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Abstract 

Vehicle trajectory information are becoming 
available from mobile sensors such as onboard devices 
or smart phones. Such data can provide partial 
information of origin-destination trips and are very 
helpful in solving the network flow estimation problem 
which can be very challenging if only link counts are 
used. Even with this new information, however, there is 
still structural bias in the maximum likelihood based 
approach because of uncertainties in the penetration 
rates. A Bayesian inference approach in which the 
earlier link-count-based methods are extended is 
proposed. We incorporate posterior simulation of 
route-choice probabilities and penetration rates. The 
results of a numerical example show that our method 
can infer network flow parameters effectively. 
Inclusion of mobile sensor data and prior beliefs based 
on it can yield much better inference results than when 
non-informative priors and only link counts are used.  

1. Introduction

Network flow estimation is a key to successful
transportation studies [1] and is critical for intelligent 
transportation systems and smart city applications [2]. 
Traffic intensity estimation for all directed origin-
destination (OD) pairs from link counts (i.e., the 
number of vehicles that traverse individual links during 
a certain time period) has been studied extensively 
(e.g., [3]-[7]). However, since the number of links is 
typically much smaller than the number of directed OD 
pairs in the network, the problem is generally 
underdetermined (i.e., multiple or infinitely many 
solutions exist) [6][8]. In order to determine the most 
likely solution, non-Bayesian approaches include an 
earlier method that employs the principle of maximum 
entropy and minimum information [4], and more recent 
methods that use maximum likelihood estimation 
(MLE) and moments based algorithms [5]. However, 
these techniques give little weight to prior information, 
and only point values (if any) are specified in the prior, 
with no measure of the degree of belief in it [3]. 

Furthermore, methods such as MLE have iteration 
formulae which are very hard to compute [5]. Finally, 
both MLE and the method of moments [5] suffer from 
structural ambiguity in the case of Poisson-based 
likelihood, they tend to overestimate (underestimate) 
low (high) rates [6].    

Because of these limitations, many studies have 
proposed using Bayesian inference methods for the 
network flow problem (e.g. [1][3][6][7][9]-[11]). The 
problem has an inherent Bayesian flavor since we 
make forecasts of “tomorrow’s” OD flows based on 
“today’s” OD flow estimates [6]. However, most of 
these studies used only historical link counts, without 
additional information that is relevant to the OD rates.  

Naturally, data other than link flows would be 
useful in inferring the demand [12][13]. An important 
source of data could be mobile sensors such as on-
board GPS devices, probe cars [2][14] or smart phones 
used for on-demand mobility service, all of which are 
becoming increasingly available today. Some OD 
information could also be extracted from data such as 
the rates of customers requesting and finishing a ride, 
and drivers’ smart phones can now be monitored by 
on-mobility service providers as well [15]. Such 
devices can record vehicle trajectories, thus provide 
information on route flows and the corresponding OD 
addresses [16], which could be very helpful in solving 
an otherwise highly underdetermined link-count based 
OD flow estimation problem [2][8]. Thus, in this study, 
we use mobile sensor data along with traditional link 
counts to perform Bayesian inference of traffic 
network flows. We essentially extend the posterior 
simulation approach of earlier studies to the case where 
the Poisson rates are partially observed.   

2. Literature review and our approach

    The posterior distribution used in estimating fixed-
routing network OD flows, which was first formulated 
in [3], assumes a normal prior in the traffic intensity 
and normal observation errors. A number of studies 
(e.g., [11]) have developed variants of that approach 
based on normality assumption. The advantage of 
assuming a normal distribution is that posterior 
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updating can be done analytically. However, it entails 
intensive matrix inversion computations. To avoid this, 
study [11] adopted Bayesian network and iteratively 
infer the normal OD rates, but the convergence 
property of the propose approach is not clear. Also, the 
assumption of normality of the flow counts could break 
down in cases where some of the OD rates are 
relatively small [6]. A more realistic and commonly 
adopted prior for the OD rates is the Poisson 
distribution (e.g., [7]), but the resultant posterior 
cannot be easily evaluated due to difficulties in support 
identification [6]. Therefore, Markov Chain Monte 
Carlo (MCMC) methods were first proposed in [6] to 
infer the Poisson rates. However, the model used in [6] 
assumes that routing is fixed or has known 
probabilities for each OD pair.  

The actual route-choice probabilities over different 
routes depend on factors such as travel times [9][17]. 
Hence some later studies focus on inferring route flows 
instead. For example, an expectation maximization 
(EM) based approach was proposed to do Bayesian 
inference [7] of route flows. The MCMC approach of 
[6] was extended to time-varying route flows in [9], 
where the route-choice probabilities are functions of 
the inferred historical route flow. Thus the 
uncertainties in the route-choice probabilities were also 
modeled. Similar approaches have been proposed in 
[1] for dynamic OD inference and in [11] for static OD 
inference. The study in [17] includes the key 
parameters of the choice probability functions in the 
posterior simulation. However, inferring such a long 
parameter vector calls for a long sequence of historical 
data and expensive computation [9]. Moreover, the 
functional form of the choice probabilities could affect 
the results of the inference. Thus it would be desirable 
to assign uncertainties to the route-choice probabilities 
more straightforwardly, which is a key element of the 
method proposed in this study. Listed in Table 1 (in 
chronological order) are some representative studies on 
Bayesian inference of link-count-based estimation of 
network OD flows. Several aspects of those studies are 
compared: the methods used for posterior computation, 
the assumed distributions of the (independent) OD 
rates, the time domain of the estimation problem, and 
how routing is incorporated.  

