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ABSTRACT:  It is well known that while there is a strong correlation between adoption of ICTs 
and economic growth there is also a corresponding strong correlation between the adoption of 
ICTs and increased ICT-related technological threats that can have severe economic and other 
negative consequences. Within this context cybersecurity has become a major issue in both 
“developed” and “developing” countries, with humans being considered the “weakest link in 
the chain” of system security. While the cybersecurity literature has previously explored 
constructs such as awareness and self-efficacy to explain cybersecurity compliance behavior, 
there has been no exploration of the impacts of individuals’ decision styles on cybersecurity 
related compliance behavior and some other antecedents of such behavior. In this paper we 
address this issue using an exploratory approach and present a causal model for consideration 
in future research. 

 
Keywords: Decision Style, Cybersecurity Compliance Behavior, Decision Tree, General Security 
Orientation, Awareness, Self-efficacy 
 
 
1. INTRODUCTION 

 
The Jamaican Government (GoJ), in its National Development Plan – Vision 2030 – posits that to 

achieve one of its national goals, sustainable development, by 2030, among other things, it has 

to create a technology-enabled society (Planning Institute of Jamaica 2009).  The expectation of 

the GoJ is that increased adoption of technology will boost productivity, efficiency and propel 

socio-economic growth.  This vision is realistic; research in other jurisdictions have 

demonstrated the correlation between information and communication technology (ICT) 

adoption and growth in gross domestic product (GDP) per capita (Amiri and Reif 2013; UNCTAD 

2006).  
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However, increased adoption of ICTs is positively correlated with increased technological 

threats and economic loss.  For instance, during a single six month period, January – June 2016, 

electronic fraud alone costs the Jamaican economy some $500 million (Williams 2016) and the 

WannaCry ransomware attack in May 2017 affected more than 300,000 victims in over 150 

countries (McAfee Labs 2017), negatively impacting citizens and disrupting business operations 

around the globe.  To cope with these technological or cybersecurity threats, security 

stakeholders have: i) implemented technology-based protection solutions; and ii) conducted 

cybersecurity awareness activities for users, recognizing that users’ are a key threat to 

achieving security because they often fail to adhere to the security best practices.  Humans are 

often considered the “weakest link in the chain” of system security (Sasse and Flechais 2005; 

Warkentin and Willison 2009).  

 
To improve users’ security compliance behavior, the literature emphasizes the need for 

managers and practitioners to focus on awareness initiatives (D’Arcy et al. 2009; Herath and 

Rao 2009; Puhakainen and Siponen 2010).  The idea is that awareness mechanisms such as 

posters, bulletins and newsletters can act as reminders to users to take appropriate security-

related actions.  However there is a scarcity of empirical studies that examine the direct link 

between security awareness and users’ compliance behavior. Stanton (2005) reported that 

through increased awareness measures, users changed passwords more frequently and chose 

better passwords.  Too, Bulgurcu et al. (2010) provide empirical evidence that general security 

awareness (GSAW) exerts significant influence on a user’s attitude toward compliance.  Donalds 

(2015) also provides empirical support for the link between security awareness and compliance 

behaviour.  Of note however, is that these studies examined security awareness in different but 

related contexts.  For instance, D’Arcy et al. (2009) examined the role of user awareness in 

relation to information system (IS) misuse while Herath and Rao (2009) examined the influence 

of security awareness on employees’ compliance with the organization’s information security 

policy (ISP).  Bulgurcu et al. (2010) also examined the influence of security awareness on 

employees’ compliance with the organization’s ISP, however, security awareness was 

conceptualized as having two key dimensions: “general security awareness” and “information 



 

 

policy awareness”.  Donalds (2015) examined the influence of users’ general awareness of 

cybersecurity threats on compliance behaviour.  Even though there is some evidence that the 

direct link between security awareness and compliance behavior is significant, work in the area 

is still limited and fragmented.  As a result, we wish to examine further the role of general 

security awareness in shaping users’ compliance behavior in the cybersecurity context.  Security 

compliance behavior in the cybersecurity context is hereafter referred to synonymously as 

cybersecurity compliance behavior.  

 
A construct that has been incorporated, but has gained little attention in the IS domain is 

general security orientation (GSOR).  According to Ng et al. (2009), general security orientation 

is an individual’s predisposition and interest concerning practicing computer security and is 

analogous to general health orientation of the health belief model. General health orientation 

captures the individual’s tendency towards performing healthy behaviors.   Since it has been 

observed that individuals with higher levels of health awareness have exhibited greater levels 

of healthcare behaviors (Jayanti and Burns 1998), it is reasonable to theorize that individuals 

with greater predisposition towards computer security should exhibit higher levels of security 

compliance behavior.  While the results of Ng et al’s. (2009) study did not find that GSOR is a 

direct predictor of security compliance behavior, it found that perceived severity moderated 

the effects of GSOR on security compliance behaviour.  That is, when the perceived severity of a 

security threat is severe or great, then the individual who has a higher level of predisposition 

towards security will be more proactive in practicing computer security.  These results (no 

direct but indirect relationship between GSOR and compliance behavior) warrant further 

investigation.  In this study we aim to improve our understanding of the influence of GSOR on 

compliance behavior by examining the relationship between GSOR and security compliance 

behavior in the cybersecurity context. 

