
Multimodal Data Fusion and Behavioral Analysis Tooling for Exploring
Trust, Trust-propensity, and Phishing Victimization in Online Environments

Mickey Hefley

University of Nebraska at Omaha
mhefley@unomaha.edu

Gabrielle E. Wethor
University of Nebraska at Omaha

gwethor@unomaha.edu

Matthew L. Hale
University of Nebraska at Omaha

mlhale@unomaha.edu

Abstract

Online environments, including email and social
media platforms, are continuously threatened by
malicious content designed by attackers to install
malware on unsuspecting users and/or phish them into
revealing sensitive data about themselves. Often
slipping past technical mitigations (e.g. spam filters),
attacks target the human element and seek to elicit
trust as a means of achieving their nefarious ends.
Victimized end-users lack the discernment, visual
acuity, training, and/or experience to correctly
identify the nefarious antecedents of trust that should
prompt suspicion. Existing literature has explored
trust, trust-propensity, and victimization, but studies
lack data capture richness, realism, and/or the ability
to investigate active user interactions. This paper
defines a data collection and fusion approach
alongside new open-sourced behavioral analysis
tooling that addresses all three factors to provide
researchers with empirical, evidence-based, insights
into active end-user trust behaviors. The approach is
evaluated in terms of comparative analysis, run-time
performance, and fused data accuracy.

1. Introduction

Malicious web content has bombarded user
inboxes, social media feeds, and other online
environments since the invention of the underlying
supporting technologies. It is a problem that affects
millions of web users daily and causes billions of
dollars in yearly economic damage [1] to companies
and individuals. Malicious content takes on a variety
of forms including targeted (e.g. spear and whale) and
untargeted phishing emails, social media posts, and
websites that emulate the look and feel of legitimate
sites. While spam filters and other technical measures
prevent many phishing campaigns from reaching their
targets, many millions of phishing emails and social
media posts make it to their potential victims daily –
putting the onus of phishing prevention into the hands

of the end user. In 2012, approximately 156 million
phishing emails were sent out world-wide every day
[2], about 16 million made it through spam filters
(despite a wealth of research and development), 8
million were opened and, in the end, 80,000 people
became victims. In business environments, targeted
phishing campaigns have been shown to be even
worse, with success rates that netted up to 20% of
users depending on the sector [3]. Clearly, phishing
remains a human problem.

Security professionals and hackers have long
known that humans are the weakest link in any cyber
system. Adversaries tactically exploit user decision-
making processes, preying on their propensity to trust
based on certain learned contextual cues and
environmental influences [4].

In previous work [5-7], we explored the human
problem of phishing from the perspective of how and
why structural elements in phishing attacks trick and
victimize users. We designed a gamified
experimentation platform, called Cybertrust, for
presenting users with realistic web content (both
malicious and innocuous) and investigating which
types of content prompted suspicion and which types
elicited trust. Using Cybertrust, and structural
taxonomies of phishing content from the literature,
particularly [8], we identified and published a set of
structural trust factors, on nefarious and legitimate
antecedents of trust, to classify malicious content
based on which patterns of cognitive cues of trust and
suspicion it contained. Using these patterns, we
developed a phishing victimization prediction model
[5-7]that pinpointed the effects of each pattern on
victimization potential. Unlike heuristic models that
emphasize economic advantage and user cognitive
effort minimization as the primary driver for
victimization [9], our model emphasized content
structure as a victimization determinant. Validating
the model (p=0.01) with an experimental study
involving 80 subjects and over 5400 individual trust
decisions, we showed that using the purely a priori
structural patterns within content we could

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/49995
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 862

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301374251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

successfully predict actual victimization for youthful
populations of users (18-25 demographic).

While our previous work explored structural
antecedents of trust as they related to the content, our
platform suffered (like other studies and phishing
research platforms [10-13]) from a lack of data
collection and analysis robustness. In this paper, we
define and exemplify a data collection and fusion
approach that gathers user-centric behavioral data to
support investigations of trust behavior that go beyond
the content to examine the person interacting with it.
With the goal of supporting future user studies into
trust propensity, content trustworthiness, and training
efficacy, the work described in the rest of the paper
details the multi-perspective, multi-factor, data
capture, fusing, and analysis tooling capabilities in
what we have monikered “Cybertrust 2.0”. Among
other content-based data, the new Cybertrust now
collects user interaction data including eye tracking
point of gaze, eye fixation points, 3D pupil modeling,
mousing behavior, cognitive decision timing, and idle
timing. While techniques and tooling have long
supported collecting such data, our approach is novel
because it collects, fuses, and streams this data to an
experimentation interface in real-time. The timeliness
of this data fusion enables new analysis tooling, such
as real-time fixation-point/mousing heatmaps, point-
of-gaze/mousing time-correlated graphs, and pupil-
rate-of-change visualizations that can be used to
provide empirical, evidence-based, insights into active
end-user trust behaviors.

The rest of the paper proceeds as follows. Section
2 identifies relevant background. Section 3 overviews
the Cybertrust Platform. Section 4 describes the new
data capture components created for Cybertrust 2.0.
Section 5 defines our approach to fusing collected
user-interaction data. Section 6 evaluates the approach
and Section 7 concludes the paper.

