity is sufficient to perform the total service 
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demand. The mean time until failure after repair of 
machines follows an exponential distribution with a 
mean value of 28 days. The lead selling time, set to four 
days, is the time horizon that technician capacity can be 
booked ahead in time. Finally, the repair duration is set 
to two hours and 30 minutes, technicians work for eight 
hours a day and a time slot has a duration of 15 minutes. 
 
Table 2: Simulation Parameters 
Parameter	 Value	
number	of	technicians	 10 
number	of	machines	 500 
mean	 time	 to	 failure	 after	
repair	

~ exp(l) with l = 28 
days 

lead	selling	time	 4 days 
repair	duration	 2 hours 30 minutes 
working	day	length	 8 hours 
time	slot	duration	 15 minutes 

 
The simulation model includes the following 

simplifications: First, according to the simplification 
specified earlier, we ignore any technician skill restraint, 
hence, any technician can perform any repair. Second, 
due to the proof-of-concept character of this study, we 
assume all repair works to be of equal length. Third, we 
do not take disruptions into account. Therefore, both, 
travel and service duration times are deterministic which 
results in a robust schedule. Fourth, we only 
differentiate between three groups of customers having 
different opportunity costs. 
 
4.3 Design of the Pricing Function 
 

For reasons of simplicity, we assume that pb = 1.0. 
The pricing function for scenario A, representing simple 
FCFS prioritization, is constant and set to 1.0. 
Therefore, in scenario A, any time slot j is priced such 
that pts,j = 1.0 and therefore does not vary. By doing so, 
we assure that any customer books technician capacity 
as early as possible, as prices remain fix—regardless of 
the time of service—but opportunity costs, and with the 
opportunity costs also the total costs increase over time. 

Assuming complete information for designing the 
pricing function for scenario B, the provider wants to 
sell services to three customer segments: First, the 
provider sells cheap capacity for customers having low 
opportunity costs, and, second and third, selling average 
and highly priced technician capacity to the customers 
of the medium and high opportunity cost segments, 
respectively. The services targeting the different 
segments vary in their response time. Whereas short 
response time services are usually priced at a high level 
due to a low remaining technician capacity, long 

response time services are much cheaper as they are 
meant to be sold further ahead. 

The time between the moment of booking and task 
action differs for the three segments. High priority 
customers will book shortly before the task action, 
whereas low priority tasks will be booked earlier on. 
Ideally, the provider wants to sell capacity to the 
different segments according to their relative sizes (in 
this case one third each). Anticipating the different time 
lag between booking and service time of segments, the 
provider sells capacity between 100% and 66% at a 
price suitable for customers of the low opportunity cost 
segment, capacity 66% and 33% at a price suitable for 
customers of the medium opportunity cost segment, and 
the final capacity is sold at a price suitable for customers 
of the segment having high opportunity costs. 

Setting pb = 1.0, the time slot prices in the simulation 
model are calculated as shown below, with aj being the 
slot availability. 
 

𝑝"$,+ = 	
			5; 	0.00 ≤ 𝑎+ < 0.33	
	2; 	0.30 ≤ 𝑎 < 0.66
	1; 	0.66 ≤ 𝑎+ ≤ 1.00

 

with 𝑎+ =
𝑐+
𝑐+,/01 

 
By setting those prices, customers are in need to 

determine when to book a required technician capacity. 
Those prices will incentivize customers to book 
technician capacity according to their segment. For 
example, a customer from the low opportunity cost 
segment will not book technician capacity at times 
during which capacity is already rare. Instead, the 
customer waits for the first capacity available that is 
meant to be sold to the low opportunity cost segment. 
Accordingly, a customer of the high opportunity 
segment will always book technician capacity at the first 
possible time slot available. If the customer waited 
longer, the opportunity costs will increase 
proportionally with the gain in lower service price. 

Hence, by setting the prices according to the 
opportunity costs, the provider incentivizes the desired 
behavior of customers to self-signal which segment they 
belong to and the desired task prioritization. 
 