 
Another factor that has been cited to influence users’ behavior is self-efficacy (SLEF). SLEF is a 

construct of protection motivation theory and emphasizes an individual’s ability or judgment of 

his or her ability to perform an action (Bandura 1977).  More specifically, the theory suggests 

that increasing individual’s SLEF can improve their competence in coping with a task.  For 



 

 

instance, in a training course SLEF was found to exert a strong influence on individual’s 

performance with computer use (Compeau and Higgins 1995).  Recent empirical security 

studies show that SLEF has a significant effect on users’ intention to comply with (Bulgurcu et 

al. 2010; Herath and Rao 2009; Pahnila et al. 2010) as well as their attitude toward security 

compliance (Herath and Rao 2009).  Few other studies have studied the role of SLEF on users’ 

compliance behavior (Chan et al. 2005; Ng et al. 2009) and have found the link between SLEF 

and compliance behavior significant.  While prior research focused mainly on the effects of SLEF 

on users’ intention to comply or general security behavior, this study seeks to examine the 

influence of SLEF on users’ self-reported actual cybersecurity compliance behaviour.  According 

to theories such as theory of reasoned action (TRA) (Ajzen and Fishbein 1980; Fishbein and 

Ajzen 1975) and technology acceptance model (TAM)(Davis 1989), an individual’s behavior is 

driven by their behavioral intentions, that is, actual behavior is mediated by behavioral 

intention.  This study differs from others in that we examine the direct relationship between 

SLEF and actual compliance behavior and not users’ intention to comply. 

 
In order to improve the cybersecurity behaviors of users, it is necessary to understand the 

security behavior of men and women and the differences and/or similarities in their compliance 

behavior.  In general, gender has been shown to have a profound influence on an individual’s 

perceptions, attitudes and performance (Nosek et al. 2002).  Studies in the security literature 

also found that gender is significantly correlated with employees’ security compliance intention 

and behavior.  For instance, research shows that females have a higher policy compliance 

intention than males  (Herath and Rao 2009; Ifinedo 2012) and that habitual IS security 

compliance and personal factors, such as gender, influences employees security behavior 

(Vance et al. 2012).  Too, Anwar et al. (2017) found that females reported lower cybersecurity 

scores than males. Further, Anwar et al. (2017) reported significant difference between males 

and females on security self-efficacy; this suggests that men and women have differences in 

their perceived computer abilities.  Consequently, we argue that studying the role that gender 

plays with respect to cybersecurity compliance behavior of users is warranted. 

 



 

 

While the cybersecurity literature has previously explored constructs such as awareness and 

self-efficacy to explain cybersecurity compliance behavior, there has been no exploration of the 

impacts of individuals’ decision styles on cybersecurity related compliance behavior and some 

other antecedents of such behavior.  In this study we examine such impacts.  Cognitive 

theorists have long argued that decision style is an important determinant of behavior.  In fact, 

several investigations (e.g. Henderson and Nutt 1980; Niu 2013) report that an individual’s 

decisions seem to be a function of the individual’s cognitive makeup, which differs for 

psychological types.  The Decision Styles Inventory (DSI) tool (Rowe and Boulgarides 1983; 

Rowe and Mason 1987), that is adopted in this study, has been used in varying setting to test 

the relationship between individual decisions styles and behaviour.  For instance, Moretti 

(1994) used the tool to classify volunteers as typical or not typical leaders and found that typical 

leaders deal better with ambiguity and uncertainty; Jamian et al. (2013) explored how decision 

styles of deans in institutions of higher education relate to leadership effectiveness.  To the best 

of our knowledge, decision styles have not been investigated in previous security or 

cybersecurity studies.  

 
In this paper we explore the impacts of individuals’ decision styles on their cybersecurity 

compliance behavior and on other constructs theorized to influence security compliance 

behavior.  Subsequent sections present an overview of individuals’ decision styles, the research 

methodology, results of the interactions of decision styles on behavior and antecedents of 

behavior, abduction of hypotheses for future testing and conclusion.   

 

2. OVERVIEW ON INDIVIDUAL DECISION STYLES  

 
The Decision Style Inventory (DSI) was developed by Rowe in 1981 and further elaborated by 

Rowe & Boulgarides (1983) and Rowe & Mason (1987) is a cognitive management tool to 

understand the type of decisions an individual is likely to make under certain situations. Rowe 

and Boulgarides (1992) argued that effective decision-makers are the ones whose decision style 

matches the requirements of the decision situations.  Thus, a better understanding about one’s 

likely behavior or decisions can help not only the individuals but their organizations in more 



 

 

strategic decision-making. Within the context of the decision styles model there are four 

decision styles (Directive, Analytical, Conceptual, and Behavioral) each with its own 

characteristics with regards to level of tolerance for ambiguity, need for structure, people or 

task orientation and so on (see Table 1).  