2. Background

2.1. Trust, Victimization, and Phishing

When examining trust, it is important to identify

and disambiguate the terminology. Our work uses
terminology established in the foundational research
of Mayer et al., in the so-called, Integrative Model of
Organizational Trust [14] and empirical studies
exploring this model, including those of Gill et al.,
[15]. In these works, trust is defined as “the
willingness of a party to be vulnerable to the actions
of another party based on the expectation that the other
will perform a particular action important to the
trustor, irrespective of the ability to monitor or control

that other party” [14]. Here, the act of trusting is a
unidirectional decision from trustor (risk taking party)
to trustee (individual trusted by the trustor). This
decision is preceded by antecedents of trust that
include the behavioral profile of the trustor, the
perceived characteristics of the trustee, and the nature
of the interaction between the trustor and the trustee
that precede the decision to trust. Victimization can
occur if the trustee violates the trust of the trustor,
particularly by misusing trust for gain at the expense
of the trustor – for example in phishing campaigns.

Many behavioral factors are involved when
trustors make trust decisions. Measures meant to
predict an individual’s likelihood to trust are often
grouped into two categories: experience and
disposition [12]. Disposition refers to an individual’s
inherent characteristics which are determined by
numerous biological and environmental factors over
the course of years. These characteristics include
personal identity attributes such as propensity to trust
[15], honesty [16], and risk aversion [17]. In contrast
to dispositional characteristics, which broadly apply to
different areas, experience is domain specific. For
example, expertise with online environments is likely
to affect an individual’s trust in the cyber domain, but
not in face-to-face communication.

In a study exploring these factors within the
phishing domain [12], 299 subjects were given
questionnaires measuring experiential factors
including computer self-efficacy, web experience, and
security knowledge as well as dispositional factors
including trust propensity, risk aversion, and
suspicion. Subjects completed coursework covering
internet security and phishing and were reminded daily
in class to never divulge their codes to anyone. At the
end of the course, a phishing email was sent to each
subject requesting their secret code. Approximately
one third of the subjects in the study [12] failed to
recognize the phishing attack and responded with their
codes. Hence, experiential factors have a much larger
impact on phishing success than dispositional ones.

Social presence is a concept defining the
subjective and psychological experience of how
information richness influences the persuasive effects
of email. Harrison, et al. [18] constructed an
experiment to examine the amount of social presence
in email and its relation to phishing victimization. The
information richness that they deploy shows how
sophistications (i.e. content features that appear
legitimate) can successfully dupe users by preventing
them from noticing degradations (i.e. content features
that are associated with malicious intent). Dhamija, et
al., [19] investigate social presence and user awareness
of website design. They found that attacks were more
successful using various forms of visual deception that

Page 863

rely on a lack of user knowledge of security indicators.
Their work, which included 22 participants examining
20 legitimate and fraudulent websites, found that often
people miss cues associated with trusted elements,
such as certificates or padlocks in the browser, as well
as cues associated with suspicious elements, such as
an incorrect web address in the address bar. Findings
in [20] suggest that these cues may be missed when a
site includes sophisticated features that elicit trust,
such as embedded brand logos in mass notifications
from a recognized bank.

2.2. Eye Trackers Behavioral Analysis

Studies [21-24] have explored the connection

between empirically observable eye movements and
behavioral intention. Some [22], have specifically
focused on fixation point of gaze as a correlate of
behavior. Heatmaps and fixation paths [25] are
visualization tools typically used to explore and
analyze eye tracker data. These tools provide clear
depictions of the areas of coverage and time-correlated
traces of eye movements as they interact with content.

Eye trackers have been extensively used within the
psychology [21, 23] and usability communities [24,
26] to help answer a number of behaviorally-oriented
questions, such as what mental models govern the
user’s understanding of images and text [27] presented
to them, or what screen space is used and/or wasted in
the design of an interface [24].

While some eye tracking studies have explored
trust behaviors in the context of economic decision
making [23] and other similar trust scenarios, few have
focused on phishing victimization. Among the few,
Miyamoto et. al. captured eye movements as users
examined phishing websites in a 2015 study titled Eye
Can Tell: On the Correlation between Eye Movement
and Phishing Identification [11]. Their study, post-
hoc, identified inferential patterns of eye behavior that
mapped to user intentions and outcomes (trusting or
not trusting content). Inferential patterns were based
on the number and duration of fixations. Their results
demonstrate feasibility, but are limited to the sample
size of participants and by the inability to analyze eye
movement behaviors in-real time.

In another, earlier 2012 study, Kirlappos and Sasse
[28] explored trust seals, i.e. seals of approval or
validation such as Verisign® or DigiCert® using eye
tracker data to determine if seals were effective to
protect online shoppers. They found that users largely
ignored trust seals and instead tended to rely on self-
developed, but possibly unfounded ways of noting site
trustworthiness, such as perceived site quality or
references to other recognizable trusted entities.

2.3. Multitiered Data Fusion

Data fusion is a concept that largely originated in
the 1990s with Hall and Llinas [29]. The core concept
is simple: combine multiple data streams, usually
sensor data, into a single stream to achieve some goals
– which may be greater than the sum of the parts. In
the context of security, several studies [30-32] have
explored data fusion approaches to yield multi-
perspective insights into security problems of interest.
In dissertation work [32], Giacode examined data
fusion in the context of visual analytics to determine
the effectiveness of different sensor monitoring
interface design parameters on conveyed security
situational awareness. Another study[31], examined
data fusion approaches for examining user clicking
behaviors in the context of preventing click fraud –
which is a type of fraud where a scripted tool clicks
online pay-per-click online advertisements to generate
revenue for the site owner (usually the same person).

Lastly, and most relevant to our work, Zhang et al,
[30] examined data fusion approaches for building a
phishing-site classifier. Their work used online data
sets of textual and visual content in combination with
a Bayesian model to create a classifier to detect phish.
Data from text and visual analytics were fused
together – which resulted in a better classifier than the
sum of the individual classifier parts achieved. More
specifically, the fusion algorithm selected the
classifier (text, visual, or both) that held the largest
probability of correctness, where correctness of each
classifier was estimated using the Bayesian model.