Note that among all the studies listed in Table 1, 
only ours utilizes a partial set of actual routing data. As 
new data of this type become available, more 
informative priors can be built. However, one needs to 
have a good sense of the penetration rates of the 
mobile sensors from which the data are extracted, and 
those rates are nontrivial to estimate [14]. The study in 
[8] formulated the OD flow estimation problem using 
both link counts and sporadic routing data. It pointed to 
problems of MLE approach which are intrinsic even if 

the penetration rates are common across ODs. Actual 
penetration rates can have considerable regional 
variation [14], so structural bias of MLE could have 
negative consequences. Thus it would be desirable to 
have a reliable procedure for inferring the penetration 
rates in order to better utilize the new data.  

Table 1. List of related studies 

Study 
Posterior 

 comp. 
Rates 
dist. 

Time 
domain 

Routing 

[3] analytical Normal static fixed 

[6] MCMC Poisson static 
fixed or 

known prob. 
[7] EM Poisson static fixed.a 

[9] MCMC Generalb dynamic 
formula for 

prob. c2 

[11] 
iterative 
formulas 

Normal static 
formula for 

prob. c1 

[1] MCMC Normal dynamic 
formula for 

prob. c1 

This 
work 

MCMC Poissone static 
unknown 

prob.d 

a: Route rates were inferred directly. b: Poisson dist. 
was used in examples. c: Routing probabilities depend 
on the realized costs (a fixed function of the route flow) 
in the previous time step via a known function (c1), or an 
unknown function whose parameters were to be inferred 
(c2). d: Routing probabilities were inferred directly from 
a partial set of observed route rates.  

Therefore, our approach extends the MCMC 
framework by incorporating inference on OD-specific 
penetration rates and route-choice probabilities. We 
derive the conditional posteriors of those new 
parameters, and we propose convenient ways to utilize 
partial set of actual routing data to construct 
informative priors. Hence our model is not only able to 
jointly infer more parameters as a result of including 
the new data, but also to do so more efficient by using 
priors that are more informative.  

3. Data and model

We consider a network of n nodes and r directed 
links. Each OD pair a consists of two distinct nodes, so 
the number of OD pairs is c = n(n – 1). Let s = (i, j) 
represent the directed link from node i to node j, and Xa 
be the total traffic count of OD pair a within a certain 
time period to our interest (which is assumed to be no 
less than the travel time for any OD pair). Xa’s are the 
quantities we want to infer.  

3.1. Observed and unobserved data 

Let Ys be the observed traffic count on link s over 
the time period for which the OD rates are to be 
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inferred. Note that the number of measured links is at 
most r, which is typically smaller than c. Thus, the 
network flow estimation problem is in general 
underdetermined if only link counts are used.  

Let ka be the number of routes can be used for OD 
pair a, and let the counts for those routes be Xa,1, Xa,2, 
…, Xa, ka, so Σt=1…ka Xa,t = Xa. Let m = Σaka be the total 
number of routes, which is in general larger than c and 
much larger than r. We collect the OD counts {Xa, a = 
1, …, c} into an m-dimensional column vector of route 
counts, X, by arranging all the route flow components 
Xa,t for all OD pairs in order of their OD address a, that 
is,  X: = {Xa,t, t = 1, …, ka; a = 1, …, c}. By this 
construction, it is clear that the total flow for OD pair a 
relates to routes t = (1 + Σa'=1…a-1 ka'), …, Σa'=1…a ka'.  

Apart from the link counts from fixed traffic 
sensors, we can also obtain a partial route counts from 
mobile sensors [8]. We assume that the correspondence 
between the vehicle trajectory data and the underlying 
OD pairs is known. Let Xtrk

a,t be the tracked flow count 
on route t of OD pair a, so we have the tracked count 
for OD pair a within the period of interest is Xtrk

a = 
Σt=1…ka Xa,t ≤ Xa. We store all the tracked route counts 
in the m-dimensional column vector Xtrk = {Xtrk

a,t, t = 1, 
…, ka; a = 1, …, c}, in the same order as in X, and let 
r-dimensional column vector Ytrk = {ΣaYtrk

a,s, s = 1, …, 
r} contain the total link counts corresponding to the 
observed route counts. Since X ≥ Xtrk (pairwise), we 
can define a nonnegative column vector Xnot = X – Xtrk

= {Xnot
a, a = 1, …, c}, which represents the unobserved 

route counts for all the OD pairs. We also define a 
column vector Ynot = Y – Ytrk, which represents the link 
counts that are not part of any tracked route count. We 
have the following key relationship:  

,  ; trktrk AXYAXY                    (1) 

where A = {As,t, s = 1, …, r; t = 1, …, m} is the r×m 
routing matrix, with As,t = 1 if link s belongs to route t, 
and As,t = 0 otherwise. Equation (1) simply expresses 
each link count in Y (or Ytrk) as the sum of the counts 
Xa,t (or Xtrk

a,t) for all the routes that use link s. The 
difference of the two equations in (1) gives: 

.notnot AXY                            (2) 
Thus Ynot imposes a set of linear equality constraints on 
Xnot. Equation (2) is utilized in the Bayesian inference 
model later. Note that A is singular, since the number 
of its rows (r) is smaller than number of its columns 
(m). We assume that no route contains a cycle, this 
indicates that X and A have finite size.  

