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Abstract 
 

Providing suggestions for internet-users is an 

important task nowadays. So for example, when we 

enter a search string into the Google interface, it 

suggests further terms, based on previously formulated 

queries from other users having used the search engine 

before. In the context of an entity based search engine, 

entity-suggestion is also a very important task, when 

specifying the entities by the user. Additionally, this 

feature can also be utilized to suggest further entities, 

which are somehow related to already specified 

entities. If the suggestions are eligible the user can 

very quickly formulate his search desire. If the 

suggestions are based on the search corpus itself, new 

and previously unknown relationships between entities 

can be discovered along the way. 

The aim of this paper is a quantitative analysis of 

relationships between entities in a big document 

corpus under the aspect of providing suggestions for 

entities in real time.  

 

 

1. Introduction  

 
Entity Disambiguation [1] is a powerful technology 

to extract semantic information from text. Based on 

this technology, new search engines like STICS [2], 

which rather use concepts than words as search input, 

have emerged. One challenge for such systems is the 

specification of the entities to be searched by the user. 

Typically, this is solved by an autosuggestion function, 

which suggests possible entities based on a given 

prefix. Figure 1 gives an example for the suggestion of 

entities, specified by the given prefix “unive“. After 

final selection of one of the suggested entities, further 

entities can be specified. If the suggestions are good, 

this can lead to a very effective way for formulating 

the search query. One critical point is the order in 

which the suggestions are presented. The goal is to 

present the most probable entities at the top, so that 

they can be selected quite fast. To rank the suggested 

entities, a global measure, like the publicity of an entity 

can be used. In the case of STICS, where the entities 

are extracted from Wikipedia, the publicity of an entity 

can be calculated based on the number of links an 

entity receives from other Wikipedia pages. This 

approach is called insensitive to a specific document 

corpus. A corpus sensitive approach on the other side 

can count the number of times a specific entity appears 

inside the corpus and use this value as a measure of 

popularity of an entity.  

 

 
Figure 1: Auto-Suggestion based on given 

prefix 
 

The disadvantage of this approach is that after the 

first entity has been chosen, the approach of presenting 

the most popular entity at the top of the suggestion list 
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is no longer appropriate. Choosing one of the top 

suggested entities often leads to empty result sets 

because considered isolated, the selected entities are 

most often very popular on their own but the 

combination of the entities doesn’t make any sense in 

many cases. So in a worst case scenario, no documents 

contain both entities and an empty result-set is 

returned. Instead of the global probability, a 

conditional probability of an entity with respect to the 

previously specified entities has to be considered. So 

for example, consider the case, where we want 

information about the friendship between David Bowie 

and Iggy Pop. After <David Bowie> has been 

chosen as the first entity, the prefixes “po” or “pop” 

returns a number of former popes, which are globally 

seen more important as the good old friend of David 

Bowie. Indeed, in the whole collection we will not find 

one article mentioning David Bowie and a pope 

together. In contrast, in a context sensitive search 

engine, the musician <Iggy Pop> should be ranked 

very high in the context of <David Bowie>. 

 

2. Problem Description 

 
In the present case, we are collecting news-articles 

from over 500 news-feed all around the world since 

2013. Using AIDA [3] as disambiguation engine, we 

identify the entities mentioned in the news-articles, as 

well as their position inside the article. Figure 2 shows 

the ER-model of the relationship between the news 

articles and the included entities. The attribute 

description of the entity “Entity” contains the 

label of the entity, as it is displayed for the auto-

suggestion (see Figure 1). Typically, this is not the 

representation in the text, which differs in general (i.e. 

“University of California, Berkeley” vs. “UC 

Berkeley”). The appearance in the text is represented 

by the attribute name of the n:m relationship, together 

with the attribute position, which represents the 

position of the entity in the news text. 

 

 
Figure 2: Relationship between news articles 

and included entities. 
 

Figure 3 shows an extract from the relational table 

representing the relationship between News, 

Article and Entity from Figure 2, without the 

attribute name, which is not relevant for the 

calculation of relatedness. The data from Figure 3 is 

the main data-basis for our suggestion-system. For 

example having already specified the entities 

<National_Security_Agency> and 

<Hong_Kong>, a possible suggestion for the prefixes 

‘ed’ or ‘sn’ would be the entity 

<Eduard_Snowden>, because there exists at least 

one news-article (with ID 1), which includes these 

three entities. 