3. The CyberTrust Platform

The Cybertrust platform is a multi-component,
partially open-sourced, framework that supports
multi-modal user interaction studies involving
malicious online content. The platform, provides two
main interfaces, tooling for creating experiment
content (admin view) and the simulated online that
study subjects interact with (subject view).

Admin view includes four major subcomponents:
an email creation tool, a social media post creation
tool, an experiment workflow designer, and the
behavioral analysis toolkit. The first two components
allow experiment designers to craft malicious and
innocuous content items that study participants will
later see. The third allows the designer to arrange those
content items temporally into a gamified workflow that
is meant to simulate the kinds of real-world tasks
subjects do daily. The last component is a new addition
made in this paper that provides a front-end interface

Page 864

for researchers to explore captured subject data. The
interface is discussed further in the next section.

On the subject side, study participants have access
to several key components, including: the task pane
which acts as a game driver to move task performance
forward, an inbox view which emulates the look and
feel of Google’s Gmail® interface to display and
allows users to interact with emails, and a social media
feed that emulates the look and feel of Twitter®.
Figure 1 shows a close up of an email in inbox view as
a subject would view it in the platform. Pathways such
as hover over and certificate inspection tools are
available to users to simulate realism. Current work is
underway to interpose a global training interface that
spans these components to enable training feedback.

Figure 1. Malicious email in inbox view.

Cybertrust 2.0 has been architecturally redesigned
to capture, stream, and aggregate subject behavioral
data for use in phishing trust and victimization studies.
The new design, as shown in Figure 2, is composed of
several Docker containers and a client app. The first
two containers reside on the backend as shown on the
right side of Figure 2. The first container exposes an
Apache webserver running a Django [33] RESTFul
API in a python kernel. The API maintains endpoints
to 1) serve client requests for experiment tasks to allow
subjects to interact with the malicious and legitimate
content of interest in the experiment and 2) endpoints
that capture and persist user analytic data (eye events,
mouse events, and app events). The second container
encapsulates a SQL database that the Django API uses
as a persistence layer for task and user behavioral data.

Figure 2. Cybertrust 2.0 containerized architecture

The client side, shown on the left side of Figure 2,
includes a physically-connected Gazepoint GP3
device, another Docker container, and the client app in
a Chrome browser. The GP3 streams eye movement
events, discussed further in Section 4.3, to its open
API. The last container collects, converts, and
standardizes data from the GP3 API before streaming
it to the client app using websockets. To handle the
rapid, asynchronous, event processing required to send
and consume websocket messages, we use redis [34]
and Django Channels, an asynchronous plugin for
Django. The last portion of the client, is the Cybertrust
2.0 app as shown architecturally in Figure 3.

Figure 3. Client component architecture

Implemented in Ember.js [35] and running in a
Chrome browser, it provides the administrator and
subject-facing interface components discussed above.
The app also includes several new components that
manage data collection and review (i.e. Mouse
Tracker, Eye Tracking Connector, and Behavioral
Analysis Toolkit). The first two are information
capture elements that collect and aggregate data during
subject sessions. The third is a post-hoc review tool
that administrators can use to review captured subject
data. We discuss these further in the next section.

4. Capturing Empirical Measures of Trust

Information capture capabilities are critical in any
platform that seeks to understand and reason about the
fundamental behavioral underpinnings that govern
end-user trust decisions. The new Cybertrust 2.0
platform captures end user interaction data including
mouse and keyboard events, application-level events
related to trust decision making, as well as eye tracking
events. These data provide multiple evidence-oriented
perspectives that can be used to identify how user
decisions materialize when engaging with malicious,
untrustworthy, content. Each Cybertrust 2.0
information capture mechanism is defined below, in
terms of the specific subfields captured and the
technical tooling involved in the capture.

Page 865

4.1. Mouse and Keyboard Events

Upon logon, the platform begins to track all

mouse and keyboard events. The volume of events
captured is associate to the intensity of the user’s
interaction with the application. As defined below, a
typical capture varies from 15hz to 60hz. Our platform
uses and extends an open source JavaScript tool [36]
to capture the mouse and keyboard events below.

Mouse Movement: On a user mouse movement event,
capture {x, y, w, h, t}, where x and y identify the pixel
coordinates of the mouse, in two-dimensional screen
space, x ≤ w and y ≤ h), w and h define the maximum
screen size (in pixels), and t is the time when the
mouse event occurred. Our capture mechanism relies
on a custom implementation of the onMouseDown
event, that uses the W3C standard high resolution time
level 2 specification [37] to provide much more
precise timings. The standard provides worst-case
resolvable timing skew of 5µs. Other mouse and
keyboard events also use high res. timing.

Mouse Selection: On a user mouse up event, capture
{ht, t} where ht is highlighted text and t is the high-
resolution timestamp when the event occurred. If no
text is highlighted this event is ignored.

Mouse Clicks: On user mouse down capture {x, y, w,
h, t}. Similarly, to mouse movement, x and y define
pixel positions in screen coordinate space, w and h
define the max screen width and height, and t is the
timestamp when the click event occurred.

Key Press: On a user key down event, capture {k, t},
where k is the Unicode character identifying the key
pressed (as translated from its browser-specific
keycode) and t is the time the event occurred.

4.2. Application-level events

When a user session begins, the application begins
logging trust decisions and timing events as users
engage with tasks. Since application level events are
high level and associated with task performance, they
are captured much less frequently than mouse and eye
tracker data.

Session Timing: Upon subject login, capture {sts, ste},
where sts and ste are high-resolution timestamps
identifying the start and end times of the user’s
session.

