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Abstract 
 

Online environments, including email and social 
media platforms, are continuously threatened by 
malicious content designed by attackers to install 
malware on unsuspecting users and/or phish them into 
revealing sensitive data about themselves. Often 
slipping past technical mitigations (e.g. spam filters), 
attacks target the human element and seek to elicit 
trust as a means of achieving their nefarious ends. 
Victimized end-users lack the discernment, visual 
acuity, training, and/or experience to correctly 
identify the nefarious antecedents of trust that should 
prompt suspicion. Existing literature has explored 
trust, trust-propensity, and victimization, but studies 
lack data capture richness, realism, and/or the ability 
to investigate active user interactions. This paper 
defines a data collection and fusion approach 
alongside new open-sourced behavioral analysis 
tooling that addresses all three factors to provide 
researchers with empirical, evidence-based, insights 
into active end-user trust behaviors. The approach is 
evaluated in terms of comparative analysis, run-time 
performance, and fused data accuracy.  

 
 

1. Introduction  
 

Malicious web content has bombarded user 
inboxes, social media feeds, and other online 
environments since the invention of the underlying 
supporting technologies. It is a problem that affects 
millions of web users daily and causes billions of 
dollars in yearly economic damage [1] to companies 
and individuals. Malicious content takes on a variety 
of forms including targeted (e.g. spear and whale) and 
untargeted phishing emails, social media posts, and 
websites that emulate the look and feel of legitimate 
sites. While spam filters and other technical measures 
prevent many phishing campaigns from reaching their 
targets, many millions of phishing emails and social 
media posts make it to their potential victims daily – 
putting the onus of phishing prevention into the hands 

of the end user. In 2012, approximately 156 million 
phishing emails were sent out world-wide every day 
[2], about 16 million made it through spam filters 
(despite a wealth of research and development), 8 
million were opened and, in the end, 80,000 people 
became victims. In business environments, targeted 
phishing campaigns have been shown to be even 
worse, with success rates that netted up to 20% of 
users depending on the sector [3]. Clearly, phishing 
remains a human problem.  

Security professionals and hackers have long 
known that humans are the weakest link in any cyber 
system.  Adversaries tactically exploit user decision-
making processes, preying on their propensity to trust 
based on certain learned contextual cues and 
environmental influences [4].  

In previous work [5-7], we explored the human 
problem of phishing from the perspective of how and 
why structural elements in phishing attacks trick and 
victimize users. We designed a gamified 
experimentation platform, called Cybertrust, for 
presenting users with realistic web content (both 
malicious and innocuous) and investigating which 
types of content prompted suspicion and which types 
elicited trust. Using Cybertrust, and structural 
taxonomies of phishing content from the literature, 
particularly [8], we identified and published a set of 
structural trust factors, on nefarious and legitimate 
antecedents of trust, to classify malicious content 
based on which patterns of cognitive cues of trust and 
suspicion it contained. Using these patterns, we 
developed a phishing victimization prediction model 
[5-7]that pinpointed the effects of each pattern on 
victimization potential. Unlike heuristic models that 
emphasize economic advantage and user cognitive 
effort minimization as the primary driver for 
victimization [9], our model emphasized content 
structure as a victimization determinant. Validating 
the model (p=0.01) with an experimental study 
involving 80 subjects and over 5400 individual trust 
decisions, we showed that using the purely a priori 
structural patterns within content we could  
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successfully predict actual victimization for youthful 
populations of users (18-25 demographic).  

While our previous work explored structural 
antecedents of trust as they related to the content, our 
platform suffered (like other studies and phishing 
research platforms [10-13]) from a lack of data 
collection and analysis robustness. In this paper, we 
define and exemplify a data collection and fusion 
approach that gathers user-centric behavioral data to 
support investigations of trust behavior that go beyond 
the content to examine the person interacting with it. 
With the goal of supporting future user studies into 
trust propensity, content trustworthiness, and training 
efficacy, the work described in the rest of the paper 
details the multi-perspective, multi-factor, data 
capture, fusing, and analysis tooling capabilities in 
what we have monikered “Cybertrust 2.0”. Among 
other content-based data, the new Cybertrust now 
collects user interaction data including eye tracking 
point of gaze, eye fixation points, 3D pupil modeling, 
mousing behavior, cognitive decision timing, and idle 
timing. While techniques and tooling have long 
supported collecting such data, our approach is novel 
because it collects, fuses, and streams this data to an 
experimentation interface in real-time. The timeliness 
of this data fusion enables new analysis tooling, such 
as real-time fixation-point/mousing heatmaps, point-
of-gaze/mousing time-correlated graphs, and pupil-
rate-of-change visualizations that can be used to 
provide empirical, evidence-based, insights into active 
end-user trust behaviors. 

The rest of the paper proceeds as follows. Section 
2 identifies relevant background. Section 3 overviews 
the Cybertrust Platform. Section 4 describes the new 
data capture components created for Cybertrust 2.0. 
Section 5 defines our approach to fusing collected 
user-interaction data. Section 6 evaluates the approach 
and Section 7 concludes the paper. 