 

 
Figure 3: Relation containing information about 

entities appearing in news articles 
 

So, what we need is a function 
ranked_entities = f(entities,prefix) 

which performs the following task: 

 

TASK: Given a number of previously chosen 

entities and a prefix, it will suggest related 

entities (ranked_entities), so that the result set 

containing news-articles is not empty. The suggested 

entities, should be ordered by decreasing relevance for 

the given entities. In the case of no prior specified 

entities, the returned entities satisfying the prefix 

condition are sorted by a global measure as discussed 

in Section 1. 

In the rest of this paper, we will now discover how 

these suggestions can be calculated and stored 

accordingly to a number of constraints. The main 

contributions of this paper are: 

 

 Providing a quantitative estimation how 

entities in a text corpus are related. 

 Presentation of a new relatedness measure 

for entities based on the co-occurrence of 

entities in a single document within a 

specific range. 

 The development of technologies how the 

relatedness information can be stored and 
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accessed accordingly, due to hard time 

constraints (tmax < 0.1 sec.).  

 

3. Entity Relatedness Measure 

 
Following our argumentation before, two entities 

can be considered somehow related, if they appear 

inside the same document. To fulfill our goal to avoid 

empty result-sets, a first approach can be to build an 

entity-document matrix, which allows the calculation 

of related entities. Figure 4, gives an example of such a 

matrix.  

 
Figure 4: Entity-Document Matrix 

 
First of all, on the left of the Figure, there are 

documents D1, …, D5, containing some of the entities 

e1, …, e6. The right side displays the corresponding 

entity-document-matrix. The matrix contains a row for 

every news-document and a column for every possible 

entity. A value of 1 inside the matrix indicates that the 

document contains the entity. By this every entity can 

be presented as a bitvector (the columns), with the n-th 

component set to 1, if the entity can be found in the 

n-th document, otherwise the component is set to 0. An 

inverted index, as it is known from Information 

Retrieval (IR), is typically built this way [4]. 

Additionally, we also have a bitvector for every 

document, indicating which entities can be found 

inside the document (row). Assuming, that entity e2 

(blue) and e3 (green) are already given, we can 

calculate possible suggestions, by performing an AND-

operation along the involved entities (the columns). 

The result (red) of this operation is a bitvector (bottom 

line of Figure 4) which indicates that all possible 

entities can be found in the documents D2 and D4. 

These documents now form the base for further 

possible entities, which can be found inside these 

documents (and only in these). So in our example, 

entity e4 appears together with the given entities in 

document D2, while entity e5 appears in document D4. 

The extraction of these entities can easily be done by 

an OR-operation with an additional XOR to remove 

the already selected entities from the final list.  

This data-structure is appropriate, if only a small 

number of entities (not more then 5-10) qualifies for 

the suggestion of one or more given entities and for a 

prefix of at least one character. In this case, the entities 

can be presented as suggestions, without a special 

order. If we have cases where there are more than a 

handful of suggestions, we need a ranking model to 

select the most probable entities for suggestion. A 

simple extension of the previous model would be to not 

only indicate if an entity can be found inside a news-

document, but also how often it appears there. Figure 5 

gives an example of this approach. In contrast to the 

previous concept, every document vector (row) 

contains the information how often an entity appears in 

the document. The relatedness value rx for each entity 

ex can then be calculated on base of the cardinalities, as 

it is shown at the bottom of Figure 5 for the two 

entities e4 and e5. In this case, the value is simple 

calculated, by multiplying the cardinalities of the 

involved entities, divided by the number of entities 

involved. If a possible entity appears in multiple 

relevant documents, the relatedness value is simply 

cumulated. The selection of possible entities is based 

on the same concept as in Figure 4, where only 

documents, containing all of the previously given 

entities are considered for further suggestions. 

Based on this information, a ranking (relevance) 

value can be given for each possible suggestion entity. 

If the number of possible suggestions is high, only the 

first n entities with highest ranking values are 

displayed.  