Time tracking (task): When a subject views task
content (e.g. views an email) capture {tts, tte, tid},
where tts and tte are the start and end times that

identify how long the user views content associated
with the task, with id tid.

Likert scale: After a user views task content (e.g.
views an email) but before they make a binary trust
decision they must rate the trustworthiness of the
content, by selecting very trustworthy, trustworthy,
unsure, untrustworthy, or very untrustworthy.

Binary trust decision: After a user rates the
trustworthiness of the content, they must either trust or
distrust the content by clicking a button with a
contextually relevant message. Once a binary decision
is made capture {tid, lrt, tr}, where tid is the task id,
lrt is trustworthiness captured by the Likert scale and
tr is a Boolean for trust (true) or do not trust (false).

Idle time: When a user goes into an idle state, capture
{it, et}. Where it and et are high resolution timestamps
identifying the start and end times of user idling. A
function executes periodically to determine if another
event has occured, if not a new it value is logged.
When the next event occurs the time is logged as et.

4.3. Eye Tracker Events

Upon logon, the Cybertrust platform initiates an

eye tracker session with the Gazepoint GP3 HD [38]
and begins logging eye movement events, as defined
below, at 150hz. The GP3 exposes data using an open
XML-based API. The hardware driver for GP3 also
normalized the data as the subject moved around. In
our work, we created a new, open-source, websocked-
based interfacing server that converts GP3 events to
JSON and streams them to the Cybertrust 2.0 client.

Eye Movement events are logged following the
schema: {tid, cnt, et, t-tick, msg, cx, cy, fpogid, fpogd,
fpogs, fpogv, fpogx, fpogy, bpogx, bpogy, bpogx,
lpogx, lpogy, lpogv, rpogx, rpogy, rpogv leyex, leyey,
leyez, lpupild, lpupilv, reyex, reyey, reyez, rpupild,
rpupilv, lpcx, lpcy, lpd, lps, lpv, rpcx, rpcy, rpd, rps,
rpv} where tid is the application-level task that the user
is currently interacting with (if any); cnt is internal
record counter (record id) used by the Gazepoint GP3;
et is the system Datetime stamp corresponding to the
current system time; t-tick is a signed 64-bit integer
which identifies the number of CPU time ticks
involved in the event and is used by windows’ Query
Performance Counter (QPC) for high-resolution
timing based on CPU time stamp counters (TSC); and
msg is an optional field that can be used to ‘tag’ an
event with textual data (such as debug information).
Other values include cx and cy which identify mouse
x, y positions (in screen coordinate space) detected by
the GP3. These are useful for correlating to application
detected events, discussed in Sections 4.1 and 4.2.

Page 866

The fields fpogid, fpogd, fpogs, fpogv, fpogx, and
fpogy, are parameters related to the fixation point of
gaze which identifies the id of the fixation point, the
starting timestamp (s) when it begins, the duration (d)
it lasts, the x and y pixel positions in screen coordinate
space where the user is fixating, and a Boolean validity
value (v) indicating whether the fixation is valid or not
– based on pupil analysis algorithms on the GP3
hardware. The fields bpogx, bpogy, bpogx, lpogx,
lpogy, lpogv, rpogx, rpogy, and rpogv are point of gaze
variables for the best (b), right (r), and left (l) pupils.
Essentially, the GP3 computes individual points of
gaze for the right and left eyes and then
algorithmically combines them for the best (average)
point of gaze. In each of the b, r, and l fields: *pogx
and *pogy are the (x,y) pixel positions of the point of
gaze and *pogv is a Boolean value similar to fpogv that
identifies if the point of gaze is valid or not. The
validity value is 0 (false) if the subject blinks or the
pupil is obscured and 1 (true) otherwise.

The fields leyex, leyey, leyez, lpupild, lpupilv,
reyex, reyey, reyez, rpupild, and rpupilv are related to
the 3D position of the eyes. The fields *eyex, *eyey,
and *eyez identify the (x,y,z) coordinate positions of
the left and right eyes, relative to the GP3 camera focal
points. The other fields *pupild and *pupilv represent
the diameter (d) of the eye and whether the
measurement is valid (v) for the left and right eyes.

Finally, the remaining fields, i.e. lpcx, lpcy, lpd,
lps, lpv, rpcx, rpcy, rpd, rps, and rpv, represent image
data regarding the positioning of the left and right
pupils. The *pcx and *pcy values stand for pupil center
x and y coordinates that identify the center of the left
and right pupils in the image snapped by the camera,
as a fraction of the camera image size (note there are
150 images captured per second). The *pd value
identifies the pupil diameter in the image. The *ps
value represents the scale factor of the pupil. When
users are at the calibrated distance, the scale factor is
1. If they move back from their calibrated position, the
factor is greater than 1. Inversely the value is less than
1 if they move closer to the device. The scale factor is
useful for ensuring that users stay positioned correctly
and for correcting measurements if they do not. Lastly,
the *pv measurement is a Boolean indicating the
validatity of the pupil data.

Overall, our websocket-based streaming data client
integration allows the Cybertrust 2.0 platform to
consume eyetracker events in near-real time. The
specific timing information regarding the precision of
this data in the client is discussed later in Section 6.3.
This near-real time streaming enables several training
and analysis directions unexplored in the phishing
victimization prevention literature, e.g. just-in-time
training that highlights areas indicative of suspicion.