 
2. Background  
 
2.1. Trust, Victimization, and Phishing  

 
When examining trust, it is important to identify 

and disambiguate the terminology. Our work uses 
terminology established in the foundational research 
of Mayer et al., in the so-called, Integrative Model of 
Organizational Trust [14] and empirical studies 
exploring this model, including those of Gill et al., 
[15]. In these works, trust is defined as “the 
willingness of a party to be vulnerable to the actions 
of another party based on the expectation that the other 
will perform a particular action important to the 
trustor, irrespective of the ability to monitor or control 

that other party” [14]. Here, the act of trusting is a 
unidirectional decision from trustor (risk taking party) 
to trustee (individual trusted by the trustor). This 
decision is preceded by antecedents of trust that 
include the behavioral profile of the trustor, the 
perceived characteristics of the trustee, and the nature 
of the interaction between the trustor and the trustee 
that precede the decision to trust. Victimization can 
occur if the trustee violates the trust of the trustor, 
particularly by misusing trust for gain at the expense 
of the trustor – for example in phishing campaigns.  

Many behavioral factors are involved when 
trustors make trust decisions. Measures meant to 
predict an individual’s likelihood to trust are often 
grouped into two categories: experience and 
disposition [12]. Disposition refers to an individual’s 
inherent characteristics which are determined by 
numerous biological and environmental factors over 
the course of years. These characteristics include 
personal identity attributes such as propensity to trust 
[15], honesty [16], and risk aversion [17]. In contrast 
to dispositional characteristics, which broadly apply to 
different areas, experience is domain specific. For 
example, expertise with online environments is likely 
to affect an individual’s trust in the cyber domain, but 
not in face-to-face communication.  

In a study exploring these factors within the 
phishing domain [12], 299 subjects were given 
questionnaires measuring experiential factors 
including computer self-efficacy, web experience, and 
security knowledge as well as dispositional factors 
including trust propensity, risk aversion, and 
suspicion. Subjects completed coursework covering 
internet security and phishing and were reminded daily 
in class to never divulge their codes to anyone. At the 
end of the course, a phishing email was sent to each 
subject requesting their secret code. Approximately 
one third of the subjects in the study [12] failed to 
recognize the phishing attack and responded with their 
codes. Hence, experiential factors have a much larger 
impact on phishing success than dispositional ones.  

Social presence is a concept defining the 
subjective and psychological experience of how 
information richness influences the persuasive effects 
of email. Harrison, et al. [18] constructed an 
experiment to examine the amount of social presence 
in email and its relation to phishing victimization. The 
information richness that they deploy shows how 
sophistications (i.e. content features that appear 
legitimate) can successfully dupe users by preventing 
them from noticing degradations (i.e. content features 
that are associated with malicious intent). Dhamija, et 
al., [19] investigate social presence and user awareness 
of website design. They found that attacks were more 
successful using various forms of visual deception that 
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rely on a lack of user knowledge of security indicators. 
Their work, which included 22 participants examining 
20 legitimate and fraudulent websites, found that often 
people miss cues associated with trusted elements, 
such as certificates or padlocks in the browser, as well 
as cues associated with suspicious elements, such as 
an incorrect web address in the address bar. Findings 
in [20] suggest that these cues may be missed when a 
site includes sophisticated features that elicit trust, 
such as embedded brand logos  in mass notifications 
from a recognized bank.   

 
2.2. Eye Trackers Behavioral Analysis  

 
Studies [21-24] have explored the connection 

between empirically observable eye movements and 
behavioral intention. Some [22], have specifically 
focused on fixation point of gaze as a correlate of 
behavior. Heatmaps and fixation paths [25] are 
visualization tools typically used to explore and 
analyze eye tracker data. These tools provide clear 
depictions of the areas of coverage and time-correlated 
traces of eye movements as they interact with content.  

Eye trackers have been extensively used within the 
psychology [21, 23] and usability communities [24, 
26] to help answer a number of behaviorally-oriented 
questions, such as what mental models govern the 
user’s understanding of images and text [27] presented 
to them, or what screen space is used and/or wasted in 
the design of an interface [24]. 

While some eye tracking studies have explored 
trust behaviors in the context of economic decision 
making [23] and other similar trust scenarios, few have 
focused on phishing victimization. Among the few, 
Miyamoto et. al. captured eye movements as users 
examined phishing websites in a 2015 study titled Eye 
Can Tell: On the Correlation between Eye Movement 
and Phishing Identification [11]. Their study, post-
hoc, identified inferential patterns of eye behavior that 
mapped to user intentions and outcomes (trusting or 
not trusting content). Inferential patterns were based 
on the number and duration of fixations. Their results 
demonstrate feasibility, but are limited to the sample 
size of participants and by the inability to analyze eye 
movement behaviors in-real time.  