 
Figure 5: Quantitative Entity-Document Matrix 

 

This approach could be further extended with the 

incorporation of the tf*idf value [5], as it is common in 

IR. A disadvantage of this approach is that it consumes 

far more memory than the previous model, which can 

i.e. operate on compressed bitmaps as described in [6].  
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For the implementation of our suggestion function 

we have the following possibilities, trading memory 

consumption vs. computational power: 

 

 Online calculation: In this case, the 

suggestion entities for a (potential empty) 

set of given entities and a prefix are 

calculated online.  

 

 Offline calculation: The calculation of 

the suggestions are done in advance at 

crawling time or in a batch processing 

step. As a result, a key-value store can be 

used. The key is represented by the 

composition of one or more entity-

identifier and the prefix. This allows for a 

fast access to the pre-calculated entity-list, 

which is stored as the value. 

 

 Mixed calculation: Parts of the 

calculation are done offline, while other 

parts are done online. This is often a 

compromise between the two previous 

solutions. In the present case for example, 

only the entities form the key and the 

selection of entities satisfying the prefix is 

done online. 

 

To get an idea about the computational effort 

needed and the memory consumption, we performed a 

detailed quantitative examination of our dataset in the 

following sections. 

 

4. Quantitative Aspects  

 
YAGO [7], the knowledge base used by AIDA, has 

about 5 million different entities in its knowledge base. 

Up to now, 4.8 million news articles have been indexed 

so far, in which over 800.000 different entities appear. 

The total number of found entities is about 95 million.  

 

4.1. Distributions 
 

How these entities are distributed over the news 

articles is presented in Figure 6 and 7. Figure 6 shows 

how many different entities appear in a certain news 

article. The x-axis represents the individual news 

articles and the number of different entities inside the 

individual news-articles are displayed on the y-axis. 

The news articles on the x-axis are further sorted by 

the number of contained entities (in decreasing order). 

As we can see, about 1000 (from over 4.8 million) 

news-documents contain more than 100 different 

entities and about 20% contain more than 10 different 

entities (consider that the x-axis is logarithmic). 

 
Figure 6: Distribution: Entities per News 

 
The average number of entities is about 10 entities 

per article. The maximum of different entities found in 

a news article amounts up to 1450 entities. 

 
Figure 7: Distribution: News per Entity 

 

In Figure 7, the distribution of entities in the news 

articles is presented. The x-axis represents the 

individual entities, sorted by the number of documents 

they appear in (y-axis). The values differ from over 

900,000 news per entity for highly popular entities (i.e. 

<United_States>), up to 237,000 entities which 

appear in only a single news-article. From over 

800,000 used entities, 672,000 appear in 20 or less 

articles. On average, an entity appears in 56 news 

articles. 

The most interesting question is now how the 

entities are related to other entities, because this 

dominates the processing time for providing the 

suggestions. The distribution is presented in Figure 8 

and 9.  
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Figure 8: Distribution: Number of Related 
Entities for a given Entity (complete) 

 

Whereas Figure 8 shows the complete distribution 

over all entities, Figure 9 only shows the first 1000 

most popular entities. It becomes apparent that the 

number of possible related entities can be very high for 

a number of popular entities. So for example, the most 

popular entity is related to more than 412 thousand 

other entities. The average number of related entities is 

217. Considering the average number of 217, this value 

is still too great to present them all as suggestion to the 

user. So, a ranking model is needed. 

 

 
Figure 9: Distribution: Number of Related 
Entities for a given Entity (first 1000) 

 
Since the suggestions are also based on a given 

prefix, it is also interesting to look at how the entities 

are distributed along the different prefixes. Figure 10 

gives an overview on this distribution. We made 

experiments with different prefix lengths, starting from 

1 up to 4 characters. All experiments were performed 

without a previously given context entity.  

 

 
Figure 10: Distribution: Entities per Prefix 

 

With a 1-character prefix, we got the red 

distribution, starting with about 175,000 entities for the 

character ‘s’ up to only 2100 entities for the prefix ‘x’. 

The 2-character prefix has 57,200 entities at most 

(‘ma’), while the 3-character prefix starts with about 

21700 entities.  

Next, we examined, how the number of used 

entities and used entity-tuples increased over time. 