5. Fusion Techniques for Trust-relevant
Interaction Data

Taken individually by capture mechanism, each

data stream empirically identifies facets of behavioral
patterns that users reveal as they make trust decisions.
When fitted together, the pieces begin to fuse into an
overall picture of behavioral tendencies. In this
section, we describe our data fusion approach and a
few real-time analytics tools enable research
directions that go beyond post-hoc analysis. While the
visualizations underpinning the tools, i.e. heatmaps
and event graphs, are not novel, the timeliness and
applicability to behavioral studies investigating
phishing victimization set the tools apart. These novel
aspects are just demonstrative of the type of outcomes
that the data capture and fusion approach can provide.

Central to our approach is a universal event
timestamping strategy. The same internal system clock
is used by all capture mechanisms, so that we can
accurately fuse data streams into a single view,
without the worry of distortions due to clock skew.
The specific precision of data capture mechanisms is
discussed later in Section 6.3. For now, know that each
event capture has a time resolvability that the platform
uses along with the timestamp to arrange all captured
events into a workflow that allows a researcher to view
events in real-time during user studies.

Fused data is time-correlated and interlaced into a
single stream. The stream itself is a three-layered
model as shown in Figure 4, where each layer is
timeline of events collected from a particular data
capture stream (eye tracking, mouse tracker, and
application data). Following this model, a cross
sectional slice in time spanning the three 2D planer
layers defines events related to a trust decision. Using
a multilayer approach, such as this, provides
researchers with the analytical flexibility to view a
layer independently or in conjunction with others.

Figure 4. Fused three-layered data streams in time.

In addition to the layering, the fusion happens in
real time, according to the timing of the data capture
streams. This enables novel application use cases, such
as real-time heatmap and event graph creation for real-
time training feedback, or real-time experimentation
interjection by researchers. This can enable new
behavioral study designs that interpose real-time

Page 867

human or machine-in-the-loop feedback within or
during task performance to explore the effects on
mental model adjustment or trust antecedent
considerations. Although interesting, such exploration
is out of scope and left to future studies.

To simply demonstrate the feasibility of real-time
data analytics, we created two real-time analytics
tools. The first, produces event graphs across the three
layers in the data fusion model. These event graphs are
nothing more than real-time stream timelines that
researchers can view in real time as events are
captured during subject task performance.

The second tool is a real-time heatmap generator
that researchers can use to visualize heatmappable user
data. Heatmappable data includes eye tracking events
and mousing events. Both contain x, y coordinate pairs
that can be plotted in real time as users generate events
of certain types. To implement this capability, we
make a series of RESTful API requests to the backend
container and then open a websocket from the backend
to the researcher (admin) client that, respectively,
retrieves previous data, and then allows them to
consume all new incoming, trust relevant, interaction
data generated during the active user session. Once all
the necessary data is loaded and as it continues to
stream in, JavaScript is used to fuse the events together
in the multi-layer model. After fusion occurs, the
output, is piped to visual components (either the event
graph or heatmap) to be displayed. The researcher can
choose which data to plot by picking from the layers.

These analytical tools represent a step forward in
empirical measurement of cognitive reasoning in
phishing victimization studies. For example,
analyzing eye tracking data, one can observe if a
subject was focusing on the content defects or its
sophistications, where sophistications are given by the
content classification from [8], then act upon those
observations by providing the subject with targeted
training to help them recognize those problems in the
future. Using mouse tracking data, one can observe if
the user highlighted suspicious content, hovered over
a link, or idled for a period of time. With his data, it
might be possible to gain better insight on how they
came to a decision and use the insight to mitigate
similar victimization-causing decisions in the future.

6. Evaluation

To evaluate the data collection and fusion approach
we compared it against other platforms and studies
from the literature, assessed its run-time performance,
and measured the precision of captured data. The
methodology and results for each evaluation type are
defined in the next sections.

6.1. Comparative Analysis

In the first form of evaluation, we compared the
Cybertrust platform to five other studies in the
literature. Comparisons were made according to three
factors: the contextual realism of experimentation
environment, trust antecedents investigated, and the
types of interaction data gatherable in each. Table 1
overviews this comparison, decomposing each factor
into sub-factors (rows) according to the study explored
(columns). Checkmarks indicate the factor is
supported or present in the study and X’s indicate that
it is not. Realism is rated from Low (L), to Medium
(M), to high (H). All values are color coded, where red
is bad and dark blue is best.

Table 1. Feature and data collection capabilities
comparison across studies.

 Cybertrust Anti-Phishing
Phil [8]

Whalen
[5]

Darwish
[34]

Miyamoto
[6]

Halevi
[39]

Realism / Trust Antecedents
Level of Realism M L M M L H

In the Wild X X X X X Ö
Email / Inbox Ö X Ö Ö X Ö

Web sites X Ö X Ö Ö X
Social Media Ö X X Ö Ö X

Embedded Images Ö X Ö X X X
URL Inspection

(hover) Ö Ö Ö X X Ö

Mouse interaction Ö X Ö Ö X Ö
Certification

Inspection Ö X Ö Ö Ö Ö

Attachments Ö X X Ö X Ö
Popups Ö X Ö X X X

HTML Support Ö X Ö Ö X Ö
Interaction Data Captured

Mouseing History Ö X X X X X
Key Press History Ö X X X X X

Idle Timing Log Ö X X X X X
Content Inspection

Timing Ö Ö X Ö X X

Trustworthiness
Likert Ö X X X X X

Trust / Did Not
Trust Decision Ö Ö Ö X X Ö

Eye Movements Ö X Ö Ö Ö X
Fixation Point of

Gaze Ö X Ö Ö Ö X

Right/Left Point of
Gaze Ö X Ö Ö Ö X

Single Best Point of
Gaze Ö X Ö Ö Ö X

Pupil / Eye 3D
positioning Ö X Ö Ö Ö X

Pupil Dilation Ö X X X X X

The first, Anti-Phishing Phil, is an online game

designed to teach young people anti-phishing habits
through a fish and worm gamified metaphor [8].
Players try to ‘eat’ good worms and avoid bad worms
to get points in the game. The second, higher fidelity
comparison point, was a study by Whalen and Inkpen
investigating users’ browser security habits. Their
work captured eye tracking data and screen activity
such as mouse movements and scrolling as users
engaged with content in a browser [5]. Another study,
by Darwish and Emad, explored user behaviors
exhibited while viewing online logon pages [34].
Perhaps the closest study to our work, was one