In another, earlier 2012 study, Kirlappos and Sasse 
[28] explored  trust seals, i.e. seals of approval or 
validation such as Verisign® or DigiCert® using eye 
tracker data to determine if seals were effective to 
protect online shoppers. They found that users largely 
ignored trust seals and instead tended to rely on self-
developed, but possibly unfounded ways of noting site 
trustworthiness, such as perceived site quality or 
references to other recognizable trusted entities.  

 

2.3. Multitiered Data Fusion 
 

Data fusion is a concept that largely originated in 
the 1990s with Hall and Llinas [29]. The core concept 
is simple: combine multiple data streams, usually 
sensor data, into a single stream to achieve some goals 
– which may be greater than the sum of the parts.  In 
the context of security, several studies [30-32] have 
explored data fusion approaches to yield multi-
perspective insights into security problems of interest. 
In dissertation work [32], Giacode examined data 
fusion in the context of visual analytics to determine 
the effectiveness of different sensor monitoring 
interface design parameters on conveyed security 
situational awareness. Another study[31], examined 
data fusion approaches for examining user clicking 
behaviors in the context of preventing click fraud – 
which is a type of fraud where a scripted tool clicks 
online pay-per-click online advertisements to generate 
revenue for the site owner (usually the same person). 

Lastly, and most relevant to our work, Zhang et al, 
[30] examined data fusion approaches for building a 
phishing-site classifier. Their work used online data 
sets of textual and visual content in combination with 
a Bayesian model to create a classifier to detect phish. 
Data from text and visual analytics were fused 
together – which resulted in a better classifier than the 
sum of the individual classifier parts achieved. More 
specifically, the fusion algorithm selected the 
classifier (text, visual, or both) that held the largest 
probability of correctness, where correctness of each 
classifier was estimated using the Bayesian model. 

 
3. The CyberTrust Platform 
 

The Cybertrust platform is a multi-component, 
partially open-sourced, framework that supports 
multi-modal user interaction studies involving 
malicious online content. The platform, provides two 
main interfaces, tooling for creating experiment 
content (admin view) and the simulated online that 
study subjects interact with (subject view).  

Admin view includes four major subcomponents: 
an email creation tool, a social media post creation 
tool, an experiment workflow designer, and the 
behavioral analysis toolkit. The first two components 
allow experiment designers to craft malicious and 
innocuous content items that study participants will 
later see. The third allows the designer to arrange those 
content items temporally into a gamified workflow that 
is meant to simulate the kinds of real-world tasks 
subjects do daily. The last component is a new addition 
made in this paper that provides a front-end interface 
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for researchers to explore captured subject data. The 
interface is discussed further in the next section. 

On the subject side, study participants have access 
to several key components, including: the task pane 
which acts as a game driver to move task performance 
forward, an inbox view which emulates the look and 
feel of Google’s Gmail® interface to display and 
allows users to interact with emails, and a social media 
feed that emulates the look and feel of Twitter®. 
Figure 1 shows a close up of an email in inbox view as 
a subject would view it in the platform. Pathways such 
as hover over and certificate inspection tools are 
available to users to simulate realism. Current work is 
underway to interpose a global training interface that 
spans these components to enable training feedback.  

 

 
Figure 1. Malicious email in inbox view. 

Cybertrust 2.0 has been architecturally redesigned 
to capture, stream, and aggregate subject behavioral 
data for use in phishing trust and victimization studies. 
The new design, as shown in Figure 2, is composed of 
several Docker containers and a client app. The first 
two containers reside on the backend as shown on the 
right side of Figure 2. The first container exposes an 
Apache webserver running a Django [33] RESTFul 
API in a python kernel. The API maintains endpoints 
to 1) serve client requests for experiment tasks to allow 
subjects to interact with the malicious and legitimate 
content of interest in the experiment and 2) endpoints 
that capture and persist user analytic data (eye events, 
mouse events, and app events).  The second container 
encapsulates a SQL database that the Django API uses 
as a persistence layer for task and user behavioral data. 

 
Figure 2. Cybertrust 2.0 containerized architecture 

The client side, shown on the left side of Figure 2, 
includes a physically-connected Gazepoint GP3 
device, another Docker container, and the client app in 
a Chrome browser. The GP3 streams eye movement 
events, discussed further in Section 4.3, to its open 
API. The last container collects, converts, and 
standardizes data from the GP3 API before streaming 
it to the client app using websockets. To handle the 
rapid, asynchronous, event processing required to send 
and consume websocket messages, we use redis [34] 
and Django Channels, an asynchronous plugin for 
Django. The last portion of the client, is the Cybertrust 
2.0 app as shown architecturally in Figure 3.  

 

 
Figure 3. Client component architecture 

Implemented in Ember.js [35] and running in a 
Chrome browser, it provides the administrator and 
subject-facing interface components discussed above. 
The app also includes several new components that 
manage data collection and review (i.e. Mouse 
Tracker, Eye Tracking Connector, and Behavioral 
Analysis Toolkit). The first two are information 
capture elements that collect and aggregate data during 
subject sessions. The third is a post-hoc review tool 
that administrators can use to review captured subject 
data. We discuss these further in the next section.  