This represents the situation when one resp. two 

entities are already given in the search context. Here, 

we cumulated the number of distinct entities resp. 

entity-tuples found in the news articles. Figure 11 

shows the case for a single entity. 

 
Figure 11: Increase of number of used entities 

over time 
 

With increasing numbers of processed news the 

number of entities also increase which was no surprise 

for us. However, we could detect a slight saturation. A 

natural limit are the about 5 million entities from the 

YAGO knowledge base. Actually only about 800,000 

entities are found inside the news corpus. In contrast, 

this saturation behavior does not appear in the case of 

Page 937



the examined entity-tuples (Figure 12). But the main 

problematic point still remains:  

 
Figure 12: Increase of number of used entity-

tuples over time 
 

Overall, 848,943,610 entity-tuples were found in 

our corpus, from which 173,829,762 were different. 

The representation of this information in our MySQL 

database consumes (including an index) already about 

20 GB of data. The storage of entity-tuples, triples, 

quadruples, etc. ((ex, ey, …) -> (entity-list)) and their 

related entities would need exponentially more 

memory. The reason for this can be explained with a 

simple example: Consider a single news article with 

100 different entities. It is a rather large article but by 

far not the largest in our corpus (see Figure 6). Even 

for this single news-article we have the following 

related entities as displayed in Table 1: 

 

Table 1: Number of related entities in a single 
news article with 100 entities 

 # of related entities 

Single entity 100 * 99 

Entity Tupel 100 * 99 * 98 

Entity Tripel 100 * 99 * 98 * 97 

Entity Quadtrupel 100 * 99 * 98 * 97 * 96 

Entity Quintuple 100 * 99 * 98 * 97 * 96 * 95 

 

Exploiting the symmetric characteristic of the 

relationships, we still have in total 1,283,975,715 

relationships in this single article. In contrast, a news 

article with 10 different entities (which represents the 

average) is not a problem. In that case, we only have 

about 36,000 possible relationships. The problem 

remains that we can’t get rid of these longer articles.  

 

4.2. Consequences 

 
After these experiments, we can postulate the 

following findings:  

1. The number of possible related entities for 

a given entity is in many cases too large to 

be presented as suggestions. For this 

reason, a ranking function is essential to 

display only the most related entities to the 

user.  

2. The real-time calculation of entity-

suggestions for entity-tuples, triples, etc. is 

too expensive if entities are involved that 

are related to many other entities. 

3. The huge amount of existing relationships 

between entities, entity pairs, triples, 

quadrupels, etc. and their associated lists 

of suggestions prohibits the possibility to 

store the pre-calculated results. 

4. The problem with the huge amount of 

possible results increases with the number 

of found entities in a document. So 

typically, longer documents worsen the 

situation even more. 

 

5. Sliding Window Approach 
 

The main problem is the amount of found entities 

in a document. Having n distinct entities in an article 

means that there exists n choose k relations for k given 

entities, which can’t be handled for even small 

numbers of k, if n is in the size of 100 or larger. A 

solution for this problem is the reduction of related 

entities. So far, we considered entities to be related if 

they appear in the same document. This is the approach 

as it is known from IR, but in our case, a more reduced 

approach would probably also be adequate. In a news 

article, which typically is short and thematically 

focused on one or a small number of topics, it might be 

a realistic approach to consider entities, which co-

occur in a news article as related. But even here one 

can argue that with increasing distance in the text 

between two found entities the relationship shrinks. On 

the other hand, if two entities appear a number of times 

quite close together in a text, they can be considered as 

strongly related. As a first improvement of our 

measure, we can therefore consider the distance in 

words as a factor for the calculation of relatedness, 

which makes our measure more accurately So for 

example in [8], the relatedness between two entities is 

calculated as rel(ex,ey) = log(1/d), where d 

is the distance in words between the two entities. And 

because only a small number of suggestions should be 

displayed, weaker relationships can probably be 

neglected. So, in a second step, we define a threshold 

for the maximum distance in words we want to 

consider. This can be seen as a sliding window over the 

text. The size of the window can differ with respect to 
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the n-tuple we are searching. So for example, the used 

windows size for an n-tuple can be calculated as: 

 
WINDOW_SIZE = 10 * n 

 

This means two entities must appear inside 10 

words, while quintuples must appear inside 50 words. 