Page 868

conducted by Miyamoto et al., that explored the
connection between victimization the structure of
legitimate and phishy websites. In their work
screenshots of both types of websites were presented
to users and eye trackers were used to log eye
movements [6]. The final study we examined in our
comparative analysis, conducted by Halevi, et al. [39]
is prototypical of industry standard ‘in the wild’
testing. In the wild studies of this type actively phish
users by sending internal emails that contain links that,
when clicked, enroll employees in remedial training.

6.2. Data Capture / Fusion Performance

Data capture and fusion performance was

examined in the second evaluation. Two testing
environments were used as benchmarks: client and
backend. The client environment used in this study
was a Windows 10 machine with the following system
specifications: Intel® Core ™ i7-6700k CPU @ 4.0
GHz, 4001Mhz, 4 core (8 logical cores), 16GB RAM
(DDR-2400Mhz), Windows 10 v10.0.14393, Chrome
v58.0.3029.110 (64bit), Sandisk x300 SSD (6.0GB/s).
The ‘backend’ environment was a Docker container
allocated 3 CPU Cores (2.9GHz) and 4GB RAM
(1867 MHz DDR3).

Client test data, discussed below, was gathered
using the Google Chrome developer toolkit1. These
tools profile the in-browser performance of the
application. To collect containerized backend test
data, we used Google’s open source tool cAdvisor (or
Container Advisor)2 in conjunction with Docker.

Two evaluative criteria were used. Both criteria
touch upon two user stories in Cybertrust: As an end
user, I want to view and rate online content, so that I
can learn to identify and avoid phish; and As an
experiment designer, I want end-user data to be
captured and logged, so I can better understand the
behavioral intricacies of phishing victimization.

Criteria 1: The end-user test subject should not
observe any performance hits during data collection
and logging and should be able to complete tasks (e.g.
view and rate online content) unimpeded.

Criteria 2: All captured data points collected during a
subject’s session should be sent to, parsed, and stored
by the backend data API server without loss.

To test the performance along these two criteria,
we simulated typical end-user in a typical data capture
session. The notion of ‘typical’ was based upon
previous studies [5-7], where we noted that content
examination tasks rarely exceeded 30 seconds in

1 https://developer.chrome.com/devtools

duration. Using this as a baseline, we simulated end-
user mousing data using a test script that fed random
mouse movement events to the system at the hardware
level. The browser environment detected these
movements as user interactions. During this same
time, a tester sat in front of the Gazepoint GP3 eye
tracker and randomly looked around the screen to
generate eye tracker events. We repeated this test 30
times and averaged the results.

Across the 30 tests, the average client reaction time
to a user interaction event, during full data collection
load, was 68ms. This met Criteria 1. Full load
collection consisted of (on average) 150 events per
second of eye tracker data and 95 events per second of
mousing data (this is determined by the randomness of
the mousing script, but largely maps to realistic human
behavior [26]). This amounts to 4500 eye events and
2850 mouse events per 30 second task. Each eye event
data record was, on average, 1020 Bytes (in JSON API
format) and each mouse event record was, on average,
452B. This amounted to 4.59MB of eye data and
1.29MB of mouse event data. Figure 5 shows an
example client capture session (1 of the 30 runs) of
client test results as they appear in the profiling tool.

Figure 5. 1 of 30 Client session captures showing

(top to bottom) CPU and FPS, network request
frequency, user interactions, JS call stack (main),

and JS Heap, listeners, and DOM nodes

Despite the low size of data records, during task
performance, the Javascript heap size grew, on
average, by 271 MB. This was largely due to the high
number (3340 on average) of listener callback
functions that tended to stack up over time as part of
the ajax-based API invocations. Since each event
generated a network request there were 4500+2850
backend API calls (of type application/vnd.api+json),
or 245 network request per second. This turned out to
be an issue because the client queued up network
requests and which began to stack up as the session
time went on. This is shown in Figure 5 as a mostly
solid grey bar in the network row.

While this queue delay did not impact the client
responsiveness (i.e. Criteria 1) or the server
performance it caused issues for data integrity (i.e.

2 https://github.com/google/cadvisor

Page 869

Criteria 2). In fact, it took more than 4 minutes, on
average, after the 30 second task performance session
completed, for the client to catch up and issue all of
the ajax requests placed in its queue from the task
session. The issue is that if the user closed their
browser, all queued requests would be lost.

On the backend server side, the performance of the
API was admirable. Figure 6 shows a capture of
container performance in one of the 30 tests as
monitored and reported by cAdvisor. Across the 30
tests, CPU utilization maxed out at 33% (at full load).
Memory usage did not exceed 150MB and was, on
average less than 100MB, much less than the 4GB
allocated to the container. Average total request
handling time (per request) was 30ms. The one issue
encountered on the backend was in the database
Docker container. Here, the high number of requests
per unit time resulted in 8 database locks (SQLLite).
Based on this issue and the queue delay problem, the
platform did not meet Criteria 2 and more work was
needed to deal with these inefficiencies.

Figure 6. Backend container CPU (top) and

memory (bottom) performance during a test run.