 
4. Capturing Empirical Measures of Trust  
 

Information capture capabilities are critical in any 
platform that seeks to understand and reason about the 
fundamental behavioral underpinnings that govern 
end-user trust decisions. The new Cybertrust 2.0 
platform captures end user interaction data including 
mouse and keyboard events, application-level events 
related to trust decision making, as well as eye tracking 
events. These data provide multiple evidence-oriented 
perspectives that can be used to identify how user 
decisions materialize when engaging with malicious, 
untrustworthy, content. Each Cybertrust 2.0 
information capture mechanism is defined below, in 
terms of the specific subfields captured and the 
technical tooling involved in the capture. 
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4.1. Mouse and Keyboard Events 
 
Upon logon, the platform begins to track all 

mouse and keyboard events. The volume of events 
captured is associate to the intensity of the user’s 
interaction with the application. As defined below, a 
typical capture varies from 15hz to 60hz. Our platform 
uses and extends an open source JavaScript tool [36] 
to capture the mouse and keyboard events below. 

 

Mouse Movement: On a user mouse movement event, 
capture {x, y, w, h, t}, where x and y identify the pixel 
coordinates of the mouse, in two-dimensional screen 
space, x ≤ w and y ≤ h), w and h define the maximum 
screen size (in pixels), and t is the time when the 
mouse event occurred. Our capture mechanism relies 
on a custom implementation of the onMouseDown 
event, that uses the W3C standard high resolution time 
level 2 specification [37] to provide much more 
precise timings. The standard provides worst-case 
resolvable timing skew of 5µs. Other mouse and 
keyboard events also use high res. timing. 
 

Mouse Selection: On a user mouse up event, capture 
{ht, t} where ht is highlighted text and t is the high-
resolution timestamp when the event occurred. If no 
text is highlighted this event is ignored.  
 

Mouse Clicks: On user mouse down capture {x, y, w, 
h, t}. Similarly, to mouse movement, x and y define 
pixel positions in screen coordinate space, w and h 
define the max screen width and height, and t is the 
timestamp when the click event occurred.  
 

Key Press: On a user key down event, capture {k, t}, 
where k is the Unicode character identifying the key 
pressed (as translated from its browser-specific 
keycode) and t is the time the event occurred.  
 
4.2. Application-level events 
 

When a user session begins, the application begins 
logging trust decisions and timing events as users 
engage with tasks. Since application level events are 
high level and associated with task performance, they 
are captured much less frequently than mouse and eye 
tracker data.  

 

Session Timing: Upon subject login, capture {sts, ste}, 
where sts and ste are high-resolution timestamps 
identifying the start and end times of the user’s 
session.  
 

Time tracking (task): When a subject views task 
content (e.g. views an email) capture {tts, tte, tid}, 
where tts and tte are the start and end times that 

identify how long the user views content associated 
with the task, with id tid.  
 

Likert scale: After a user views task content (e.g. 
views an email) but before they make a binary trust 
decision they must rate the trustworthiness of the 
content, by selecting very trustworthy, trustworthy, 
unsure, untrustworthy, or very untrustworthy.  
 

Binary trust decision: After a user rates the 
trustworthiness of the content, they must either trust or 
distrust the content by clicking a button with a 
contextually relevant message. Once a binary decision 
is made capture {tid, lrt, tr}, where tid is the task id, 
lrt is trustworthiness captured by the Likert scale and 
tr is a Boolean for trust (true) or do not trust (false).  
 

Idle time: When a user goes into an idle state, capture 
{it, et}. Where it and et are high resolution timestamps 
identifying the start and end times of user idling. A 
function executes periodically to determine if another 
event has occured, if not a new it value is logged. 
When the next event occurs the time is logged as et.  
 
4.3. Eye Tracker Events 

 
Upon logon, the Cybertrust platform initiates an 

eye tracker session with the Gazepoint GP3 HD [38] 
and begins logging eye movement events, as defined 
below, at 150hz. The GP3 exposes data using an open 
XML-based API. The hardware driver for GP3 also 
normalized the data as the subject moved around. In 
our work, we created a new, open-source, websocked-
based interfacing server that converts GP3 events to 
JSON and streams them to the Cybertrust 2.0 client.  