4.4 Experiment Results 
 

For evaluation, we decide on using the following 
performance indicator: First, we want to compare the 
provider revenues of the two cases. Second, we are 
interested in the response times for service requests of 
the different customer segments. Third, we also want to 
know whether technician utilization changes between 
the two scenarios. Finally, we also log the overall sum 
of opportunity costs. Table 3 shows the mean values of 
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the simulation runs for those performance indicators for 
scenarios A and B. 
 
Table 3: Simulation Experiment Results 

Performance	
Indicator	

Scenario	A	
(FCFS,	constant	

price)	

Scenario	B	
(Capacity-Based	

Pricing)	
Technician	
Utilization	 86.00 % 85.99 % 

Revenue	 64086 € 130543 € 
Mean	Response	
Time	(All	Segments)	 14.06 hours 14.35 hours 

Mean	Response	
Time	(Low-
Segment)	

14.10 hours 14.81 hours 

Mean	Response	
Time	(Medium-
Segment)	

13.92 hours 14.46 hours 

Mean	Response	
Time	(High	
Segment)	

14.15 hours 13.78 hours 

Overall	
Opportunity	Costs	 718288.62 € 711308.81 € 

 
Looking at the service provider’s revenue, we see a 

drastic change between the two scenarios. In scenario B, 
the service provider realizes twice as much revenue as 
in scenario A. Of course, this must be seen with regards 
to the different pricing function. Having seen the time 
slot prices in the different scenarios it is no surprise that 
revenue is doubled in scenario B. Alone the time slot 
price for the final third technician capacity is 5 and 
therefore five times higher than the time slot price in 
scenario A. However, it is important to note that for both 
scenarios the same WTP calculations were used, again, 
demonstrating the effect of perished customer WTP. 

Talking about service response times (the time 
between the service request and the technician arriving 
on-site) we note only minor, but yet important, changes. 
First, the overall response time increases in scenario B 
by around 0.3 hours (around 18 minutes) compared to 
scenario A. Second, more interesting, however, are the 
changes in the customer categories’ response times. In 
scenario A, as formulated in the problem description, 
there is no ordering according to the customer’s costs of 
downtime. By chance, customers with the highest 
opportunity costs are prioritized the lowest, indicated by 
the highest response time. In the long run, however, the 
response times of the three customer segments should 
be equal. This deviation is caused by the characteristics 
of a simulation model only testing individual cases. In 
scenario B, the response times are ascending with 
descending opportunity costs, therefore indicating the 
desired results: Customers with high opportunity costs 
are prioritized higher than those with low opportunity 
costs. This behavior is explained by the usage of the 

capacity-based pricing function. Customers of the high 
segment are willing to pay a higher price for a service 
and therefore receive an early response time, whereas 
the WTP of customers of the low segment is too low to 
book at peak times. Instead, they book technician 
capacity at cheaper prices further ahead, therefore 
resulting in a higher downtime cost. We do want to note 
though that the response times did not change in “favor 
of” all customers. Especially the customers with low 
opportunity costs face higher response times in scenario 
B than in scenario A while paying the same price for the 
service. However, the observed effects in response times 
are exactly the desired outcome and meet the second 
research objective of task prioritization based on actual 
(and not claimed) task urgency. The overall technician 
utilization (sum of travel and repair times) does not 
change between the two scenarios, as we did not change 
the ratio of technicians and tasks but only the 
prioritization (i.e. the ordering) of tasks. Finally, we also 
see that the overall opportunity costs—the sum of all 
opportunity costs—decreases by around one percent. 
This is not much, but still, indicated that due to the shift 
in task priority the overall opportunity costs are reduced. 

Overall, the research objectives of first, using 
pricing mechanisms to prioritize service tasks correctly, 
and, second, increasing provider revenue, are met. 
However, we also note that the overall response time 
over all customers increased along with increased 
service costs. 
 
5 Future Challenges  
 

The marketplace, as introduced above, faces the 
following future challenges:  

First, customers are in need for support tools to 
estimate their required technician capacity correctly. In 
the situation of a repair, for example, customers need to 
determine the duration and skillset of technician 
capacity required. 

Second, providers must find a way of dealing with 
wrongly booked technician capacity. For example, a 
customer might believe that a repair takes two hours, 
books capacity according to that, however, the repair 
turns out to take three hours. This problem will occur 
and needs to be dealt with. Intelligent machinery, 
however, helps reducing those occurrences by providing 
additional information. 