To mitigate these problems, we made two changes:
one to the client and one to the backend. On the client-
side we instituted a batch-commit strategy that
accumulated 150 eye events before committing and
100 mouse events (roughly 1 second’s worth). This
immediately reduced the number of network requests
down to 1.95/s (instead of 245/s). Overall, this
increased the average backend request handling time
to 350ms, due to the parsing required to handle the
batch data, but reduced the network queue on the client
side. This reduced the number of average listeners per
30s user session to 1200 (mostly associated with the
application itself, instead of ajax callbacks), and the JS
Heap size to a maximum 60MB. It also drastically
decreased the main call stack – since the application
did not need to queue network requests. On the server,
our data collection strategy resulted in ~250 INSERT
queries per user per second. Hence, we switched from
SQLLite to PostgreSQL, a much more robust SQL
database backend capable of handling hundreds of
thousands of queries per second. With PostgreSQL,
we can support around 275 simultaneous user data

capture sessions on the test backend configuration and
can scale up vertically with higher memory allotments.
With the combined changes, Criteria 2 was met.

6.3. Post-fusion Data Precision

Using the client test environment described in

Section 6.2, this section evaluates the timing precision
of fused data collected and aggregated by Cybertrust
2.0. Timing precision analysis is important when
capturing unique data streams running in various
disparate environments (such as in-browser data
captures vs eye tracker hardware/api/container). For
this reason, precision is evaluated for each information
capture type described previously in Section 4.

The first class of data, i.e. mouse and keyboard
events, all use the same capture timing mechanisms.
This includes mouse movement, mouse selection,
mouse clicks, and key press. As discussed briefly in
Section 4 each of these event handlers uses
Javascript’s high resolution time module, i.e.
performance.now(), latency, to resolve event timings
to the nearest 5µs. Using the profiling tools in Chrome,
we found that our platform achieves an average timing
accuracy of 800µs for mouse and keyboard events.
This timing includes the latency between initial event
firing and data logging. The timing is also much more
accurate than using the Date library [37] which is
subject to system clock skew of up to 300ms.

Application level event data have various time
precisions. The first, idle time is significantly less
accurate than any other event capture mechanism in
Cybertrust 2.0, but is still highly accurate with respect
to user behavioral timings. It has an average accuracy
of 100ms. Unlike other types of event captures in
Cybertrust, idle time is a measure of when something
isn’t happening, so it must wait to observe other event
handlers to ensure none of them are firing. This means
it is subject to the asycnronicity and length of the event
processing queue. If no handlers execute within a
100ms timing interval, a handler in Cybertrust
executes to log an idle event. As soon as another user
event handler executes, the idle handler executes again
and logs the idle time length to the backend.

The time tracking data type is, on average, accurate
to 805µs. This is because the start time, tts, is not
subject to event handler latency, and therefore has a
timing precision of 5µs. The parameter *tte, marking
the end of a task, is subject to the same event handler
latency associated with the mouse and keyboard
events – since the event is not processed until its
handler is called, which occurs on average after 800µs.

The last time-sensitive application event data type
is session timing. The starting timestamp, sts, is

Page 870

accurate to 5µs, while the ending timestamp, ste, is
accurate to 5 minutes (if the user does not actively
‘logout’ and ste uses the server-side session timeout)
at worst, or 800µs (if the user actively logs out). Users
will be asked to logout when their session is complete
to alleviate this issue.

The last type of data, eye events, is by far the most
precisely accurate. Events generated by the GP3 have
an on-average time resolution of 333 nanoseconds.
This order of magnitude difference compared to the
mouse and key data capture precision is based on the
windows Query Performance Counter data collected
by the GP3 in its t-tick field. This data allows the GP3
to precisely identify the moment of capture based on
the CPU cycle data collected in windows.

7. Conclusion

This work defines a three-layered data fusion
model along with information capture mechanisms
capable of gathering, aggregating, and streaming user
interaction data in real-time during end-user phishing
content assessment. Our approach provides
researchers with better investigative tools for
exploring and analyzing phishing victimization. Using
a three element evaluation, we show that the approach
is performant, produces precise, fusable data, and
exceeds the information capture capabilities of other
studies and platforms in the literature.

8. References

[1] "The Cost of Phishing: Understanding the True Cost Dynamics

Behind Phishing Attacks," Cyveillance news, 2009.
[2] "315,000 new malicious files every day," Kaspersky press, 2013.
[3] Verizon, "2016 Data Breach Investigations Report," 2016.
[4] K. Kreijns, P. A. Kirschner, and W. Jochems, "Identifying the

pitfalls for social interaction in computer-supported collaborative
learning environments: a review of the research," Computers in
human behavior, vol. 19, no. 3, pp. 335-353, 2003.

[5] M. L. Hale, C. Walter, J. Lin, and R. F. Gamble, "Apriori
Prediction of Phishing Victimization Based on Structural Content
Factors," International Journal of Services Computing, 2016.

[6] M. L. Hale, R. Gamble, J. Hale, M. Haney, J. Lin, and C. Walter,
"Measuring the Potential for Victimization in Malicious Content,"
in 22nd IEEE International Conference on Web Services, 2015.

[7] M. L. Hale, R. F. Gamble, and P. M. Gamble, "CyberPhishing: A
Game-Based Platform for Phising Awareness Testing," in 48th
Hawaii International Conference on System Sciences, 2015.

[8] J. Staggs, R. Beyer, M. Mol, M. Fisher, B. Brummel, and J. Hale,
"A perceptual taxonomy of contextual cues for cyber trust," in
Colloquium for Info. System Sec. Education, 2014.

