
Quantitative Considerations about the Semantic Relationship of Entities in a

Document Corpus

Andreas Schmidt

Karlsruhe University of Applied Sciences &

Karlsruhe Institute of Technology

andreas.schmidt@kit.edu

Steffen Scholz

Karlsruhe Institute of Technology

steffen.scholz@kit.edu

Abstract

Providing suggestions for internet-users is an

important task nowadays. So for example, when we

enter a search string into the Google interface, it

suggests further terms, based on previously formulated

queries from other users having used the search engine

before. In the context of an entity based search engine,

entity-suggestion is also a very important task, when

specifying the entities by the user. Additionally, this

feature can also be utilized to suggest further entities,

which are somehow related to already specified

entities. If the suggestions are eligible the user can

very quickly formulate his search desire. If the

suggestions are based on the search corpus itself, new

and previously unknown relationships between entities

can be discovered along the way.

The aim of this paper is a quantitative analysis of

relationships between entities in a big document

corpus under the aspect of providing suggestions for

entities in real time.

1. Introduction

Entity Disambiguation [1] is a powerful technology

to extract semantic information from text. Based on

this technology, new search engines like STICS [2],

which rather use concepts than words as search input,

have emerged. One challenge for such systems is the

specification of the entities to be searched by the user.

Typically, this is solved by an autosuggestion function,

which suggests possible entities based on a given

prefix. Figure 1 gives an example for the suggestion of

entities, specified by the given prefix “unive“. After

final selection of one of the suggested entities, further

entities can be specified. If the suggestions are good,

this can lead to a very effective way for formulating

the search query. One critical point is the order in

which the suggestions are presented. The goal is to

present the most probable entities at the top, so that

they can be selected quite fast. To rank the suggested

entities, a global measure, like the publicity of an entity

can be used. In the case of STICS, where the entities

are extracted from Wikipedia, the publicity of an entity

can be calculated based on the number of links an

entity receives from other Wikipedia pages. This

approach is called insensitive to a specific document

corpus. A corpus sensitive approach on the other side

can count the number of times a specific entity appears

inside the corpus and use this value as a measure of

popularity of an entity.

Figure 1: Auto-Suggestion based on given

prefix

The disadvantage of this approach is that after the

first entity has been chosen, the approach of presenting

the most popular entity at the top of the suggestion list

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/50003
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 933

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is no longer appropriate. Choosing one of the top

suggested entities often leads to empty result sets

because considered isolated, the selected entities are

most often very popular on their own but the

combination of the entities doesn’t make any sense in

many cases. So in a worst case scenario, no documents

contain both entities and an empty result-set is

returned. Instead of the global probability, a

conditional probability of an entity with respect to the

previously specified entities has to be considered. So

for example, consider the case, where we want

information about the friendship between David Bowie

and Iggy Pop. After <David Bowie> has been

chosen as the first entity, the prefixes “po” or “pop”

returns a number of former popes, which are globally

seen more important as the good old friend of David

Bowie. Indeed, in the whole collection we will not find

one article mentioning David Bowie and a pope

together. In contrast, in a context sensitive search

engine, the musician <Iggy Pop> should be ranked

very high in the context of <David Bowie>.

2. Problem Description

In the present case, we are collecting news-articles

from over 500 news-feed all around the world since

2013. Using AIDA [3] as disambiguation engine, we

identify the entities mentioned in the news-articles, as

well as their position inside the article. Figure 2 shows

the ER-model of the relationship between the news

articles and the included entities. The attribute

description of the entity “Entity” contains the

label of the entity, as it is displayed for the auto-

suggestion (see Figure 1). Typically, this is not the

representation in the text, which differs in general (i.e.

“University of California, Berkeley” vs. “UC

Berkeley”). The appearance in the text is represented

by the attribute name of the n:m relationship, together

with the attribute position, which represents the

position of the entity in the news text.

Figure 2: Relationship between news articles

and included entities.

Figure 3 shows an extract from the relational table

representing the relationship between News,

Article and Entity from Figure 2, without the

attribute name, which is not relevant for the

calculation of relatedness. The data from Figure 3 is

the main data-basis for our suggestion-system. For

example having already specified the entities

<National_Security_Agency> and

<Hong_Kong>, a possible suggestion for the prefixes

‘ed’ or ‘sn’ would be the entity

<Eduard_Snowden>, because there exists at least

one news-article (with ID 1), which includes these

three entities.