Eye Movement events are logged following the 
schema: {tid, cnt, et, t-tick, msg, cx, cy, fpogid, fpogd, 
fpogs, fpogv, fpogx, fpogy, bpogx, bpogy, bpogx, 
lpogx, lpogy, lpogv, rpogx, rpogy, rpogv leyex, leyey, 
leyez, lpupild, lpupilv, reyex, reyey, reyez, rpupild, 
rpupilv, lpcx, lpcy, lpd, lps, lpv, rpcx, rpcy, rpd, rps, 
rpv} where tid is the application-level task that the user 
is currently interacting with (if any); cnt is internal 
record counter (record id) used by the Gazepoint GP3; 
et is the system Datetime stamp corresponding to the 
current system time; t-tick is a signed 64-bit integer 
which identifies the number of CPU time ticks 
involved in the event and is used by windows’ Query 
Performance Counter (QPC) for high-resolution 
timing based on CPU time stamp counters (TSC); and 
msg is an optional field that can be used to ‘tag’ an 
event with textual data (such as debug information). 
Other values include cx and cy which identify mouse 
x, y positions (in screen coordinate space) detected by 
the GP3. These are useful for correlating to application 
detected events, discussed in Sections 4.1 and 4.2.  
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The fields fpogid, fpogd, fpogs, fpogv, fpogx, and 
fpogy, are parameters related to the fixation point of 
gaze which identifies the id of the fixation point, the 
starting timestamp (s) when it begins, the duration (d) 
it lasts, the x and y pixel positions in screen coordinate 
space where the user is fixating, and a Boolean validity 
value (v) indicating whether the fixation is valid or not 
– based on pupil analysis algorithms on the GP3 
hardware. The fields bpogx, bpogy, bpogx, lpogx, 
lpogy, lpogv, rpogx, rpogy, and rpogv are point of gaze 
variables for the best (b), right (r), and left (l) pupils. 
Essentially, the GP3 computes individual points of 
gaze for the right and left eyes and then 
algorithmically combines them for the best (average) 
point of gaze. In each of the b, r, and l fields: *pogx 
and *pogy are the (x,y) pixel positions of the point of 
gaze and *pogv is a Boolean value similar to fpogv that 
identifies if the point of gaze is valid or not. The 
validity value is 0 (false) if the subject blinks or the 
pupil is obscured and 1 (true) otherwise. 

The fields leyex, leyey, leyez, lpupild, lpupilv, 
reyex, reyey, reyez, rpupild, and rpupilv are related to 
the 3D position of the eyes. The fields *eyex, *eyey, 
and *eyez identify the (x,y,z) coordinate positions of 
the left and right eyes, relative to the GP3 camera focal 
points. The other fields *pupild and *pupilv represent 
the diameter (d) of the eye and whether the 
measurement is valid (v) for the left and right eyes. 

Finally, the remaining fields, i.e. lpcx, lpcy, lpd, 
lps, lpv, rpcx, rpcy, rpd, rps, and rpv, represent image 
data regarding the positioning of the left and right 
pupils. The *pcx and *pcy values stand for pupil center 
x and y coordinates that identify the center of the left 
and right pupils in the image snapped by the camera, 
as a fraction of the camera image size (note there are 
150 images captured per second).  The *pd value 
identifies the pupil diameter in the image. The *ps 
value represents the scale factor of the pupil. When 
users are at the calibrated distance, the scale factor is 
1. If they move back from their calibrated position, the 
factor is greater than 1. Inversely the value is less than 
1 if they move closer to the device. The scale factor is 
useful for ensuring that users stay positioned correctly 
and for correcting measurements if they do not. Lastly, 
the *pv measurement is a Boolean indicating the 
validatity of the pupil data.  

Overall, our websocket-based streaming data client 
integration allows the Cybertrust 2.0 platform to 
consume eyetracker events in near-real time. The 
specific timing information regarding the precision of 
this data in the client is discussed later in Section 6.3. 
This near-real time streaming enables several training 
and analysis directions unexplored in the phishing 
victimization prevention literature, e.g. just-in-time 
training that highlights areas indicative of suspicion. 

5. Fusion Techniques for Trust-relevant 
Interaction Data 

 
Taken individually by capture mechanism, each 

data stream empirically identifies facets of behavioral 
patterns that users reveal as they make trust decisions. 
When fitted together, the pieces begin to fuse into an 
overall picture of behavioral tendencies. In this 
section, we describe our data fusion approach and a 
few real-time analytics tools enable research 
directions that go beyond post-hoc analysis. While the 
visualizations underpinning the tools, i.e. heatmaps 
and event graphs, are not novel, the timeliness and 
applicability to behavioral studies investigating 
phishing victimization set the tools apart. These novel 
aspects are just demonstrative of the type of outcomes 
that the data capture and fusion approach can provide.  

Central to our approach is a universal event 
timestamping strategy. The same internal system clock 
is used by all capture mechanisms, so that we can 
accurately fuse data streams into a single view, 
without the worry of distortions due to clock skew. 
The specific precision of data capture mechanisms is 
discussed later in Section 6.3. For now, know that each 
event capture has a time resolvability that the platform 
uses along with the timestamp to arrange all captured 
events into a workflow that allows a researcher to view 
events in real-time during user studies.   

Fused data is time-correlated and interlaced into a 
single stream. The stream itself is a three-layered 
model as shown in Figure 4, where each layer is 
timeline of events collected from a particular data 
capture stream (eye tracking, mouse tracker, and 
application data). Following this model, a cross 
sectional slice in time spanning the three 2D planer 
layers defines events related to a trust decision. Using 
a multilayer approach, such as this, provides 
researchers with the analytical flexibility to view a 
layer independently or in conjunction with others.  

 
Figure 4. Fused three-layered data streams in time. 