 
Table 1: Decision Styles  

Style Description 

Analytical 

Achievement oriented without the need for external rewards; enjoys problem 
solving; strong ability to cope with new situations; oriented towards acquiring 
and utilizing all relevant information; make decisions slowly because of 
orientation to examine the situation thoroughly and consider many alternatives 
systematically; prefer information that is given in the form of written reports. 

Behavioral 

Strong people orientation, driven primarily by a need for affiliation; typically 
receptive to suggestions, willing to compromise, and prefer loose controls; have 
short-range focus; comfortable making decisions using limited relevant 
information; prefer to do their information exchange at meetings. 

Conceptual 

Achievement and people oriented with the need for external rewards; have 
long-range focus; make decisions slowly because of orientation to examine the 
situation thoroughly and consider many alternatives systematically. 

Directive 

Results and power oriented but have al low tolerance for ambiguity and cognitive 
complexity; prefer to consider a small number of alternatives based on limited 
information; prefer structure and information that is given verbally; have short-
range focus. 

 

Martinsons and Davison (2007) observed that in different cultures, different individual decision 

styles are dominant, and that these differences determine the types of decision support system 

that are most appropriate. For example they noted that in several non-Western societies, 

decision-makers “focus on collective interests, emphasize relationships and intuition (at the 

expense of factual analysis), and discourage conflicting views that would threaten group 

harmony or the face of the individual”, with some having “greater acceptance of tacit 

knowledge management”.  To paraphrase Martinsons and Davison (2007), for such non-Western 

societies, Knowledge Management Systems (KMSs) that support interpersonal communications 

and encourage tacit knowledge sharing and individual discretion would be more helpful than 

KMSs that mainly involve codified knowledge. 



 

 

 
Elicitation of decision styles information is done using a standard DSI questionnaire (Rowe 

1981; Rowe and Mason 1987), that consists of 20 multi-response questions. For each question 

there is a set of 4 response statements, one for each of the four decision styles, and the 

respondent is required to rank the set of response statements: Most Preferred (8 points), 2nd 

Most Preferred (4 points), 3rd Most Preferred (2 points), Least Preferred (1 points).  This implies 

that for each question, 15 points have to be distributed across the 4 response statements. 

Therefore the overall maximum number of points is 300; and overall maximum possible 

number of points for each decision style is 160 (= 20* 8), with the corresponding minimum 

being 20 (= 20*1). 

ScoreAnalytical + ScoreBehavioral + ScoreConceptual + ScoreDirectivel  = 300 

 

Idea/Action Orientation: 

An individual can also be characterized as having a preference for acting (i.e. Action-oriented) 

or thinking (Idea-oriented). Given a decision-making task, an Idea-oriented individual is 

predisposed to first engage in deep analysis and synthesis before acting, formulate creative and 

innovative solutions, and engage in written communication. The Action-oriented individual on 

the other hand is predisposed to focus on the achievement of results, feeling internal pressure 

to act he/she may engage in inadequate reflection before acting (Rowe and Mason 1987). 

 
Determination of the Idea/Action Orientation of the individual can also be defined in terms of 

the 4 elementary individual decision styles. An individual would be categorized as being Idea-

oriented if his/her combined score for the Analytical and Conceptual decision styles was at least 

170; otherwise the he/she would be characterized as being Action-oriented (combined score 

for the Behavioral and Directive decision styles was at least 130). 

 
 
 
3. RESEARCH METHODOLOGY 

For this research we adapted the steps from the methodology presented by Osei-Bryson and 

Ngwenyama (2011) and included an additional step, “Exploratory Factor Analysis”.  In general, 



 

 

this methodology employs the hypothetico-deductive (H-D) process for theory development, on 

which positivist IS research is based (see Figure 1).  The process can be described as cyclical 

with theory formulation generally resulting from empirical observations and from formulated 

theory, hypotheses generation, which are subsequently tested and used to inform empirical 

observations.  According to Osei-Bryson and Ngwenyama (2011), the general limitation of the 

H-D model is that hypotheses generation are limited by human imagination.  Osei-Bryson and 

Ngwenyama (2011) demonstrate that this limitation can be overcome by incorporating data 

mining techniques such as decision tree generation.  Applying the H-D process to this study, we 

formulate theory based on empirical observations and then generate hypotheses using decision 

tree technique, which can then be subjected to testing. 

 

Figure 1: Hypothetico-deductive (H-D) model 

 

 

The following outlines the steps from the methodology presented by Osei-Bryson and 

Ngwenyama (2011): 

1. Use existing theory to select potential direct and indirect predictor variables for security 

compliance behavior. 