Figure 3: Relation containing information about

entities appearing in news articles

So, what we need is a function
ranked_entities = f(entities,prefix)

which performs the following task:

TASK: Given a number of previously chosen

entities and a prefix, it will suggest related

entities (ranked_entities), so that the result set

containing news-articles is not empty. The suggested

entities, should be ordered by decreasing relevance for

the given entities. In the case of no prior specified

entities, the returned entities satisfying the prefix

condition are sorted by a global measure as discussed

in Section 1.

In the rest of this paper, we will now discover how

these suggestions can be calculated and stored

accordingly to a number of constraints. The main

contributions of this paper are:

 Providing a quantitative estimation how

entities in a text corpus are related.

 Presentation of a new relatedness measure

for entities based on the co-occurrence of

entities in a single document within a

specific range.

 The development of technologies how the

relatedness information can be stored and

Page 934

accessed accordingly, due to hard time

constraints (tmax < 0.1 sec.).

3. Entity Relatedness Measure

Following our argumentation before, two entities

can be considered somehow related, if they appear

inside the same document. To fulfill our goal to avoid

empty result-sets, a first approach can be to build an

entity-document matrix, which allows the calculation

of related entities. Figure 4, gives an example of such a

matrix.

Figure 4: Entity-Document Matrix

First of all, on the left of the Figure, there are

documents D1, …, D5, containing some of the entities

e1, …, e6. The right side displays the corresponding

entity-document-matrix. The matrix contains a row for

every news-document and a column for every possible

entity. A value of 1 inside the matrix indicates that the

document contains the entity. By this every entity can

be presented as a bitvector (the columns), with the n-th

component set to 1, if the entity can be found in the

n-th document, otherwise the component is set to 0. An

inverted index, as it is known from Information

Retrieval (IR), is typically built this way [4].

Additionally, we also have a bitvector for every

document, indicating which entities can be found

inside the document (row). Assuming, that entity e2

(blue) and e3 (green) are already given, we can

calculate possible suggestions, by performing an AND-

operation along the involved entities (the columns).

The result (red) of this operation is a bitvector (bottom

line of Figure 4) which indicates that all possible

entities can be found in the documents D2 and D4.

These documents now form the base for further

possible entities, which can be found inside these

documents (and only in these). So in our example,

entity e4 appears together with the given entities in

document D2, while entity e5 appears in document D4.

The extraction of these entities can easily be done by

an OR-operation with an additional XOR to remove

the already selected entities from the final list.

This data-structure is appropriate, if only a small

number of entities (not more then 5-10) qualifies for

the suggestion of one or more given entities and for a

prefix of at least one character. In this case, the entities

can be presented as suggestions, without a special

order. If we have cases where there are more than a

handful of suggestions, we need a ranking model to

select the most probable entities for suggestion. A

simple extension of the previous model would be to not

only indicate if an entity can be found inside a news-

document, but also how often it appears there. Figure 5

gives an example of this approach. In contrast to the

previous concept, every document vector (row)

contains the information how often an entity appears in

the document. The relatedness value rx for each entity

ex can then be calculated on base of the cardinalities, as

it is shown at the bottom of Figure 5 for the two

entities e4 and e5. In this case, the value is simple

calculated, by multiplying the cardinalities of the

involved entities, divided by the number of entities

involved. If a possible entity appears in multiple

relevant documents, the relatedness value is simply

cumulated. The selection of possible entities is based

on the same concept as in Figure 4, where only

documents, containing all of the previously given

entities are considered for further suggestions.

Based on this information, a ranking (relevance)

value can be given for each possible suggestion entity.

If the number of possible suggestions is high, only the

first n entities with highest ranking values are

displayed.

Figure 5: Quantitative Entity-Document Matrix

This approach could be further extended with the

incorporation of the tf*idf value [5], as it is common in

IR. A disadvantage of this approach is that it consumes

far more memory than the previous model, which can

i.e. operate on compressed bitmaps as described in [6].

Page 935

For the implementation of our suggestion function

we have the following possibilities, trading memory

consumption vs. computational power:

 Online calculation: In this case, the

suggestion entities for a (potential empty)

set of given entities and a prefix are

calculated online.