3.2. Underlying distributions 

We assume that the count for OD pair a follows a 
Poisson distribution with mean λa: Xa ~ Poisson(λa). 
We define the Poisson OD rates vector Λ = (λ1, …, 

λc)T. The Poisson distribution is commonly used in 
traffic modeling, as in [17]. It has been proposed (e.g., 
in [3] and [8]) that a Poisson distribution be 
approximated by a normal distribution, mainly because 
of computational concerns, but a normal approximation 
is rather poor when λa is small, and can lead to 
(unrealistic) negative estimates of the flow variables 
[7][8]. In addition, the computational effort required 
with use of an Maximum a posteriori (MAP) estimator 
or the MLE is still considerable when the variance of 
the approximating normal distribution depends on λa 
[7]. Hence we focus on the original Poisson model, our 
proposed inference framework can easily be extended 
to normally distributed OD counts.  Also, note that 
dependencies between flows (e.g., gravity models) can 
be modeled via hierarchical models for the rates Λ and 
can be conveniently incorporated in the same Bayesian 
framework [6][18]. Therefore, in this study, we also 
restrict our model development based on the 
independent Poisson structure. 

Now we introduce the other two key parameters. 
First, wa ∈ [0, 1] is the penetration rate of the mobile 
sensors (e.g., regular on-demand service users) for OD 
pair a. Let w = (w1, …, wc)T. Unlike in [8], we assume 
that wa is OD-pair specific. Second, pa,t is the choice 
probability for route t of OD pair a, so Σt=1…ka pa,t = 1. 
Let pa = (pa,1, …, pa, ka)

T. The conditional distributions 
of the observed and unobserved OD counts are: Xtrk

a | 
Xa ~ Binomial(Xa, wa) and Xnot

a | Xa ~ Binomial(Xa, ua), 
respectively, where ua = 1 – wa. The conditional 
distributions of the observed and unobserved route 
counts are: {Xtrk

a,t, t = 1, …, ka} | Xtrk
a ~ 

Multinomial(Xtrk
a, pa) and{Xnot

a,t, t = 1, …, ka} | Xnot
a ~ 

Multinomial(Xnot
a, pa), respectively. This implies that 

the unconditional distributions are: 

.)(Poisson~

);(Poisson~

);(Poisson~  );(Poisson~

a,,

a,,

aa







ata
not

ta

ata
trk

ta

a
not
aa

trk
a

upX

wpX

uXwX
 (3) 

3.3. The estimation problem and issue of MLE 

The problem is to jointly infer the underlying mean 
OD rates Λ, the penetration rates w and the route-
choice probabilities P = (p1

T, …, pc
T)T from the 

observed link counts Y = (Y1, …, Yr)T and the partial 
set of route counts Xtrk. Note that we can also infer the 
mean route rates as in other studies (e.g., [7], [9]). 
Then the route-choice probabilities can be indirectly 
estimated by calculating the ratios of the individual 
route rates to the total OD rates. We instead focus on 
direct inference of the route-choice probabilities in 
order to more naturally combine those with our prior 
knowledge of the routing decisions.   
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Actually, any parameter vector θ = (ΛT, wT, PT)T 
that satisfies AΛ = Y and diag(w1p1

T,…, wcpc
T)Λ = Xtrk

will produce estimates of E[Y] and E[Xtrk] that match 
the corresponding observed data perfectly. Therefore, 
since the number of links, r, is typically much smaller 
than the total number of routes, m, we cannot expect to 
obtain reliable estimates for the problem using MLE. 
This is mentioned in the study of the normal 
approximation model in [8] (and would apply to our 
study if we considered the product wapa,t as the “route 
penetration rate qa,t” for route t of OD pair a in their 
context), but that study focused on the case where qa,t 
is the same for all routes. Since we use OD-specific 
penetration rates wa and route-choice probabilities pa, 
such unreliability would be common in our problem 
setting, and could lead to frequent bias in estimation.  

Hence, these issues have led us to focus on a 
situation where Bayesian approach can be fully 
exploited. Such an approach allows us to incorporate 
prior beliefs about OD intensities to guide the posterior 
analysis and prevent the “structure bias” of MLEs with 
extreme estimates.  

Next we will present the Bayesian inference model. 
We include the prior and the inference model in both w 
and P, which is the main contribution of this study. 

4. Bayesian inference model

First note that given the route counts Xnot, we can 
immediately evaluate the conditional posteriors of the 
Poisson rates, penetration rates and route choice 
probabilities. Thus, we also move the latent variable 
Xnot into the joint distribution.  

4.1. Joint distribution 

By our assumption of the independent Poisson 
model, together with equation (2), the independence of 
Ynot and Xtrk, and the independence of Xnot and Xtrk, we 
have the following joint distribution:  

,
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nottrk
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a aata
not

ta
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trk

ta

notnot
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eup
p

X

ewp
p

ppp

pppp
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θX

θX

θXθXθ

θXYθXθXθ

θXYXθYXX

XY
1

 (4) 

where the indicator function 1{f} takes the value 1 when 
f is true, and 0 otherwise. Hence if the prior for each 
OD count, λa, the prior for each penetration rate, wa, 

and the prior on the route-choice probabilities, pa, as 
well as the above indicator function, are all given, then 
the joint distribution can be characterized.  Each of the 
prior models can be specified. For convenience in 
posterior evaluation, we would like to use independent 
conjugate priors for Λ, w and P across OD pairs, which 
will be discussed in detail in Section 4.3.  

4.2. Conditional posteriors 

Under the assumption of the independent Poisson 
model, we can easily obtain the full conditional 
distributions for Λ, w and P, since they will all have 
conjugate priors. Some additional work is needed to 
obtain the conditional distribution for Xnot, which 
doesn’t have an analytical form.  

By (4), the full conditional distribution for the 
Poisson rates is: 
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c

a

not
a

trk
aa

nottrknottrk





















XXwPYXX ΛΛ

  (5) 

Thus, conditional on Xnot and Xtrk, we get Xa by 
summing over the entries of Xnot and Xtrk that 
correspond to OD pair a, and then we can easily 
simulate Λ as a set of independent draws from the 
implied univariate posteriors. If the prior p(λa) is a 
gamma distribution or a mixture of gammas, these 
draws are made from the corresponding gamma (or 
mixture of gamma) posteriors.  