In addition to the layering, the fusion happens in 
real time, according to the timing of the data capture 
streams. This enables novel application use cases, such 
as real-time heatmap and event graph creation for real-
time training feedback, or real-time experimentation 
interjection by researchers. This can enable new 
behavioral study designs that interpose real-time 
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human or machine-in-the-loop feedback within or 
during task performance to explore the effects on 
mental model adjustment or trust antecedent 
considerations. Although interesting, such exploration 
is out of scope and left to future studies. 

To simply demonstrate the feasibility of real-time 
data analytics, we created two real-time analytics 
tools. The first, produces event graphs across the three 
layers in the data fusion model. These event graphs are 
nothing more than real-time stream timelines that 
researchers can view in real time as events are 
captured during subject task performance.  

The second tool is a real-time heatmap generator 
that researchers can use to visualize heatmappable user 
data. Heatmappable data includes eye tracking events 
and mousing events. Both contain x, y coordinate pairs 
that can be plotted in real time as users generate events 
of certain types. To implement this capability, we 
make a series of RESTful API requests to the backend 
container and then open a websocket from the backend 
to the researcher (admin) client that, respectively, 
retrieves previous data, and then allows them to 
consume all new incoming, trust relevant, interaction 
data generated during the active user session. Once all 
the necessary data is loaded and as it continues to 
stream in, JavaScript is used to fuse the events together 
in the multi-layer model. After fusion occurs, the 
output, is piped to visual components (either the event 
graph or heatmap) to be displayed. The researcher can 
choose which data to plot by picking from the layers.   

These analytical tools represent a step forward in 
empirical measurement of cognitive reasoning in 
phishing victimization studies. For example, 
analyzing eye tracking data, one can observe if a 
subject was focusing on the content defects or its 
sophistications, where sophistications are given by the 
content classification from [8], then act upon those 
observations by providing the subject with targeted 
training to help them recognize those problems in the 
future. Using mouse tracking data, one can observe if 
the user highlighted suspicious content, hovered over 
a link, or idled for a period of time. With his data, it 
might be possible to gain better insight on how they 
came to a decision and use the insight to mitigate 
similar victimization-causing decisions in the future.  

 
6. Evaluation 
 

To evaluate the data collection and fusion approach 
we compared it against other platforms and studies 
from the literature, assessed its run-time performance, 
and measured the precision of captured data. The 
methodology and results for each evaluation type are 
defined in the next sections. 

 

6.1. Comparative Analysis  
 

In the first form of evaluation, we compared the 
Cybertrust platform to five other studies in the 
literature. Comparisons were made according to three 
factors: the contextual realism of experimentation 
environment, trust antecedents investigated, and the 
types of interaction data gatherable in each. Table 1 
overviews this comparison, decomposing each factor 
into sub-factors (rows) according to the study explored 
(columns). Checkmarks indicate the factor is 
supported or present in the study and X’s indicate that 
it is not. Realism is rated from Low (L), to Medium 
(M), to high (H). All values are color coded, where red 
is bad and dark blue is best.  

Table 1. Feature and data collection capabilities 
comparison across studies. 

  Cybertrust Anti-Phishing            
Phil [8] 

Whalen 
[5] 

Darwish 
[34] 

Miyamoto 
[6]  

Halevi  
[39] 

Realism / Trust Antecedents 
Level of Realism M L M M L H 

In the Wild X X X X X Ö 
Email / Inbox Ö X Ö Ö X Ö 

Web sites X Ö X Ö Ö X 
Social Media Ö X X Ö Ö X 

Embedded Images Ö X Ö X X X 
URL Inspection 

(hover) Ö Ö Ö X X Ö 

Mouse interaction Ö X Ö Ö X Ö 
Certification 

Inspection Ö X Ö Ö Ö Ö 

Attachments Ö X X Ö X Ö 
Popups Ö X Ö X X X 

HTML Support Ö X Ö Ö X Ö 
Interaction Data Captured 

Mouseing History Ö X X X X X 
Key Press History Ö X X X X X 

Idle Timing Log Ö X X X X X 
Content Inspection 

Timing Ö Ö X Ö X X 

Trustworthiness 
Likert Ö X X X X X 

Trust / Did Not 
Trust Decision Ö Ö Ö X X Ö 

Eye Movements Ö X Ö Ö Ö X 
Fixation Point of 

Gaze Ö X Ö Ö Ö X 

Right/Left Point of 
Gaze Ö X Ö Ö Ö X 

Single Best Point of 
Gaze Ö X Ö Ö Ö X 

Pupil / Eye 3D 
positioning Ö X Ö Ö Ö X 

Pupil Dilation Ö X X X X X 

 
The first, Anti-Phishing Phil, is an online game 

designed to teach young people anti-phishing habits 
through a fish and worm gamified metaphor [8]. 
Players try to ‘eat’ good worms and avoid bad worms 
to get points in the game. The second, higher fidelity 
comparison point, was a study by Whalen and Inkpen 
investigating users’ browser security habits. Their 
work captured eye tracking data and screen activity 
such as mouse movements and scrolling as users 
engaged with content in a browser [5]. Another study, 
by Darwish and Emad, explored user behaviors 
exhibited while viewing online logon pages [34]. 
Perhaps the closest study to our work, was one 
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conducted by Miyamoto et al., that explored the 
connection between victimization the structure of 
legitimate and phishy websites. In their work 
screenshots of both types of websites were presented 
to users and eye trackers were used to log eye 
movements [6]. The final study we examined in our 
comparative analysis, conducted by Halevi, et al. [39] 
is prototypical of industry standard ‘in the wild’ 
testing. In the wild studies of this type actively phish 
users by sending internal emails that contain links that, 
when clicked, enroll employees in remedial training.  