 Offline calculation: The calculation of

the suggestions are done in advance at

crawling time or in a batch processing

step. As a result, a key-value store can be

used. The key is represented by the

composition of one or more entity-

identifier and the prefix. This allows for a

fast access to the pre-calculated entity-list,

which is stored as the value.

 Mixed calculation: Parts of the

calculation are done offline, while other

parts are done online. This is often a

compromise between the two previous

solutions. In the present case for example,

only the entities form the key and the

selection of entities satisfying the prefix is

done online.

To get an idea about the computational effort

needed and the memory consumption, we performed a

detailed quantitative examination of our dataset in the

following sections.

4. Quantitative Aspects

YAGO [7], the knowledge base used by AIDA, has

about 5 million different entities in its knowledge base.

Up to now, 4.8 million news articles have been indexed

so far, in which over 800.000 different entities appear.

The total number of found entities is about 95 million.

4.1. Distributions

How these entities are distributed over the news

articles is presented in Figure 6 and 7. Figure 6 shows

how many different entities appear in a certain news

article. The x-axis represents the individual news

articles and the number of different entities inside the

individual news-articles are displayed on the y-axis.

The news articles on the x-axis are further sorted by

the number of contained entities (in decreasing order).

As we can see, about 1000 (from over 4.8 million)

news-documents contain more than 100 different

entities and about 20% contain more than 10 different

entities (consider that the x-axis is logarithmic).

Figure 6: Distribution: Entities per News

The average number of entities is about 10 entities

per article. The maximum of different entities found in

a news article amounts up to 1450 entities.

Figure 7: Distribution: News per Entity

In Figure 7, the distribution of entities in the news

articles is presented. The x-axis represents the

individual entities, sorted by the number of documents

they appear in (y-axis). The values differ from over

900,000 news per entity for highly popular entities (i.e.

<United_States>), up to 237,000 entities which

appear in only a single news-article. From over

800,000 used entities, 672,000 appear in 20 or less

articles. On average, an entity appears in 56 news

articles.

The most interesting question is now how the

entities are related to other entities, because this

dominates the processing time for providing the

suggestions. The distribution is presented in Figure 8

and 9.

Page 936

Figure 8: Distribution: Number of Related
Entities for a given Entity (complete)

Whereas Figure 8 shows the complete distribution

over all entities, Figure 9 only shows the first 1000

most popular entities. It becomes apparent that the

number of possible related entities can be very high for

a number of popular entities. So for example, the most

popular entity is related to more than 412 thousand

other entities. The average number of related entities is

217. Considering the average number of 217, this value

is still too great to present them all as suggestion to the

user. So, a ranking model is needed.

Figure 9: Distribution: Number of Related
Entities for a given Entity (first 1000)

Since the suggestions are also based on a given

prefix, it is also interesting to look at how the entities

are distributed along the different prefixes. Figure 10

gives an overview on this distribution. We made

experiments with different prefix lengths, starting from

1 up to 4 characters. All experiments were performed

without a previously given context entity.

Figure 10: Distribution: Entities per Prefix

With a 1-character prefix, we got the red

distribution, starting with about 175,000 entities for the

character ‘s’ up to only 2100 entities for the prefix ‘x’.

The 2-character prefix has 57,200 entities at most

(‘ma’), while the 3-character prefix starts with about

21700 entities.

Next, we examined, how the number of used

entities and used entity-tuples increased over time.

This represents the situation when one resp. two

entities are already given in the search context. Here,

we cumulated the number of distinct entities resp.

entity-tuples found in the news articles. Figure 11

shows the case for a single entity.

Figure 11: Increase of number of used entities

over time

With increasing numbers of processed news the

number of entities also increase which was no surprise

for us. However, we could detect a slight saturation. A

natural limit are the about 5 million entities from the

YAGO knowledge base. Actually only about 800,000

entities are found inside the news corpus. In contrast,

this saturation behavior does not appear in the case of

Page 937

the examined entity-tuples (Figure 12). But the main

problematic point still remains:

Figure 12: Increase of number of used entity-

tuples over time

Overall, 848,943,610 entity-tuples were found in

our corpus, from which 173,829,762 were different.