2. Collect relevant data. 

3. Conduct exploratory factor analysis. 

4. Use decision tree induction technology to do recursive partitioning of the given dataset 

resulting in rulesets. 



 

 

5. Abduct hypotheses from the results of the decision tree induction.  Sibling rules hypotheses 

will be generated using the approach presented in Osei-Bryson & Ngwenyama (2011). 

 

3.1 Overview on Decision Tree Induction 

A decision tree (DT) is a tree structure representation of the given decision problem such that 

each non-leaf node is associated with one of the decision variables, each branch from a non-

leaf node is associated with a subset of the values of the corresponding decision variable, and 

each leaf node is associated with a value of the target (or dependent) variable. There are two 

main types of DTs: 1) classification trees and 2) regression trees. For a classification tree, the 

target variable takes its values from a discrete domain, and for each leaf node the DT associates 

a probability for each class (i.e. value of the target variable). A regression tree (RT) is a DT in 

which the target variable takes its values from a continuous domain (numeric). For each leaf, 

the RT associates the mean value and the standard deviation of the target variable. 

 

There are two major phases of the RT induction process: the growth phase and the pruning 

phase (e.g. Kim and Koehler, 1995). The growth phase involves a recursive partitioning of the 

training data resulting in a RT such that either each leaf node is pure (i.e. all observations have 

the same value for the target), further partitioning of the given leaf would result in at least one 

of its child nodes being below some specified threshold, or the split is not statistically significant 

at a specified level. The pruning phase aims to generalize the RT that was generated in the 

growth phase by generating a sub-tree that avoids over-fitting to the training data. The actions 

of the pruning phase is often referred to as post-pruning in contrast to the pre-pruning that 

occurs during the growth phase and which aims to prevent splits that do not meet certain 

specified threshold (e.g. minimum number of observations for a leaf).  

 

In order to reduce over-fitting the generated RT to the data that was used to generate it, for 

large modeling datasets, the original dataset would be divided into mutually exclusive Training 

and Validation subsets, where the Training subset is used during the Growth Phase to generate 

the initial RT, and the Validation subset would be used during the Post-Pruning phase. For small 



 

 

modeling datasets, such an approach is not possible so techniques such as k-fold cross 

validation (e.g. 10-fold) are used where the original model dataset is divided into k mutually 

exclusive subsets (k-folds), and k runs are done each in involving a unique combination of (k-1) 

folds. 

 
During the Growth Phase, the given dataset is recursively split into smaller and smaller datasets 

based on the selected splitting method. A splitting method is the component of the DT 

induction algorithm that determines both the attribute that is selected for a given node of the 

DT and also the partitioning of the values of the selected attribute into mutually exclusive 

subsets such that each subset uniquely applies to one of the branches that emanate from the 

given node. It is well known that there is no single splitting method that will give the best 

performance for all datasets. While some datasets are insensitive to the choice of splitting 

methods, other datasets are very sensitive to the choice of splitting methods. Given that it is 

never known beforehand which splitting method will lead to the best DT for a given dataset, it 

is advisable that the data miner explore the effects of different splitting methods (e.g. Variance 

Reduction, F-Test). 

 

3.2 Sibling Rules Hypotheses 

Nodes that share the same parent are considered to be Sibling Nodes (see Figure 2). For each 

set of Sibling Nodes there is a corresponding set of Sibling Rules and an associated 

discriminating variable (e.g. DominantOrientation). Sibling Rules Hypotheses are formed based 

on the discriminating variable associated with a given set of Sibling Rules, and its test 

worthiness is evaluated by applying traditional statistical hypothesis testing to the statistics of 

the target variables that are associated with pairs of Sibling Nodes (Osei-Bryson and 

Ngwenyama 2011; Osei-Bryson and Ngwenyama 2014).  

 

For example given the pair of Sibling Rules that are associated with Nodes 2 and 3 the following 

hypotheses and its alternative hypothesis would be formed and its test worthiness evaluated.   



 

 

HO:  The difference in the mean value of the target variable that is associated with 

Orientation = ‘Action’ from that associated with Orientation = ‘Idea’ is not statistically 

significant. 

HA:  The difference in the mean value of the target variable that is associated with 

Orientation = ‘Action’ from that associated with Orientation = ‘Idea’ is statistically 

significant. 