Similarly, from (4) we can get the full conditional 
distribution for the penetration rates: 
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p

PXXwPYXXw





ΛΛ

 (6) 

Thus, conditional on Xnot and Xtrk, we can easily 
simulate w as a set of independent draws from the 
implied univariate posteriors. If the prior p(wa) follows 
beta distribution, these draws are also made from the 
updated beta posteriors.  

The vector Ynot in (2) implies a set of r linear 
equality constraints on Xnot. As a result, the posterior of 
Xnot can be reduced to a set of r linear equations that 
deliver precise values of r elements of Xnot given 
specified values of the remaining m – r elements. The 
marginal posteriors for these m – r elements can be 
directly evaluated and used as the centerpiece for the 
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MCMC simulation. The algebraic structure of general 
network, which is derived in [6], is summarized below, 
and is critical to the ensuing inferential development. 
First we reorder the columns of the routing matrix A as 
A = (A1

  A2), where A1 is a non-singular r × r matrix. 
Then we have 

 ), ( 22
1

11 XAYAX  not-                     (7) 

where the elements of Xnot
 are reordered as (X1

T
 X2

T)T 
in accord with the partition A = (A1

  A2). Equation (7) 
is a simple consequence of equation (2) and the 
invertibility of A1. We reorder the entries of the vector 
P (whose tth element is Pt) to match the reordered X not. 
We use the reordered Xnot and P in the sequel.  

Based on this property, for any θ, and fixed Ynot, 
the conditionals [Xnot|θ, Ynot] are concentrated in the 
sub-space of dimension m-r defined by the partition (7) 
of the routing matrix A. After column reordering, the 
posterior has the form [X1 | X2, θ, Ynot][X2 | θ, Ynot], 
where [X1 | X2, θ, Ynot] is degenerate at X2 = (Xnot

r+1, 
…, Xnot

m)T and X1 = A1
-1(Ynot - A2X2). Hence the full 

conditional for X2 (over the support defined by Xnot
t ≥ 0 

for all t = 1, …, m) is 

,
!

)(
),|(

1

)()(
2 




m

t
not
t

X
tatatnot

X

wP
p

not
t

YθX           (8) 

where a(t) denotes the index of the OD pair that 
corresponds to Xnot

t  (the tth element of the reordered 
Xnot). Equation (8) means that the full conditional for 
X2 is simply the product of the independent Poisson 
priors for all the Xnot

t, which are constrained by (2) and 
rewritten in the form in (7). Using (8), we have that the 
full conditional for each X2,t (t = 1, …, m – r) (over the 
support defined by X2,t ≥ 0, t = 1, …, m – r):  
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tt X
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l
not
t 

YθX     (9) 

where X2,-t denotes the elements in X2 other than X2,t.  
Note that X2,t corresponds to Xnot

t+r of the reordered 
vector Xnot. Identifying the support of (9) requires 
study of the linear constraints X1 ≥ 0 for X1 = A1

-1(Y –  
A2X2), as discussed in [6], which amounts to Xnot

t ≥ 0 
for t = 1, …, r). Note that because of incorporation of 
mobile sensor data, the underlying support of Xnot

t (t = 
1, …, r) will be smaller than the corresponding total 
route flow, which makes the inference problem 
computationally more efficient. 

Based on (4), we can also get the full conditional 
distribution for P. We have the conditional likelihood 
for each vector pa given the computed route counts 
Xtrk

a,t, Xnot
a,t as well as Poisson rate λa and the 

penetration rate wa. On this basis, the likelihood 
function factorizes into a set of c components of the 
form in (4), and (since wa, λa are independent of pa) the 
full conditional of each pa is:  
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(10) 

where the second last line follows from Σt=1…ka X
not

a,t = 
Xnot

a , Σt=1…ka X
trk

a,t = X trk
a and Σt=1…ka pa,t = 1. Thus, it 

is easy to see that when the prior p(pa) is a Dirichlet 
distribution, so is the conditional posterior of pa [19]. 
Specifically, suppose the prior p(pa) is a Dirichlet 
distribution with concentration parameters γa,1, γa,2, …, 
γa,ka. Then the posterior of pa conditional on Xa = Xtrk

a + 
Xnot

a = Σt=1…ka Xa,t is another Dirichlet distribution with 
new concentration parameters γa,1 + Xa,1, γa,2 + Xa,2, …, 
γa,ka + Xa,ka. Hence in this case the sampling of pa from 
its posterior distributions is also straightforward.  
 
4.3 Prior information 
 

We could simply assign a uniform prior or a highly 
diffuse gamma prior for Λ; however, that could lead to 
estimation biases due to the structural ambiguity of the 
Poisson-based likelihood without additional constraints 
[6]. Therefore, updating of the prior estimates based on 
the historical traffic data and experience is helpful to 
constrain the problem and overcome the identification 
difficulties [3] [6].  

In the absence of historical survey data that are 
reliable, we propose to use the penetration information 
to form a prior for Λ. Since the penetration itself is to 
be inferred, we assume a beta prior for wa ∈ [0, 1], wa

0 
~ Beta(xa

0, ya
0) with mean za

0 = xa
0/(xa

0 + ya
0). Then 

since we already have a partial set of observations Xtrk
a 

= Σt Xtrk
a,t, it is natural to specify the prior mean of λa as 

da
0 = max(1, Xa

trk) / za
0. Therefore, we use the gamma 

distribution with rate αa
0 = b > 0 and shape βa

0 = bda
0 

for the prior of λa. The smaller the value of b, the more 
diffuse the prior.  