The representation of this information in our MySQL

database consumes (including an index) already about

20 GB of data. The storage of entity-tuples, triples,

quadruples, etc. ((ex, ey, …) -> (entity-list)) and their

related entities would need exponentially more

memory. The reason for this can be explained with a

simple example: Consider a single news article with

100 different entities. It is a rather large article but by

far not the largest in our corpus (see Figure 6). Even

for this single news-article we have the following

related entities as displayed in Table 1:

Table 1: Number of related entities in a single
news article with 100 entities

 # of related entities

Single entity 100 * 99

Entity Tupel 100 * 99 * 98

Entity Tripel 100 * 99 * 98 * 97

Entity Quadtrupel 100 * 99 * 98 * 97 * 96

Entity Quintuple 100 * 99 * 98 * 97 * 96 * 95

Exploiting the symmetric characteristic of the

relationships, we still have in total 1,283,975,715

relationships in this single article. In contrast, a news

article with 10 different entities (which represents the

average) is not a problem. In that case, we only have

about 36,000 possible relationships. The problem

remains that we can’t get rid of these longer articles.

4.2. Consequences

After these experiments, we can postulate the

following findings:

1. The number of possible related entities for

a given entity is in many cases too large to

be presented as suggestions. For this

reason, a ranking function is essential to

display only the most related entities to the

user.

2. The real-time calculation of entity-

suggestions for entity-tuples, triples, etc. is

too expensive if entities are involved that

are related to many other entities.

3. The huge amount of existing relationships

between entities, entity pairs, triples,

quadrupels, etc. and their associated lists

of suggestions prohibits the possibility to

store the pre-calculated results.

4. The problem with the huge amount of

possible results increases with the number

of found entities in a document. So

typically, longer documents worsen the

situation even more.

5. Sliding Window Approach

The main problem is the amount of found entities

in a document. Having n distinct entities in an article

means that there exists n choose k relations for k given

entities, which can’t be handled for even small

numbers of k, if n is in the size of 100 or larger. A

solution for this problem is the reduction of related

entities. So far, we considered entities to be related if

they appear in the same document. This is the approach

as it is known from IR, but in our case, a more reduced

approach would probably also be adequate. In a news

article, which typically is short and thematically

focused on one or a small number of topics, it might be

a realistic approach to consider entities, which co-

occur in a news article as related. But even here one

can argue that with increasing distance in the text

between two found entities the relationship shrinks. On

the other hand, if two entities appear a number of times

quite close together in a text, they can be considered as

strongly related. As a first improvement of our

measure, we can therefore consider the distance in

words as a factor for the calculation of relatedness,

which makes our measure more accurately So for

example in [8], the relatedness between two entities is

calculated as rel(ex,ey) = log(1/d), where d

is the distance in words between the two entities. And

because only a small number of suggestions should be

displayed, weaker relationships can probably be

neglected. So, in a second step, we define a threshold

for the maximum distance in words we want to

consider. This can be seen as a sliding window over the

text. The size of the window can differ with respect to

Page 938

the n-tuple we are searching. So for example, the used

windows size for an n-tuple can be calculated as:

WINDOW_SIZE = 10 * n

This means two entities must appear inside 10

words, while quintuples must appear inside 50 words.

The sliding window technology is also the key for a

huge reduction of entities, which have to be considered

as related. Even more, the efficiency of the sliding

window technology is independent from the size of a

document. It reduces the number of possible related

entities, independent of the size of a document.

In the following section, the sliding window

approach will be applied on our complete news dataset.

5.1. Quantitative Aspects

We experimented with different window-sizes, and

finally found a window size of 30 * sqrt(n-1)

words for n-tuples to be an good compromise between

recall and storage requirements. In Table 2, you can

see the number of n-tuples, with respect to different

window sizes.

Table 2: Number of datasets

Win

dow

Size

Tuple 3-Tuple

(Triple)

4-Tuple 5-Tuple

15 1,4 Mio 0,4 Mio 0,14 Mio 71 T

30 3,8 Mio 3,8 Mio 3,0 Mio 3,4 Mio

45 5,6 Mio 8,9 Mio 11 Mio 17,8 Mio

60 7,1 Mio 15,6 Mio 25 Mio 53,3 Mio

Figure 13 and 14 show the distribution of related

entities for a given single entity. Because of the

logarithmic scale on the y-axis, Figure 14 covers for

better visibility only the first most critical 1000

entities.