[9] X. R. Luo, W. Zhang, S. Burd, and A. Seazzu, "Investigating
phishing victimization with the Heuristic–Systematic Model: A
theoretical framework and an exploration," Computers & Security,
vol. 38, pp. 28-38, 2013.

[10] T. Whalen and K. M. Inkpen, "Gathering evidence: use of visual
security cues in web browsers," in Proceedings of Graphics
Interface, 2005.

[11] D. Miyamoto, G. Blanc, and Y. Kadobayashi, "Eye Can Tell: On
the Correlation Between Eye Movement and Phishing
Identification," in Intl. Conf. on Neural Info. Processing, 2015.

[12] R. T. Wright and K. Marett, "The influence of experiential and
dispositional factors in phishing: An empirical investigation of the
deceived," J. of Mgmt. Info. Sys., vol. 27(1), pp. 273-303, 2010.

[13] S. Sheng, Mannien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F.,
Hong, J., and Nunge, E., "Anti-Phishing Phil: The Design and
Evaluation of a Gamble that Teaches People Not to Fall for Phish,"
in Symposium on Usable Privacy and Security, 2007.

[14] R. C. Mayer, J. H. Davis, and F. D. Schoorman, "An integrative
model of organizational trust," Academy of management review,
vol. 20, no. 3, pp. 709-734, 1995.

[15] H. Gill, K. Boies, J. E. Finegan, and J. McNally, "Antecedents of
trust: Establishing a boundary condition for the relation between
propensity to trust and intention to trust," Journal of business and
psychology, vol. 19, no. 3, pp. 287-302, 2005.

[16] P. Dasgupta, "Trust as a commodity," Trust: Making and breaking
cooperative relations, vol. 4, pp. 49-72, 2000.

[17] T. H. Chiles and J. F. McMackin, "Integrating variable risk
preferences, trust, and transaction cost economics," Academy of
management review, vol. 21, no. 1, pp. 73-99, 1996.

[18] B. Harrison, A. Vishwanath, Y. J. NG, and R. Rao, "Examining
the Impact of Presence on Individual Phishing Victimization," in
48th Hawaii International Conference on System Sciences, 2015.

[19] R. Dhamija, Tygar, J.D., and Hearst, M., "Why Phishing Works,"
in ACM Conference on Human Factors in Computing, 2006.

[20] M. Blythe, Petrie, H., and Clark, J.A., "F for Fake: Four Studies on
How We Fall for Phish," in ACM Conference on Human Factors
in Computing Systems, 2011.

[21] U. Park, R. Mallipeddi, and M. Lee, "Human implicit intent
discrimination using EEG and eye movement," in International
Conference on Neural Information Processing, 2014.

[22] Y.-M. Jang, R. Mallipeddi, S. Lee, H. Kwak, and M. Lee, "Human
intention recognition based on eyeball movement pattern and pupil
size variation," Neurocomputing, vol. 128, pp. 421-432, 2014.

[23] B. Colombo, C. Rodella, S. Riva, and A. Antonietti, "The effects
of lies on economic decision making. An eye-tracking study,"
Research in Psychology and Behavioral Sciences, vol. 1, no. 3, pp.
38-47, 2013.

[24] R. Jacob and K. S. Karn, "Eye tracking in human-computer
interaction and usability research: Ready to deliver the promises,"
Mind, vol. 2, no. 3, p. 4, 2003.

[25] D. D. Salvucci and J. H. Goldberg, "Identifying fixations and
saccades in eye-tracking protocols," in Proceedings of the 2000
symposium on Eye tracking research & applications, 2000.

[26] M. C. Chen, J. R. Anderson, and M. H. Sohn, "What can a mouse
cursor tell us more?: correlation of eye/mouse movements on web
browsing," in Conf. on Human factors in computing systems, 2001.

[27] P. D. Allopenna, J. S. Magnuson, and M. K. Tanenhaus, "Tracking
the time course of spoken word recognition using eye movements:
Evidence for continuous mapping models," Journal of memory
and language, vol. 38, no. 4, pp. 419-439, 1998.

[28] I. Kirlappos, M. A. Sasse, and N. Harvey, "Why trust seals don’t
work: A study of user perceptions and behavior," in International
Conference on Trust and Trustworthy Computing, 2012.

[29] D. L. Hall and J. Llinas, "An introduction to multisensor data
fusion," in IEEE Intl. Symposium on Circuits and systems, 1997.

[30] H. Zhang, G. Liu, T. W. Chow, and W. Liu, "Textual and visual
content-based anti-phishing: a Bayesian approach," IEEE Trans.
on Neural Networks, vol. 22, no. 10, pp. 1532-1546, 2011.

[31] M. Kantardzic, C. Walgampaya, B. Wenerstrom, O. Lozitskiy, S.
Higgins, and D. King, "Improving click fraud detection by real
time data fusion," in Intl. Symp. on Signal Processing and IT, 2008.

[32] N. A. Giacobe, "Measuring the effectiveness of visual analytics
and data fusion techniques on situation awareness in cyber-
security," The Pennsylvania State University, 2013.

[33] Django. Available: http://www.djangoproject.com/
[34] J. L. Carlson, Redis in Action. Manning Publications Co., 2013.
[35] J. Cravens and T. Q. Brady, Building Web Apps with Ember. js,

O'Reilly Media, Inc., 2014.
[36] github.com/elwayman02/ember-user-activity, 2017.
[37] W3C, "High Resolution Time Level 2 Standard," 2016.
[38] Gazepoint, "Gazepoint GP3 HD," 2017.
[39] T. Halevi, N. Memon, and O. Nov, "Spear-phishing in the wild: A

real-world study of personality, phishing self-efficacy and
vulnerability to spear-phishing attacks," 2015.

Page 871