As a starting point, we may need to “guess” the 
parameters (xa

0, ya
0) of the beta prior for the 

penetration rate wa. They may be estimated from 
historical on-demand survey data [14] or user 
registration data. If such data are not available, a 
natural way to do this is to look at the total link counts 
versus the tracked link counts. If we assume that the 
penetration rates are similar across different ODs, we 
can use a common prior for all the ODs (a = 1, …, c) 
with parameters 
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where 1r is an r-dimensional column vector of 1’s. This 
implies that the prior mean for wa, za

0 = xa
0/(xa

0 + ya
0), 

is just the ratio of the total link counts that are tracked 
to the total observed link count, which is consistent 
with the recommendation in [8] and [14]. In addition, 
since Var(wa

0) = xa
0ya

0(xa
0 + ya

0)-2(xa
0 + y a

0 + 1)-1, such 
specification leads to a smaller variance (i.e., our prior 
beliefs on wa are more certain) when the total link 
count is larger.  

In practice, it is also possible that the penetration 
rates vary from one geographical area to another [14]. 
If we assume there are significant spatial differences 
among the penetration rates, we can use a separate beta 
prior for each OD pair a in the following way:  

  .)(  ;
1 :1 :

0

1 :

0 
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This is simply the proportion of tracked counts 
among the total counts on the links that are used by OD 
pair a. However, if different paths have common links, 
the number of tracked counts on a specific link would 
be the sum of the tracked counts from all the OD pairs 
that uses that link [14]. Hence this is just a rough prior 
estimate that can be used when other data are hard to 
get. Also the larger the total counts on links in {s: Asa = 
1}, the more confident we are of this prior estimate.  

As for the prior for the routing probabilities pa 
(since they are taken to be random variables in this 
study), the assumptions will depend on the context. We 
may choose a uniform prior or an informative Dirichlet 
prior based on the experience or historical data.  As 
noted earlier, the information obtained from the mobile 
sensor provides vehicle trajectory data, which can give 
us a partial set of observations of route flows Xtrk

a,t, and 
corresponding partial set of OD flows Xtrk

a. Thus the 
fractions of the individual routes being used for OD 
pair a from these partial observations,  fa,1, …, fa,ka, 
(where ft  = Xtrk

a,t /Xtrk
a) can be calculated if Xtrk

a > 0; 
otherwise, we assume that fa,1 =, …, = fa,ka = 1/ka. 
Therefore a natural choice is to use a Dirichlet prior 
distribution for pa with (f1, …, fka)

T as its mean. We 
assume that the larger the number of observed trips 
with known trajectories, the more certain our belief 
that they are the “true” fractions, this belief is encoded 
in the prior pa

0. If pa
0 ~ Dirichlet(γa

0), then the mean 
and variance of its component pa

0
,t  are: 

,
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where γa,0
0 = Σt=1…ka γa,t

0. It follows that if we use γa
0 = 

(max(Xtrk
a,1,1),…, max(Xtrk

a,ka,1))T as the parameter 

vector in  pa
0 ~ Dirichlet(γa

0), we can achieve the 
desired properties that are mentioned earlier, that is, 
E(pa

0
,t) = ft, and the larger the observation Xtrk

a,t and 
Xa

trk, the more certain we are of the value of pa
0

,t. An 
example will be presented in Section 6. Note that if 
Xtrk

a = 0, we have a uniform prior on pa,t
 , for example, 

γa
0 is a ka-dimensional vector of 1’s. 

 
 
5. MCMC implementation  
 

We inherit the MCMC framework introduced in [6] 
to infer the OD rates, which combines the Metropolis-
Hastings (M-H) step within an overall Gibbs sampling 
framework. However, we extend the method by 
including simulation of unknown route-choice 
probabilities and penetration rates, both of which are 
OD-specific. This is done following their full 
conditionals. In the posterior simulation, we attach 
informative priors to each of the OD rates and route-
choice probabilities using the mobile sensor data.  

The compatibility of the independent Poisson 
models for the priors for the route counts implies that 
the construction of the conditional posteriors for route 
counts are structurally similar with those for the fixed 
routing case. Hence, the MCMC analysis for 
simulation of the route counts under fixed routing 
proposed in [6] still apply and will produce the full set 
of unobserved route counts Xnot = {Xnot

a,t, t = 1, … ,ka; 
a = 1, …, c}. In particular, the results on convergence 
of the MCMC also hold in our problem settings.  

 
5.1 Overall Gibbs sampling 
 

Given the observed data Y and Xtrk, we can first 
compute Ynot = Y – Ytrk  = Y – AXtrk . Then  given the 
initial prior distribution parameters xa

0, ya
0, αa

0, βa
0, γa

0, 
we can use the procedure in Algorithm 1 to simulate 
the posterior distribution [Xnot, θ | Ynot, Xtrk]. Note that 
K is the total number of iterations, which is predefined.  

  
5.2 M–H Step for unobserved route flows 
 

As discussed in [6], the sampling step for X2,tk (line 
10 in Algorithm 1) is not easy except for certain small 
networks. Larger networks involve a large support in 
(9), which can lead to an excessive computational 
burden if only link counts are considered [7]. However, 
this computational cost can be reduced significantly 
thanks to the availability of a partial set of link flow 
observations Xtrk. Therefore, we can embed an M–H 
step into the Gibbs sampling framework to infer only 
part of Xnot (namely, X2). Let pt(·) be the unnormalized 
conditional posterior in (9), and let qt(X2,t) be the fixed 
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proposal distribution for each single element. A 
candidate value X2,t* is drawn from qt(·) and accepted 
with probability: 

.
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)()(
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Note that the unnormalized density pt(·) is 
evaluated only at candidate draws, hence for a given 
proposal distribution qt(·), it is unnecessary to identify 
the actual support of pt(·), or to evaluate it completely 
across the support, which is different from direct Gibbs 
sampling [6]. When all the OD rates are large, we can 
use a normal approximation such as the one in [7], and 
the computational cost can be reduced in this step.  