 
6.2. Data Capture / Fusion Performance  

 
Data capture and fusion performance was 

examined in the second evaluation. Two testing 
environments were used as benchmarks: client and 
backend. The client environment used in this study 
was a Windows 10 machine with the following system 
specifications: Intel® Core ™ i7-6700k CPU @ 4.0 
GHz, 4001Mhz, 4 core (8 logical cores), 16GB RAM 
(DDR-2400Mhz), Windows 10 v10.0.14393, Chrome 
v58.0.3029.110 (64bit), Sandisk x300 SSD (6.0GB/s). 
The ‘backend’ environment was a Docker container 
allocated 3 CPU Cores (2.9GHz) and 4GB RAM 
(1867 MHz DDR3).  

Client test data, discussed below, was gathered 
using the Google Chrome developer toolkit1. These 
tools profile the in-browser performance of the 
application. To collect containerized backend test 
data, we used Google’s open source tool cAdvisor (or 
Container Advisor)2 in conjunction with Docker. 

Two evaluative criteria were used. Both criteria 
touch upon two user stories in Cybertrust: As an end 
user, I want to view and rate online content, so that I 
can learn to identify and avoid phish; and As an 
experiment designer, I want end-user data to be 
captured and logged, so I can better understand the 
behavioral intricacies of phishing victimization.  

 

Criteria 1: The end-user test subject should not 
observe any performance hits during data collection 
and logging and should be able to complete tasks (e.g. 
view and rate online content) unimpeded.  
 

Criteria 2: All captured data points collected during a 
subject’s session should be sent to, parsed, and stored 
by the backend data API server without loss. 
 

To test the performance along these two criteria, 
we simulated typical end-user in a typical data capture 
session. The notion of ‘typical’ was based upon 
previous studies [5-7], where we noted that content 
examination tasks rarely exceeded 30 seconds in 

                                                
1 https://developer.chrome.com/devtools 

duration. Using this as a baseline, we simulated end-
user mousing data using a test script that fed random 
mouse movement events to the system at the hardware 
level. The browser environment detected these 
movements as user interactions. During this same 
time, a tester sat in front of the Gazepoint GP3 eye 
tracker and randomly looked around the screen to 
generate eye tracker events. We repeated this test 30 
times and averaged the results.  

Across the 30 tests, the average client reaction time 
to a user interaction event, during full data collection 
load, was 68ms. This met Criteria 1. Full load 
collection consisted of (on average) 150 events per 
second of eye tracker data and 95 events per second of 
mousing data (this is determined by the randomness of 
the mousing script, but largely maps to realistic human 
behavior [26]). This amounts to 4500 eye events and 
2850 mouse events per 30 second task. Each eye event 
data record was, on average, 1020 Bytes (in JSON API 
format) and each mouse event record was, on average, 
452B. This amounted to 4.59MB of eye data and 
1.29MB of mouse event data. Figure 5 shows an 
example client capture session (1 of the 30 runs) of 
client test results as they appear in the profiling tool. 

 
Figure 5. 1 of 30 Client session captures showing 

(top to bottom) CPU and FPS, network request 
frequency, user interactions, JS call stack (main), 

and JS Heap, listeners, and DOM nodes 

Despite the low size of data records, during task 
performance, the Javascript heap size grew, on 
average, by 271 MB. This was largely due to the high 
number (3340 on average) of listener callback 
functions that tended to stack up over time as part of 
the ajax-based API invocations. Since each event 
generated a network request there were 4500+2850 
backend API calls (of type application/vnd.api+json), 
or 245 network request per second. This turned out to 
be an issue because the client queued up network 
requests and which began to stack up as the session 
time went on. This is shown in Figure 5 as a mostly 
solid grey bar in the network row. 

While this queue delay did not impact the client 
responsiveness (i.e. Criteria 1) or the server 
performance it caused issues for data integrity (i.e. 

2 https://github.com/google/cadvisor 
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Criteria 2). In fact, it took more than 4 minutes, on 
average, after the 30 second task performance session 
completed, for the client to catch up and issue all of 
the ajax requests placed in its queue from the task 
session. The issue is that if the user closed their  
browser, all queued requests would be lost.  