The sliding window technology is also the key for a 

huge reduction of entities, which have to be considered 

as related. Even more, the efficiency of the sliding 

window technology is independent from the size of a 

document. It reduces the number of possible related 

entities, independent of the size of a document.  

In the following section, the sliding window 

approach will be applied on our complete news dataset. 

 

5.1. Quantitative Aspects 
  

We experimented with different window-sizes, and 

finally found a window size of 30 * sqrt(n-1) 

words for n-tuples to be an good compromise between 

recall and storage requirements. In Table 2, you can 

see the number of n-tuples, with respect to different 

window sizes. 

Table 2: Number of datasets 

Win

dow 

Size  

Tuple 3-Tuple 

(Triple) 

4-Tuple 5-Tuple 

15 1,4 Mio 0,4 Mio 0,14 Mio 71 T 

30 3,8 Mio 3,8 Mio 3,0 Mio 3,4 Mio 

45 5,6 Mio 8,9 Mio 11 Mio 17,8 Mio 

60 7,1 Mio 15,6 Mio 25 Mio 53,3 Mio 

 

Figure 13 and 14 show the distribution of related 

entities for a given single entity. Because of the 

logarithmic scale on the y-axis, Figure 14 covers for 

better visibility only the first most critical 1000 

entities. 

 
Figure 14: Distribution: Number of Related 

Entities for a given Entity (first 1000) 

The first 20 entities have values between 53331 and 

9782 related entities. The average number of related 

entities is 12. This is a reduction of a factor of eight for 

the problematic entities, compared to our prior 

approach from Figure 8 and 9. This makes it possible 

to simply store the list of related entities and filter the 

most relevant according to a given prefix at runtime. 
Finally, Figure 15 also shows the 1000 entity-

tuples, which have the most numbers of relationships 

to other entities. In the extreme case, this is about 4500 

entities. 

 
Figure 15: Distribution: Number of Related 

Entities for a given 2-Tuple of Entites (first 1000) 
 

5.2. Consequences 
 

In comparison to the first approach from Section 4, 

where all distinct entities in a news article are 

considered related resulting in an unmanageable 

amount of possible suggestion-entries in our database, 

our new approach uses a sliding window technology, 

which dramatically reduces the number of possible 

suggestions. This allows us to store preprocessed lists 

of suggestions for single entities, tuples, triples, 

quadruples and quintuples. Due to the fact that we only 

provide suggestions for further search entities, the 

focus on most probable entities is tolerable. 

Nevertheless, we also implemented a fallback mode, in 

case the given combination of entities and the prefix 

doesn’t deliver any suggestions. If some boundary 

conditions about the expected cardinalities are fulfilled, 

a pure online search is performed. This is explained in 

the next section in more detail. 

 

6. Implementation Aspects 
 

Due to the reduction of related entities, a 

precomputation of the ranked entity-lists can be done. 

The offline computation of the relatedness values are 
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performed with a MySQL database. Starting point is 

the table doc_entity from Figure 3, which contains 

all the necessary information about the news articles, 

the found entities and their positions in the text. As an 

example, Figure 16 shows the SQL-script, which 

computes the relatedness between entity-2-tuples and 

their related entities, together with a relatedness value. 

At the beginning of the script, the sliding window size 

is calculated. The core of the statement is a multi-self-

join over the table doc_entity. The join condition 

is the id (news_fk) of the incorporated news-

documents and in the where condition we check the 

uniqueness of the entities in a dataset as well as the 

maximum distance (window-size) the entities are 

allowed to have. Since a tripel, consisting of an entity-

tuple and a related entity, can appear multiple times 

with different relatedness values, we merged these 

tripels by cumulating the relatedness value (sum, group 

by). The greatest()-function calculates the actual 

distance defined by the position of the entities. Here 

we simply look for the greatest difference of two 

involved entities. The relatedness measure is then 

calculated by applying the log()-function on the 

inverse distance value. At the end, additional indexes 

are generated. The first index is responsible for the 

runtime queries returning the suggestions based on 

previously given entities. The incorporation of the 

weight attribute is twofold: First of all, it allows to 

quickly return the related entities by relevance and 

secondly, it allows so called index-only queries. 