Here we use the Poisson distribution as the 
proposal distribution. In the first step, one of the 
components of the vector X2 is chosen, and its value 
range is determined to be either zero or a large set of   
values. This is performed by calculating mint{Ynot

t – 
∑t'≠t At,t'Xnot

t}, which is what remains after subtracting 
from the observed Ynot

t the values of the remaining 
components of X2 and taking the minimum among 
those differences. If the support is larger than the 
single point zero, Poisson(pa(t),tua(t)λa(t)) is used as the 
proposal distribution, and the ratio of the two 
likelihood functions of the data is computed, with the 
numerator a function of the new candidate X2,t* and the 
denominator a function of the old value X2,t, keeping 
everything else fixed. That is, from (9), we obtain the 
acceptance probability for candidate X2,t*: 
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where X1,t*is an element from the newly computed X1 
as a function of X2,-t and X2,t

* through (7). We should 
ensure that all the elements of the newly computed 
vector X1 are nonnegative. If any element of X1 is 
negative, we simply reject this candidate X2,t* at that 
sampling. This is more straightforward and saves 
considerable computation cost compared to the 
“iterative, trial and error search process” used in [6] 
where a uniform proposal is used. 
 
 
6. A numerical example 
 

We used a classic simple network such as the one 
in [5][6] for a preliminary case study. The network has 
4 nodes and 7 directed links, as shown in Figure 1. 
There are 12 OD pairs and 17 routes. Our task was to 
do Bayesian inference of the 12 OD rates and the 17 – 
12 = 5 independent route-choice probabilities.  

 
 

Figure 1. Example network. 
 

We took the actual values of Λ*= {λa
*} to be 5×(1, 

2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6)T,  and the route-choice 
probabilities p* = (p*

11, p*
21, p*

31, p*
51, p*

61)T to be (0.2, 
0.43, 0.5, 0.57, 0.8). In addition, we assumed that the 
extra OD information from the mobile sensor data 
contains the partial set of OD trips (Xtrk

1, …, Xtrk
12)T = 

(5, 5, 2, 4, 5, 5, 8, 9, 5, 6, 10, 12)T and the 
corresponding partial route counts Xtrk = (1, 4, 2, 3, 1, 
1, 4, 3, 2, 4, 1, 1, 3, 5, 6, 10, 12)T, and that the real 
penetration rates of mobile sensors for the 12 OD pairs 
are w* = (0.5, 0.4, 0.15, 0.2, 0.15, 0.15, 0.2, 0.35, 0.2, 
0.2, 0.3, 0.3)T. The procedure used for the posterior 
simulation is depicted in Algorithm 2.  

The outputs obtained prior to execution of line 10 
in Algorithm 2 are (X*

1, …, X*
12)T = (5, 7, 12, 16, 28, 

30, 5, 8, 18, 24, 27, 26)T, X* = (1, 4, 3, 4, 6, 6, 16, 16, 
12, 24, 6, 5, 8, 18, 24, 27, 26)T, Xnot = (0, 0, 1, 1, 5, 5, 
12, 13, 10, 10, 20, 5, 4, 5, 13, 18, 17, 14)T, Y = (11, 81, 
49, 32, 68, 60, 77)T, Ytrk = (5, 17, 13, 8, 24, 12, 28)T, 
and Ynot = (6, 64, 36, 24, 60, 48, 49)T. The column 
reordering step (line 10 in Algorithm 2) can be done by 

Algorithm 1  MCMC posterior simulation  
  1: k  0 
  2: for a = 1, …, c do 
  3:     Sample wa

k ~ Beta(xa
k, ya

k)      
  4:     Sample λa

k ~ Gamma(αa
k, βa

k)  
  5:     Sample pa

k from Dirichlet(γa
k) 

  6: wk  {wa
k}, Λk  {λa

k}, Pk  {pa
k} 

  7: θk   (ΛkT, wkT, PkT)T 
  8: for t = r + 1, …, m  do 
  9:     X2,-t  (X2,r+1

k, …,  X2,t-1k, X2,t+1
k-1 …, X2,mk-1)T 

10:     Sample X2,tk ~ p(‧ | X2,-t , θk, Ynot) by (9) 
11: X1

k
  A1

-1(Ynot – A2X2
k) by (7)  

12: Xnot k  (X1
k T

  X2
k T)T         

13: for a = 1, …, c  do  
14:     xa

k+1  xa
k+ Xtrk

a, ya
k+1  ya

k + Xnot
a,  

15:     αa
k+1  αa

k + ∑t Xtrk
a,t

k + Xnot
a,t

k + 1, βa
k+1  βa

k+1 
16:     for t = 1, …, ka  do 
17:         γa,t

k+1  γa,t
k + Xtrk

a,t
 + Xnot

a,t
k 

18: if k < K  then 
19:      k  k + 1, go to line 2 
18: else  
19:     Stop 
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QR decomposition of matrix A. We used the “qr()” 
function in MATLAB to do this automatically, and we 
obtained the re-permuted column indices for A as 6, 
15, 10, 2, 11, 12, 9, 8, 7, 3, 5, 1, 13, 14, 4, 16, 17; the 
first 7 column indices correspond to A1 (and X1), and 
the other 10 correspond to A2 (and X2).  