Third, the question on proper reassignment needs to 
be addressed. Even if the provider cannot change the 
start and end times of a service, they can assign it to 
other technicians and therefore optimize technician 
routes. 

Fourth, the identification of possible service times is 
a highly interesting task. Providers must ask themselves 
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the question how much flexibility they want to allow 
when searching for possible service times. For example, 
providers might anticipate reassignment already at the 
point of service time proposition.  

Fifth, the determination of a suitable pricing function 
needs to be researched further. Future work, for 
example, could investigate more advanced pricing 
methods by using real-time data. 
 
6. Conclusion and Future Work 
 
6.1 Contribution 
 

The presented work proposes the implementation of 
a technician marketplace that is used by industrial 
maintenance customers to book technician capacity 
when needed. In addition, we propose the application of 
capacity-based pricing mechanism. 

This work contributes to research in the field of 
industrial maintenance. In detail, the following 
contributions are made: First, the work identifies 
inefficient pricing mechanism in industrial maintenance 
and stresses problems in the prioritization of service 
request in dispatching in practice. Second, a model on 
estimating industrial maintenance customer’s 
willingness-to-pay (WTP) in case of a machine 
breakdown is developed. Third, this work suggests the 
implementation of a technician marketplace that is used 
by customers to book technician capacity when needed. 
Fourth, by applying capacity-based pricing, the 
marketplace yields a solution that results in a higher 
revenue for the provider, and, fifth, a transparent 
approach of prioritizing service requests according to 
their opportunity costs for the customer. Sixth, the 
approach is evaluated using simulation. 

For customers’ decision making, this work 
introduces a model on estimating customers’ WTP for a 
repair by assuming their rational decision making. 
Customers minimizing their overall costs that are 
calculated using service prices and costs of downtime. 

The marketplace proposed offers customers to self-
select service times according to their WTP. Thus, 
customers signal the true urgency of a service request. 
Consequently, the service provider does not need to 
prioritize tasks on subjective perception anymore. 

The marketplace—evaluated by using three segment 
of opportunity cost customers (high, medium, and low) 
—and the newly introduced pricing mechanism result in 
an overall longer response time of around 18 minutes 
compared to simple first-come-first-service dispatching. 
However, looking at customer segment’s response 
times, we see that capacity-based pricing results in 
customers with high opportunity costs having shorter, 
and customer with low opportunity costs having longer 

response times. Therefore, the desired effects of task 
prioritization based on opportunity costs is achieved. In 
addition, technician utilization remains constant at a 
level of 86% whilst the second research objective, a 
more efficient service pricing, is met. The provider’s 
revenue is doubled by reducing the consumer surplus.  
 
6.2 Limitations and Future Work 
 

The presented work has the following limitations: 
First, due to the introduction of the novel approach, 
many aspects are kept simple or are ignored and 
therefore result in additional challenges to face. Those 
aspects have already been mentioned in chapter five. 

Second, following current trends, especially a fine-
tuned pricing function using real-time data to determine 
time slot prices is an extension to the presented model. 

Third, we assumed that customers require an 
immediate repair. However, there might be other 
methods of assessing customer’s choice of service time. 

Fourth, using an evaluation based on simulation, our 
work is subject to common limitations of simulation 
studies. For example, parameters are based on expert 
interviews. In the future, simulation parameters should 
be based on quantitative data. 

Fifth, other pricing objectives might be worthwhile 
considering. For example, providers might try to 
maximize their revenue for repair tasks by auctioning 
their capacity. This implies, however, that planning 
happens just-in-time. 

Sixth, this work is limited to corrective repair 
strategies. We assumed that customers want their 
equipment repaired as soon as possible. However, 
emerging trends in maintenance (e.g. predictive 
maintenance) might result in different scenarios. So far, 
preventive services as well as periodic overhaul or 
machine installation are not included in the proposed 
marketplace model. Those additional services need to be 
addressed in future work and represent an important 
extension of the proposed model. When including those 
services, it may be worthwhile to evaluate the 
application of revenue management techniques. By 
applying revenue management, providers can actively 
steer service demand and therefore, for example, 
incentivize optimized technician routes. 
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