Because all needed information is encapsulated in the 

index, the database does not have to access the table at 

all. This can speed up the response to a great extend 

provided that the index fits into the memory, but the 

table resides only on disk. 

As mentioned in the previous Section 5.2, it is 

possible to specify entities which are not suggested be 

our suggestion function f(entities, prefix). 

In this case, the already specified entities are examined 

with respect to the number of possible related entities. 

This can be performed quite fast, because it can be 

easily calculated offline from the table in Figure 3. The 

entries have the following format: 

 
(Entity-ID, # of related entities) 

 

The table has an index on Entity-ID, so estimations 

about the cardinality can be provide very fast. If the 

returned values fulfill some conditions, a slight variant 

of the query from Figure 16 can be performed online. 

Because the id-values for the n given entities can be 

provided, the computation is very fast. 

 

 
Figure 16: SQL-Code for the Computation of 
Relatedness values (2-tuple -> entity-list) 

 

6.1 Maximum Number of Possible Search 

Entities 

 
According to statistica.com [9], in February 2017, 

the percentage of one word key-phrases was about 

35% off all queries, followed by 25% for two word 

key-phrases and 18% for three word phrases. 

Considering queries up to 6 words, we have a coverage 

for nearly 97% of all queries formulated. According to 

these numbers, we decided to support queries up to six 

entities. We further argue that using disambiguated 

entities as input for a search engine is semantically 

more powerful and precise, compared to a keyword 

search with the same number of words, so the value of 

six entities at most seems sufficiently enough.  

 

7. Further Improvements  

 
Figure 1 gives an example for the suggestion of 

entities, specified by the prefix ‘unive’. It emerged 

clearly that in a number of cases the specification of an 
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entity by only one prefix is not constructive since a lot 

of entities have the same prefix (like in the case of the 

universities all over the world). An improvement 

allows now for the specification of multiple prefixes 

for the desired entity. Figure 17 shows an example 

with three prefixes. In this case, suggestions containing 

the word “east”, as well as two additional prefixes 

(“ind”, “c”) are displayed. The last entered term is 

always considered as a prefix, while prior written 

words have to be specified with an asterisk-sign (like 

with ind*) to be handled as prefix.  

 

 
Figure 17: Improved Auto-Suggestion based 

on multiple words and prefixes 
 

8. Summary and Outlook  
 

We presented a comprehensive analysis of entity-

relatedness in a big news article corpus. The aim was 

to get an understanding of the quantitative relationships 

between multiple entities. Our research was driven by 

the requirement of providing a mechanism for a 

context-sensitive auto-suggestion and completion 

system for an entity-based search engine. Starting from 

the traditional approach of IR, where two words, resp. 

entities are considered related if they appear in the 

same document, we demonstrated that this approach is 

not feasible for context-sensitive entity-suggestion, due 

to the immense solution space required when multiple 

entities are present. As an improvement, we do no 

longer consider a whole document (or article) as the 

container for the determination of relatedness, but 

rather the smaller unit of a sliding window, which is 

shifted over the text. Following this approach, we were 

able to build a performant context-sensitive auto-

suggestion system. The system is a hybrid approach, 

based on some offline batch-processing and real-time 

computation at query-time.  

Actually, a MySQL database was used to deliver 

the suggestions. The runtime behavior is sufficient 

enough (tmax < 0.1 sec.) and the suggestions seem quite 

adequate. In a productive environment with massive 

multiple requests, the database can become a 

bottleneck. Due to the query-characteristics, a key-

value store would be an adequate replacement. Redis 

[10], a main memory key-value store, provides a 

special datatype called “sorted set”, which can 

perfectly handle the entities to suggest as well as the 

relatedness value. One important point is that Redis, 

like many other NoSQL-databases, is designed to scale 

very well horizontally, which means that this approach 

can even be used for highly frequented search engines. 

Another interesting research direction would be the 

determination of the “optimal window size” or at least 

to prove the robustness of the approach for a range of 

different window sizes. While the second approach is 

actually under progress and looks quite promising for 

our news-corpus (different corpora will be examined in 

the future), the second approach is still future work and 

also very dependent on the results of our actual 

robustness experiments. 
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