We re-initialized and re-ran the MCMC simulation 
from several possible starting points to validate that 
convergence was rapidly achieved. Across all M–H 
variants, the rate of acceptance is between 25 and 40%. 
We also looked at the trace plots and basic MCMC 
diagnostics to assure convergence. The auto 
correlations were monitored and thinning of 20 was 
chosen. We summarized the analysis by running a total 
of K = 50,000 iterations, including burn-in of 2000, 
and estimated the posterior based on 2400 samples. We 
compared two scenarios: (1) no mobile sensor data 
considered and non-informative priors used; (2) mobile 
sensor data considered and informative priors (based 
on those data) used.  

 
6.1 Results with no mobile sensor data 
 

In this case, inference of w was not needed. We 
assumed uniform (non-informative) priors for Λ and p. 
Figures 2(a), 2(b), and 2(c) show the marginal 
posterior distributions of the 2400 posterior samples of 
Λ, X and p, respectively. For comparison, the dashed 
curves in Figure 2(a) show the posteriors of the OD 
Poisson rates {λa} conditional on the actual OD counts 
{Xa

*}, the underlying actual values {Xa
*} are indicated 

with triangles on the lower horizontal axis in Figure 
2(b); and the actual route-choice probabilities are 
indicated with dashed vertical lines in Figure 2(c). In 
Figure 2(a), we see that the simulated posteriors for the 
Poisson rates are much more diffuse than those for the 
actual OD counts, and that most of the modes are not 
close to the corresponding modes of the conditional 
distributions that used the actual {Xa

*}. The estimated 
results for most of the OD counts are satisfactory, only 
X4 and X12 are significantly overestimated, while X10 

and X11 are considerably underestimated. The full 
marginal uncertainties associated with the OD flows 
are reflected in the histograms in Figure 2(b). Figure 
2(c) also shows considerable uncertainty associated 
with the route-choice probabilities, although the 
posterior modes of p1 and p4 are quite close to their 
actual values, and their posterior densities are rather 
high for a wide region near the modes.   

 
6.2 Results with mobile sensor data 
 

In this case, we used informative priors for Poisson 
rates Λ, the penetration rates w and the route-choice 
probabilities p. Specifically, we used the partial set of 
observations of the route counts to build our initial 
belief about the underlying parameters. In particular, 
we chose to estimate the OD-specific prior means of 
the penetration rates as z0

 = (0.33, 0.30, 0.25, 0.23, 
0.23, 0.22, 0.25, 0.30, 0.28, 0.28, 0.33, 0.36)T, and the 
routes-usage fractions as f = (f11, f21, f31, f51, f61)T  = 
(0.2, 0.4, 0.5, 0.6, 0.8)T, which served as the prior 
means for the route-choice probabilities p. It can be 
seen that most of the elements of z0

 are reasonably 
close to the actual values of the elements of w, but the 
variation across OD pairs was smaller than w* because 
of our use of equation (12). Nevertheless, f turned out 
to be quite close to the actual route-choice 
probabilities, which demonstrates the value of 
including the extra information in the first place: it 
helps us construct good informative priors. For the 
prior gamma distribution for λa, we chose the shape 
parameter bda

0 and rate parameter b for some b > 0, 
where da

0 = max(1, Xa
trk) / za

0. For the prior Dirichlet 
distribution for pa, we chose its tth concentration 
parameter as αa,t

0 = gXtrk
a,t. This led to the prior means 

of the probabilities in p to be the route-choice fractions 
in f estimated from the mobile sensor data. The smaller 
the values of b and g, the more diffuse the priors. In 
parallel with the first scenario, Figures 3(a), 3(b), and 
3(c) show the simulated posteriors of Λ, X and p 
respectively, with b, g = 0.5.  

As is clear from Figure 3, the posterior modes are 
almost all very close to the actual values, and the 
posterior distributions are more concentrated around 
the modes, resulting in much better inference 
compared to the non-informative case. If smaller 
values of b and g are used, the posterior distributions 
will be flatter, and a larger discrepancy between the 
posterior mode of Xa and the actual value Xa

* or 
between the posterior mode of λa and the conditional 
posterior of λa under the actual Xa

*, will be detected. 
However, the results are still considerably better than 
the first scenario according to our analysis in which b 
and g were both set to 0.1 and both set to 0.05.  

Algorithm 2  Procedure of our numerical experiment 
  1: for a = 1, …, c  do 
  2:     Simulate true OD rates Xa

* ~ Poisson(λa
*) 

  3: for a = 1, …, c  do 
  4:     for t = 1, …, ka do  
  5:         Compute the true route counts: Xa,t

*  pa,t
* Xa

* 
  6:         Xa,t

*  max{round(Xa,t
*), Xa,t

trk} //so that Xa,t
not ≥ 0  

  7: Compute the unobserved route counts: Xnot
  X* – Xtrk 

  8: Compute the observed link counts: Y  AX* 

  9: Ytrk  AXtrk,  Ynot
  Y  – Ytrk  

10: Reorder the columns of the routing matrix: A  (A1, A2)  
11: Reorder the vector accordingly: Xnot  (X1

T, X2
T)T  

12: Choose K 
13: Run Algorithm 1 
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(a). Posteriors of Poisson rates λa. Dashed lines are the 

conditional posteriors were the actual Xa are known. 

 
(b). Posteriors of partial OD counts Xa. The actual values are 

indicated by the triangles on the horizontal axes. 

 
 (c). Posteriors of p = (p11, p21, p31, p51, p61)T. The dashed lines 

correspond to the actual values. 
Figure 2. Results (no mobile sensor data) 

 

 
(a). Posteriors of rates λa. Dashed lines are the conditional 

posteriors were the actual Xa are known. 

(b). Posteriors of partial OD counts Xa. The actual values are 
indicated by the triangles on the horizontal axes. 