Figure 14: Distribution: Number of Related

Entities for a given Entity (first 1000)

The first 20 entities have values between 53331 and

9782 related entities. The average number of related

entities is 12. This is a reduction of a factor of eight for

the problematic entities, compared to our prior

approach from Figure 8 and 9. This makes it possible

to simply store the list of related entities and filter the

most relevant according to a given prefix at runtime.
Finally, Figure 15 also shows the 1000 entity-

tuples, which have the most numbers of relationships

to other entities. In the extreme case, this is about 4500

entities.

Figure 15: Distribution: Number of Related

Entities for a given 2-Tuple of Entites (first 1000)

5.2. Consequences

In comparison to the first approach from Section 4,

where all distinct entities in a news article are

considered related resulting in an unmanageable

amount of possible suggestion-entries in our database,

our new approach uses a sliding window technology,

which dramatically reduces the number of possible

suggestions. This allows us to store preprocessed lists

of suggestions for single entities, tuples, triples,

quadruples and quintuples. Due to the fact that we only

provide suggestions for further search entities, the

focus on most probable entities is tolerable.

Nevertheless, we also implemented a fallback mode, in

case the given combination of entities and the prefix

doesn’t deliver any suggestions. If some boundary

conditions about the expected cardinalities are fulfilled,

a pure online search is performed. This is explained in

the next section in more detail.

6. Implementation Aspects

Due to the reduction of related entities, a

precomputation of the ranked entity-lists can be done.

The offline computation of the relatedness values are

Page 939

performed with a MySQL database. Starting point is

the table doc_entity from Figure 3, which contains

all the necessary information about the news articles,

the found entities and their positions in the text. As an

example, Figure 16 shows the SQL-script, which

computes the relatedness between entity-2-tuples and

their related entities, together with a relatedness value.

At the beginning of the script, the sliding window size

is calculated. The core of the statement is a multi-self-

join over the table doc_entity. The join condition

is the id (news_fk) of the incorporated news-

documents and in the where condition we check the

uniqueness of the entities in a dataset as well as the

maximum distance (window-size) the entities are

allowed to have. Since a tripel, consisting of an entity-

tuple and a related entity, can appear multiple times

with different relatedness values, we merged these

tripels by cumulating the relatedness value (sum, group

by). The greatest()-function calculates the actual

distance defined by the position of the entities. Here

we simply look for the greatest difference of two

involved entities. The relatedness measure is then

calculated by applying the log()-function on the

inverse distance value. At the end, additional indexes

are generated. The first index is responsible for the

runtime queries returning the suggestions based on

previously given entities. The incorporation of the

weight attribute is twofold: First of all, it allows to

quickly return the related entities by relevance and

secondly, it allows so called index-only queries.

Because all needed information is encapsulated in the

index, the database does not have to access the table at

all. This can speed up the response to a great extend

provided that the index fits into the memory, but the

table resides only on disk.

As mentioned in the previous Section 5.2, it is

possible to specify entities which are not suggested be

our suggestion function f(entities, prefix).

In this case, the already specified entities are examined

with respect to the number of possible related entities.

This can be performed quite fast, because it can be

easily calculated offline from the table in Figure 3. The

entries have the following format:

(Entity-ID, # of related entities)

The table has an index on Entity-ID, so estimations

about the cardinality can be provide very fast. If the

returned values fulfill some conditions, a slight variant

of the query from Figure 16 can be performed online.

Because the id-values for the n given entities can be

provided, the computation is very fast.

Figure 16: SQL-Code for the Computation of
Relatedness values (2-tuple -> entity-list)

6.1 Maximum Number of Possible Search

Entities

According to statistica.com [9], in February 2017,

the percentage of one word key-phrases was about

35% off all queries, followed by 25% for two word

key-phrases and 18% for three word phrases.

Considering queries up to 6 words, we have a coverage

for nearly 97% of all queries formulated. According to

these numbers, we decided to support queries up to six

entities. We further argue that using disambiguated

entities as input for a search engine is semantically

more powerful and precise, compared to a keyword

search with the same number of words, so the value of

six entities at most seems sufficiently enough.