 

Figure 2. Examples of Sibling Nodes & Sibling Rules 

 
o Node 2 & Node 3 are child nodes of 

Node 1 so are Sibling Nodes with 
DominantOrientation being the 
discriminating variable. 
The corresponding Sibling Rules are: 

 IF DominantOrientation = 
‘Action’ THEN the target 
variable has an Average value 
of 2.9013 & StdDev of 1.0142 

 IF DominantOrientation = 
‘Idea’ THEN the target variable 
has an Average value of 3.6600 
with StdDev of 0.9496 
 

o Nodes 4, 5 & 6 are child nodes of 
Node 2 so are Sibling Nodes with 
DominantDS being the discriminating 
variable 

 

 
 
In this case its test worthiness would be evaluated using a difference of means statistical test 

since the target variable has the interval data type; if the target variable had a discrete data 

type then its test worthiness would be evaluated using a difference of proportions statistical 

test. If the p-value is below the specified level of significance then the hypothesis HO is rejected 

and its alternative hypothesis HA is not rejected. For this example the corresponding p-value is 

0.0006, and so HO is rejected and its alternative hypothesis HA is not rejected. Since there is only 



 

 

a single pair of Sibling Rules then there is need to evaluate only a single null hypotheses and 

since it HO is rejected then the Sibling Rules Hypothesis is formed based on HA:  

Orientation has a statistically significant impact on the given target variable.  

In general, if the parent node has more than 2 child nodes then multiple (HO, HA) pairs would 

need to be evaluated, as demonstrated in section 4.  

 
 
4. APPLICATION OF THE RESEARCH METHODOLOGY 

Step 1: Selection of Potential Predictor Variables 

 
Table 2. List of Constructs – Dependent Variable & Potential Predictors  

Construct 
Factor 
Label 

Items Reference 

Password 
Compliance 
Behavior 

PWDC 

CMPB1 – I use different passwords for my 
different online accounts (e.g., online 
banking/shopping, Facebook, email). 

Anwar et al. (2017) 

CMPB2 – I have changed the passwords to 
access my different online accounts (e.g., 
online banking/shopping, Facebook, email) 
during the past 12 months. 

Special Eurobarometer 
390  
(2012) 

Security 
Compliance 
Behavior 

SECC 

CMPB5 – I never usually send sensitive 
information (such as account numbers, 
passwords, and ID numbers via email or using 
social media. 

Anwar et al. (2017) 

CMPB6 – Concerns about security issues made 
me visit only websites I know/trust or click on 
URLs if I know where the URLs will really take 
me. 

Anwar et al. (2017); 
Special Eurobarometer 
390  
(2012) 

CMPB7 – Concerns about security issues made 
me not open emails from people I don’t know 
and/or only use my own computer. 

Special Eurobarometer 
390  
(2012) 

General 
Security 
Awareness 

GSAW 

GSAW1 – Overall, I am aware of potential 
information/cyber security threats and their 
negative consequences. 

Bulgurcu et al. (2010) 

GSAW2 – I understand the concerns regarding 
information/cyber security threats and the 
risks they pose in general. 

Bulgurcu et al. (2010) 

GSAW2 – I have sufficient knowledge about 
the cost of potential information/cyber 
security threats. 

Bulgurcu et al. (2010) 

General 
Security 

GSOR 
GSOR1 – I read information/cyber security 
bulletins or newsletters. 

Ng et al.  
(2009) 



 

 

Construct 
Factor 
Label 

Items Reference 

Orientation GSOR2 – I am concerned about 
information/cyber security incidents and try to 
take actions to prevent them. 

Ng et al.  
(2009) 

GSOR3 – I am usually mindful about computer 
security. 

Ng et al.  
(2009) 

Self-Efficacy SLEF 

SLEF2 – I feel confident updating security 
patches to the operating system. 

Rhee et al. (2009); Anwar 
et al. (2017); 

SLEF3 – I feel confident setting the Web 
browser to different security levels. 

Rhee et al. (2009); Anwar 
et al. (2017); 

SLEF4 – I feel confident using different 
programs to protect my information and 
information system. 

Rhee et al. (2009) 

SLEF5 – I feel confident handling virus infected 
files and/or getting rid of malware/spyware. 

Rhee et al. (2009); Anwar 
et al. (2017); 

SLEF6 – I feel confident learning the method 
to protect my information and information 
system. 

Rhee et al. (2009) 

 
 
Step 2: Data Collection 

We collected data via a web-based survey, which was pre-tested by faculty members, graduate 

students as well as some IS security experts, all from Jamaica.  Based on feedback, several items 

were reviewed and modified.   The survey instrument was then used to collect data from 

faculty members, undergraduate and graduate students in an institution of higher learning and 

from employed individuals across industries in Jamaica.  In order to elicit participation, the 

survey link was sent to all members in one faculty and students of several undergraduate and 

graduate courses.  Additionally, participants were asked to forward the survey link to potential 

participants known to them.  This type of technique wherein people make referrals to identify 

other participants is referred to as “snowball sampling”.  Because the snowball sampling 

technique was incorporated to elicit participation, it is difficult to establish the sample frame 

for the study.  Nonetheless, the link was directly advertised to approximately 370 individuals, of 

which 105 responses were received.  Without considering referrals, this yields a response rate 

of 28%.  Of the 105 participants in the survey, 56 percent were females and 44 percent males.   