 
(c). Posteriors of p = (p11, p21, p31, p51, p61)T. The dashed lines 

correspond to the actual values. 
Figure 3. Results (with mobile sensor data)
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7. Conclusion   
 

We presented a Bayesian inference model for 
network flows based on both the link count and a 
partial set of OD rates and route counts from mobile 
sensor data. We incorporate inference models for 
penetration rates and route choice probabilities in 
addition to OD rates, which is a new contribution to 
the whole framework. We propose practical 
procedures for building prior beliefs about the 
underlying parameters based on mobile sensor data 
and their market penetrations. According to our 
numerical study, under the informative priors 
constructed on the basis of mobile sensor data, the 
posterior modes of the OD rates and route choice 
probabilities are almost all very close to their true 
values. The inference results are more accurate with 
smaller posterior uncertainties compared to the case 
where no partial set of routing data and hence only a 
simple prior is used. We are now experimenting on 
larger networks using realistic data sets. 
Computational efficiency is being examined 
empirically for the scalability of the proposed 
method.  

 
 

8. References  
      
[1] A.R. Pitombeira-Neto, C. Loureiro, and L.E. Carvalho, 
"Bayesian Inference on Dynamic Linear Models of Day-to-
Day OD Flows in Transportation Networks", arXiv preprint 
arXiv:1608.06682, 2016. 
 
[2] P. Cao, T. Miwa, T. Yamamoto, et al. “Bilevel 
Generalized Least Squares Estimation of Dynamic Origin-
Destination Matrix for Urban Network with Probe Vehicle 
Data”, Jour. of the Trans. Res. Board 2333, 8, Aug. 2013, 
pp. 66–73.  
 
[3] M.J. Maher, “Inference on Trip Matrices from 
Observations on Link Volumes: a Bayesian Statistical 
Approach”, Trans.  Res. Part B, 17(6), Dec. 1983, pp. 435–
447. 
 
[4] H.J. Van Zuylen and L.G. Willumsen, “The Most 
Likely Trip Matrix Estimated from Traffic Counts”, Trans.  
Res.  Part B, 14(3), Sep. 1980, pp. 281–293. 
 
[5] Y. Vardi, “Network tomography: Estimating Source-
Destination Traffic Intensities from Link Data”, J. Amer. 
Stat. Asso., 91(433), Mar. 1996, pp. 365–377. 
 
[6] C. Tebaldi and M. West, “Bayesian Inference on 
Network Traffic using Link Count Data”, J. Amer. Stat. 
Asso., 93(442), Jan. 1998, pp. 557–573. 
 

[7] B. Li, “Bayesian Inference for Origin-Destination 
Matrices of Transport Networks using the EM Algorithm”,  
Technometrics, 47(4), Nov. 2005, pp. 399-408.  
 
[8] K. Parry, and M. L. Hazelton, “Estimation of Origin–
Destination Matrices from Link Counts and Sporadic 
Routing Data”, Trans. Res. Part B, 46(1), Jan. 2012, pp. 
175–188. 
 
[9] K. Parry and M.L. Hazelton. “Bayesian Inference for 
Day-to-Day Dynamic Traffic Models”, Trans. Res. Part B, 
50, Apr. 2013, pp. 104–115. 
 
[10] M. L. Hazelton, “Statistical Inference for Time 
Varying Origin–Destination Matrices”, Trans.  Res. B, 
42(6), Jul. 2008, pp. 542–552. 
 
[11] L. Cheng, S. Zhu, Z. Chu, et al., “A Bayesian Network 
Model for Origin-Destination Matrices Estimation Using 
Prior and Some Observed Link Flows”, Dis. Dyn. in Nat. 
and Soc., 2014, Apr. 2014, pp. 1–9. 
 
[12] M. S. Iqbal, C. F. Choudhury, P. Wang, et al., 
“Development of Origin-Destination Matrices using 
Mobile Phone Call Data”, Trans.  Res. Part C, 40, Mar. 
2014, pp. 63–74. 
 
[13] E. Castillo, J. M. Menéndez, and P. Jiménez, “Trip 
Matrix and Path Flow Reconstruction and Estimation based 
on Plate Scanning and Link Observations”, Trans.  Res. 
Part B, 42(5), Jun. 2008, pp. 455–481. 
 
[14] M. Van Aerde, B. Hellinga, L. Yu, et al., “Vehicle 
Probes as Real-Time ATMS Sources of Dynamic O–D and 
Travel Time Data”, Large Urban Systems—Proceedings of 
the ATMS Conference, St. Petersburg, Fla., 1993, pp. 207–
230. 
 
[15] L. Eadicicco, “Uber Is Tracking Drivers' Phones to 
Watch for Speeding”, Jun. 2016, 
http://time.com/4387031/uber-driver-app-tracking. 
 
[16] J. Cui, F. Liu, J. Hu, et al., “Identifying Mismatch 
between Urban Travel Demand and Transport Network 
Services using GPS Data: A Case Study in the Fast 
Growing Chinese City of Harbin”, Neurocomputing, 
181(C), Mar. 2016, pp. 4–18. 
 
[17] Y. Sheffi, Urban Transportation Network: Equilibrium 
Analysis with Mathematical Programming Method. 
Prentice-Hall, Upper Saddle River, NJ, 1985. 
 
[18] L. Carvalho, “A Bayesian Statistical Approach for 
inference on static Origin-Destination Matrices in 
Transportation Studies”, Technometrics, 56(2), May 2014, 
pp 225–237. 
 
[19] A. Gelman, J. Carlin, H. Stern, et al., Bayesian Data 
Analysis (3rd edition). Chapman & Hall, London, UK, 
2013. 

Page 978