7. Further Improvements

Figure 1 gives an example for the suggestion of

entities, specified by the prefix ‘unive’. It emerged

clearly that in a number of cases the specification of an

Page 940

entity by only one prefix is not constructive since a lot

of entities have the same prefix (like in the case of the

universities all over the world). An improvement

allows now for the specification of multiple prefixes

for the desired entity. Figure 17 shows an example

with three prefixes. In this case, suggestions containing

the word “east”, as well as two additional prefixes

(“ind”, “c”) are displayed. The last entered term is

always considered as a prefix, while prior written

words have to be specified with an asterisk-sign (like

with ind*) to be handled as prefix.

Figure 17: Improved Auto-Suggestion based

on multiple words and prefixes

8. Summary and Outlook

We presented a comprehensive analysis of entity-

relatedness in a big news article corpus. The aim was

to get an understanding of the quantitative relationships

between multiple entities. Our research was driven by

the requirement of providing a mechanism for a

context-sensitive auto-suggestion and completion

system for an entity-based search engine. Starting from

the traditional approach of IR, where two words, resp.

entities are considered related if they appear in the

same document, we demonstrated that this approach is

not feasible for context-sensitive entity-suggestion, due

to the immense solution space required when multiple

entities are present. As an improvement, we do no

longer consider a whole document (or article) as the

container for the determination of relatedness, but

rather the smaller unit of a sliding window, which is

shifted over the text. Following this approach, we were

able to build a performant context-sensitive auto-

suggestion system. The system is a hybrid approach,

based on some offline batch-processing and real-time

computation at query-time.

Actually, a MySQL database was used to deliver

the suggestions. The runtime behavior is sufficient

enough (tmax < 0.1 sec.) and the suggestions seem quite

adequate. In a productive environment with massive

multiple requests, the database can become a

bottleneck. Due to the query-characteristics, a key-

value store would be an adequate replacement. Redis

[10], a main memory key-value store, provides a

special datatype called “sorted set”, which can

perfectly handle the entities to suggest as well as the

relatedness value. One important point is that Redis,

like many other NoSQL-databases, is designed to scale

very well horizontally, which means that this approach

can even be used for highly frequented search engines.

Another interesting research direction would be the

determination of the “optimal window size” or at least

to prove the robustness of the approach for a range of

different window sizes. While the second approach is

actually under progress and looks quite promising for

our news-corpus (different corpora will be examined in

the future), the second approach is still future work and

also very dependent on the results of our actual

robustness experiments.

9. References

[1] Silviu Cucerzan, Large-Scale Named Entity

Disambiguation Based on Wikipedia Data, Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language

Learning, pp. 708–716, Prague, June 2007.

[2] J. Hoffart, D. Milchevski, and G. Weikum, STICS:

Searching with Strings, Things, and Cats. Demo at SIGIR

2014, Gold Coast, Australia, 2014.

[3] Yosef, M. A., Hoffart, J., Bordino, I., Spaniol, M. &

Weikum, G., AIDA: An Online Tool for Accurate

Disambiguation of Named Entities in Text and Tables.

PVLDB, 4, 1450-1453, 2011

[4] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. 1999.

Modern Information Retrieval. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[5] Ramos, Juan, Using TF-IDF to Determine Word

6elevance in Document Queries. 2003.

[6] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. 2006.

Optimizing bitmap indices with efficient compression. ACM

Trans. Database Syst. 31, 1. 2006.

Page 941

[7] Fabian M. Suchanek, Gjergji Kasneci and Gerhard

Weikum, Yago - A Core of Semantic Knowledge, 16th

international World Wide Web conference (WWW), 2007

[8] Andreas Schmidt, Johannes Hoffart, Dragan Milchevski,

and Gerhard Weikum, Context-Sensitive Auto-Completion

for Searching with Entities and Categories, In Proceedings of

the 39th International ACM SIGIR conference on Research

and Development in Information Retrieval (SIGIR '16), 2016

[9] U.S. online search query size 2017 | Statistic.

https://www.statista.com/statistics/269740/number-of-search-

terms-in-internet-research-in-the-us/, last accessed: 10.6.2017

[10] Josiah L. Carlson, Redis in Action, Manning

Publications Co., Greenwich, CT, USA, 2013

Page 942

https://www.statista.com/statistics/269740/number-of-search-terms-in-internet-research-in-the-us/
https://www.statista.com/statistics/269740/number-of-search-terms-in-internet-research-in-the-us/