Too, respondents of the survey were from varying industries, such as: education, banking and 

financial services, telecommunications/IT and the security services.   



 

 

Step 3: Exploratory Factor Analysis 

From the exploratory factor analysis of the four potential predictor and determinant variables 

(security compliance behavior, security awareness, general security orientation and security 

self-efficacy), five factors emerged to explain the maximum portion of the variance in the 

original variables (see Tables 3 and 4).   That is, five factors explained approximately 65 percent 

of variance in the original variables (see Table 3).  Table 4 identifies the five factors.  Of note, 

the items of the original security compliance behavior variable loaded unto two factors: 

components 3 and 4. Based on the items, the two factors are now identified as “Security 

Compliance Behavior” (SECC) and “Password Compliance Behavior” (PWDC) (see Table 2). 

 
Factors can be identified by the factors loadings.  That is, to interpret factors, the factor 

loadings are examined to determine the strength of the relationships or explain the variance 

explained by the items on that particular factor.  One widely utilized approach is to keep items 

with high factor loadings and discard low ones.  As a rule of thumb, items with factor loadings 

of 0.6 or higher can be retained for exploratory studies (Matsunaga 2010; Nunally 1967).  Due 

mostly to low factor loadings as well as cross loadings, three items (CMPB3, CMPB4, CMPB8) 

were removed (see Table 4). 

 
Table 3: Total Variance Explained 

  Initial Eigenvalues Extraction Sums of Squared Loadings 

Component Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 7.07 35.34 35.34 7.07 35.34 35.34 

2 1.93 9.64 44.98 1.93 9.64 44.98 

3 1.5 7.52 52.5 1.5 7.52 52.5 

4 1.32 6.58 59.07 1.32 6.58 59.07 

5 1.18 5.91 64.98 1.18 5.91 64.98 

6 1.09 5.46 70.44 1.09 5.46 70.44 

7 0.86 4.31 74.75 
   8 0.74 3.69 78.44 
   9 0.65 3.27 81.72 
   10 0.58 2.89 84.6 
   11 0.51 2.53 87.13 
   12 0.48 2.39 89.52 
   13 0.41 2.04 91.56 
   



 

 

  Initial Eigenvalues Extraction Sums of Squared Loadings 

Component Total % of Variance Cumulative % Total % of Variance Cumulative % 

14 0.38 1.88 93.44 
   15 0.28 1.38 94.82 
   16 0.26 1.3 96.13 
   17 0.25 1.24 97.37 
   18 0.22 1.08 98.46 
   19 0.18 0.91 99.36 
   20 0.13 0.64 100 
    

 
Table 4: Rotated Component Matrix 

  Component 

 Item 1 2 3 4 5 6 

CMPB1 0.17 0.11 0.79 0.11 0.18 0.01 

CMPB2 0.01 0.09 0.85 0.05 0.01 0.01 

CMPB5 0.07 0.12 0.25 0.66 -0.31 0.07 

CMPB6 0.15 -0.04 0.2 0.71 0.32 -0.01 

CMPB7 0.02 0.25 -0.13 0.78 0.15 0.02 

GSAW1 0.15 0.86 0.02 0.16 0.13 0.02 

GSAW2 0.16 0.87 0.16 0.16 0.07 -0.01 

GSAW3 0.29 0.6 0.18 -0.02 0.36 -0.01 

GSOR1 0.33 0.06 0.07 0.01 0.77 -0.02 

GSOR2 0.23 0.2 0.09 0.07 0.74 0.06 

GSOR3 0.21 0.37 0.19 0.25 0.65 0.21 

SLEF1 0.44 0.3 -0.12 0.31 0.33 0.04 

SLEF2 0.89 0.06 0.09 0.06 0.1 -0.02 

SLEF3 0.88 0.1 0.05 0.04 0.24 0.02 

SLEF4 0.81 0.18 0.14 0 0.24 0.05 

SLEF5 0.78 0.17 0.04 0.06 0.1 0.16 

SLEF6 0.62 0.2 0.11 0.25 0.24 0.24 

CMPB3 0.45 0.17 0.44 0.05 0.19 0.45 

CMPB4 0.32 0.19 0.17 0.19 0.32 0.62 

CMPB8 -0.01 0.11 0.07 0.05 0.06 -0.85 

 
 
Step 4: Decision Tree Induction 

To generate a DT from a given dataset, a single variable must be identified as the target (or 

dependent) variable and the potential predictors must be identified as the input variables. 



 

 

Commercial data mining software (e.g. C5.0, SAS Enterprise Miner, IBM Intelligent Miner) 

provide facilities that make the generation of DTs a relatively easy task. In our case the SAS 

Enterprise Miner data mining software was applied to this dataset, resulting in the RTs that are 

displayed in Figures 3 - 7. Since our dataset is small we used 10-fold cross validation. We set the 

maximum number of splits per node to 4; the minimum number of observations associated 

with a rule to 10; and since our dataset is small, we such as k-fold cross validation with k= 3.  