On the backend server side, the performance of the 
API was admirable. Figure 6 shows a capture of 
container performance in one of the 30 tests as 
monitored and reported by cAdvisor.  Across the 30 
tests, CPU utilization maxed out at 33% (at full load). 
Memory usage did not exceed 150MB and was, on 
average less than 100MB, much less than the 4GB 
allocated to the container. Average total request 
handling time (per request) was 30ms. The one issue 
encountered on the backend was in the database 
Docker container. Here, the high number of requests 
per unit time resulted in 8 database locks (SQLLite). 
Based on this issue and the queue delay problem, the 
platform did not meet Criteria 2 and more work was 
needed to deal with these inefficiencies. 

 
Figure 6. Backend container CPU (top) and 

memory (bottom) performance during a test run. 

To mitigate these problems, we made two changes: 
one to the client and one to the backend. On the client-
side we instituted a batch-commit strategy that 
accumulated 150 eye events before committing and 
100 mouse events (roughly 1 second’s worth). This 
immediately reduced the number of network requests 
down to 1.95/s (instead of 245/s). Overall, this 
increased the average backend request handling time 
to 350ms, due to the parsing required to handle the 
batch data, but reduced the network queue on the client 
side. This reduced the number of average listeners per 
30s user session to 1200 (mostly associated with the 
application itself, instead of ajax callbacks), and the JS 
Heap size to a maximum 60MB. It also drastically 
decreased the main call stack – since the application 
did not need to queue network requests. On the server, 
our data collection strategy resulted in ~250 INSERT 
queries per user per second. Hence, we switched from 
SQLLite to PostgreSQL, a much more robust SQL 
database backend capable of handling hundreds of 
thousands of queries per second. With PostgreSQL, 
we can support around 275 simultaneous user data 

capture sessions on the test backend configuration and 
can scale up vertically with higher memory allotments. 
With the combined changes, Criteria 2 was met.  

 
6.3. Post-fusion Data Precision 

 
Using the client test environment described in 

Section 6.2, this section evaluates the timing precision 
of fused data collected and aggregated by Cybertrust 
2.0. Timing precision analysis is important when 
capturing unique data streams running in various 
disparate environments (such as in-browser data 
captures vs eye tracker hardware/api/container). For 
this reason, precision is evaluated for each information 
capture type described previously in Section 4.  

The first class of data, i.e. mouse and keyboard 
events, all use the same capture timing mechanisms. 
This includes mouse movement, mouse selection, 
mouse clicks, and key press. As discussed briefly in 
Section 4 each of these event handlers uses 
Javascript’s high resolution time module, i.e. 
performance.now(),  latency, to resolve event timings 
to the nearest 5µs. Using the profiling tools in Chrome, 
we found that our platform achieves an average timing 
accuracy of 800µs for mouse and keyboard events. 
This timing includes the latency between initial event 
firing and data logging. The timing is also much more 
accurate than using the Date library [37] which is 
subject to system clock skew of up to 300ms.  

Application level event data have various time 
precisions.  The first, idle time is significantly less 
accurate than any other event capture mechanism in 
Cybertrust 2.0, but is still highly accurate with respect 
to user behavioral timings. It has an average accuracy 
of 100ms. Unlike other types of event captures in 
Cybertrust, idle time is a measure of when something 
isn’t happening, so it must wait to observe other event 
handlers to ensure none of them are firing. This means 
it is subject to the asycnronicity and length of the event 
processing queue. If no handlers execute within a 
100ms timing interval, a handler in Cybertrust 
executes to log an idle event. As soon as another user 
event handler executes, the idle handler executes again 
and logs the idle time length to the backend.  

The time tracking data type is, on average, accurate 
to 805µs. This is because the start time, tts, is not 
subject to event handler latency, and therefore has a 
timing precision of 5µs. The parameter *tte, marking 
the end of a task, is subject to the same event handler 
latency associated with the mouse and keyboard 
events – since the event is not processed until its 
handler is called, which occurs on average after 800µs. 

The last time-sensitive application event data type 
is session timing. The starting timestamp, sts, is 
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accurate to 5µs, while the ending timestamp, ste, is 
accurate to 5 minutes (if the user does not actively 
‘logout’ and ste uses the server-side session timeout) 
at worst, or 800µs (if the user actively logs out). Users 
will be asked to logout when their session is complete 
to alleviate this issue. 

The last type of data, eye events, is by far the most 
precisely accurate. Events generated by the GP3 have 
an on-average time resolution of 333 nanoseconds. 
This order of magnitude difference compared to the 
mouse and key data capture precision is based on the 
windows Query Performance Counter data collected 
by the GP3 in its t-tick field. This data allows the GP3 
to precisely identify the moment of capture based on 
the CPU cycle data collected in windows.  

 
7. Conclusion 
 

This work defines a three-layered data fusion 
model along with information capture mechanisms 
capable of gathering, aggregating, and streaming user 
interaction data in real-time during end-user phishing 
content assessment. Our approach provides 
researchers with better investigative tools for 
exploring and analyzing phishing victimization. Using 
a three element evaluation, we show that the approach 
is performant, produces precise, fusable data, and 
exceeds the information capture capabilities of other 
studies and platforms in the literature.  
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