 

4.1 Impact Decision Styles and Orientation on GSOR: 

This DT provides evidence that the individual’s dominant Decision Style (i.e. DominantDS) may 

have a statistically significant impact on his/her general security orientation (GSOR) at the 5% 

level of significance since at least one of the corresponding pairs of (Ho, HA) hypotheses has a HA 

that is “accepted” (see Table 5). 

 
Figure 3. DT with GSOR as the Target Variable 

Potential Predictors  Resulting DT 

o DominantDS 

o DominantOrientation 

o Gender 

 
 
 
 



 

 

Table 5. Evaluation of (HO, HA) pairs associated with DT where GSOR is the Target Variable 

Pair Null Hypothesis HO p-value Accept HA 

1 HO:  The difference in the mean value of GSOR that is associated 
with DominantDS = ‘A’ from that associated with DominantDS = 
‘B’ or ‘D’ is not statistically significant. 

0.0011 Yes 

2 HO:  The difference in the mean value of GSOR that is associated 
with DominantDS = ‘C’ from that associated with DominantDS = 
‘B’ or ‘D’ is not statistically significant. 

0.0511 No 

 
 
 
4.2 Impact of Decision Styles and Orientation on GSAW: 

This DT provides evidence that the individual’s dominant Decision Style (i.e. DominantDS) may 

have a statistically significant impact on his/her general security awareness (GSAW) at the 5% 

level of significance since at least one of the corresponding pairs of (Ho, HA) hypotheses has a HA 

that is “accepted” (see Table 6). 

 
Figure 4. DT with GSAW as Target Variable 

Potential Predictors  Resulting DT 

o DominantDS 

o DominantOrientation 

o Gender 

 
 
 



 

 

Table 6. Evaluation of (HO, HA) pairs associated with DT where GSAW is the Target Variable 

Pair Null Hypothesis HO p-value Accept HA 

1 HO:  The difference in the mean value of GSAW that is associated 
with DominantDS = ‘A’ from that associated with DominantDS = 
‘B’ or ‘D’ is not statistically significant. 

0.0043 Yes 

2 HO:  The difference in the mean value of GSAW that is associated 
with DominantDS = ‘C’ from that associated with DominantDS = 
‘B’ or ‘D’ is not statistically significant. 

0.1393 No 

 
 

4.3 Impact of Decision Styles and Orientation on SLEF: 

This DT provides evidence that: The individual’s dominant Idea/Action Orientation (i.e. 

DominantOrientation) may have a statistically significant impact on his/her self-efficacy (SLEF) 

at the 5% level of significance since its corresponding (Ho, HA) pair of hypotheses has a HA that is 

“accepted” (see Table 7). 

  
Figure 5. DT with SLEF as Target Variable 

Potential Predictors  Resulting DT 

o DominantDS 

o DominantOrientation 

o Gender 

 
 
 
 



 

 

Table 7. Evaluation of (HO, HA) pairs associated with DT where SLEF is the Target Variable 

Pair Null Hypothesis HO p-value Accept HA 

3.1 HO:  The difference in the mean value of SLEF that is associated 
with DominantOrientation = ‘Action’ from that associated with 
DominantOrientation = ‘Idea’ is not statistically significant. 

0.0006 Yes 

 
 

4.4 Impact of Decision Styles and Orientation on SECC: 

The resulting DT displayed below provides evidence that the individual’s dominant Decision 

Style (i.e. DominantDS)  may have a statistically significant impact on his/her security 

compliance behavior (SECC) at the 5% level of significance since its corresponding (Ho, HA) pair 

of hypotheses has a HA that is “accepted” (see Table 8). 

 

Figure 6. DT with SECC as Target Variable 

Input Potential Predictor Variables Resulting DT 

o SLEF 

o GSOR 

o GSAW 

o DominantDS 

o DominantOrientation 

o Gender 

 
 
 
 

 



 

 

Table 8. Evaluation of (HO, HA) pair associated with DT where SECC is the Target Variable 

Pair Null Hypothesis HO p-value Accept HA 

4.1 HO:  The difference in the mean value of SECC that is associated 
with DominantDS = (‘A’ or ‘C’) from that associated with 
DominantDS = (‘B’ or ‘D’) is not statistically significant. 

0.0004 Yes 

 
 
4.5 Impact of Decision Styles and Orientation on PWDC: 
 
The resulting DT does not include DominantDS or DominantOrientation in its rules and does not 

provide evidence that either variable has a statistically significant impact on his/her password 

compliance behavior (PWDC). 

 
Figure 7. DT with PWDC as Target Variable 

Potential Predictors  Resulting DT 

o SLEF 

o GSOR 

o GSAW 

o DominantDS 

o DominantOrientation 

o Gender 

 
 

Step 5: Abduction of Hypotheses 

Given the alternative hypotheses (i.e. HAs) that were accepted in Step 4, the following 

hypotheses can be abducted:  

 
Table 9: Abducted Hypotheses 

 
Hypothesis 

Justification 

Test Worthiness Informed Argument 

DominantDS  GSOR p-value = 0.0011 Since some decision styles (DS) give 
more  emphasis to the use of data in 
decision-making then security issues 



 

 

such as data integrity, availability and 
confidentiality may be of greater 
concern to individuals with those DSs. 

DominantDS  GSAW p-value = 0.0043 Similar to the above. 

DominantOrientation  SLEF p-value = 0.0006 SLEF emphasizes an individual’s ability 
or judgment of his or her ability to 
perform an action (Bandura 1977). 
Given characteristics of Idea-orientation 
vs Action –orientation it seems 
reasonable that DominantDS impacts 
SLEF. 

DominantDS  SECC p-value = 0.0004 DS is a predictor of decision behavior 
and action (Rowe and Boulgarides, 
1992) 

 
Kositanurit et al. (2011) proposed a hybrid process for empirically based theory development 

that is described in Table 10 below.  Given the abducted hypotheses displayed in Table 9 and 

hypotheses proposed in other previous research, Table 11 displays a set of relevant causal links 

(i.e. hypotheses) along with their justifications, of a new extended model that could be 

empirically tested in future search. Further, figure 8 provides the new research model that has 

emerged from our analyses and which can be subjected to empirical testing. 

 

Table 10. Model of Process for Empirically based Theory Development 

Ideal Model of Scientific Inquiry Hybrid Process for Empirically based Theory 
Development Phase Description 

Empirical 
Observation 

Observer (gather data about) some 
phenomena of interest. 

1a: Use existing theory to identify variables that 
are likely to be relevant to the phenomena of 
interest. 

1b: Based on Substep 1a above, gather data 
related to the phenomena of interest. 

Hypothesis 
Generation 

Using these observations (data) 
invent one or more hypotheses that 
might explain the phenomena.  

2a: Use data mining approach to do automatic 
generation & preliminary testing of hypotheses 

2b: Based on the results of Substep 2a, 
generate a preliminary model that appears to 
explain the phenomena of interest. 

2c: The researcher examines & of necessary 
revised the preliminary model that was 
generated in Substep 2b. This revision may be 
based on the researcher’s knowledge of 
existing theory. 



 

 

Design of 
Experiments 

Using the hypotheses, design an 
experiment to test the logical 
consequences of the hypotheses. 

3: Design an experiment to test the logical 
consequences of the hypotheses. 

Conventional data analysis approaches may be 
included in the experimental design. 

Empirical 
Testing 

Having designed the experiment, 
collect observations about the 
phenomena and examine them to 
see if the predictions prove to be 
true or false. 

4a: Collect observations about the phenomena. 

4b: Conduct measurement validity. 

4c: Determine if hypotheses of the current 
model are supported based on data analysis of 
the given dataset 

This phase should be repeated since no amount 
of testing can ever guarantee the truth value of 
a theory about phenomena but only gradually 
increasing confirmation of the theory. 

 

 

Figure 8. Future Research Model 

 

 

 



 

 

Table 11. Hypotheses of Extended Model 

Causal Link Justification 

DominantDS  GSOR Abducted in this study 

DominantDS  GSAW Abducted in this study 

DominantOrientation  SLEF Abducted in this study 

DominantDS  SECC Abducted in this study 

SLEF  SECC Chan et al. (2005); Ng et al. (2009) 

GSOR  SECC Ng et al. (2009); (Jayanti and Burns 1998) 

GSAW  SECC Stanton (2005); Bulgurcu et al. (2010); Donalds (2015) 

SLEF  PWDC Chan et al. (2005); Ng et al. (2009) 

GSOR  PWDC Ng et al. (2009);  (Jayanti and Burns 1998) 

GSAW  PWDC Bulgurcu et al. (2010); Donalds (2015) 

 
 
 
5. CONCLUSION 

It is the hope of the GoJ that the continued adoption if ICTs, among other things, will lead to 

sustainable economic growth.   While this vision can be realized, there is a direct correlation 

between ICT adoption and cybersecurity threats.  Additionally, since individuals are considered 

the “weakest link in the chain” of IS security, it is an imperative of the GoJ and other 

organizations to identify factors that can positively influence users’ security compliance 

behavior.   

 

The purpose of this paper is to identify factors that influence users’ security compliance 

behavior.  We accomplish this by: i) considering the effects that decision styles may have on 

security compliance behavior; and ii) employing the H-D process for theory development.  

Specifically, we used a data mining based exploratory data analysis approach to abduct some 

new hypotheses.  For future research, one possible direction is to empirically validate these 

constructs and abducted relationships.  By identifying and understanding the determinants of 

users’ security compliance behavior, interventions can be designed to change behavior by 

directing same at one or more of the determinants.   
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