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Abstract This paper proposes a concept for a prescriptive

control of business processes by using event-based process

predictions. In this regard, it explores new potentials

through the application of predictive analytics to big data

while focusing on production planning and control in the

context of the process manufacturing industry. This type of

industry is an adequate application domain for the con-

ceived concept, since it features several characteristics that

are opposed to conventional industries such as assembling

ones. These specifics include divergent and cyclic material

flows, high diversity in end products’ qualities, as well as

non-linear production processes that are not fully control-

lable. Based on a case study of a German steel producing

company – a typical example of the process industry – the

work at hand outlines which data becomes available when

using state-of-the-art sensor technology and thus providing

the required basis to realize the proposed concept. How-

ever, a consideration of the data size reveals that dedicated

methods of big data analytics are required to tap the full

potential of this data. Consequently, the paper derives

seven requirements that need to be addressed for a suc-

cessful implementation of the concept. Additionally, the

paper proposes a generic architecture of prescriptive

enterprise systems. This architecture comprises five

building blocks of a system that is capable to detect com-

plex event patterns within a multi-sensor environment, to

correlate them with historical data and to calculate pre-

dictions that are finally used to recommend the best course

of action during process execution in order to minimize or

maximize certain key performance indicators.

Keywords Predictive analytics � Complex event

processing � Prescriptive analytics � Event-driven business

process management � Big data � Process industry

1 Introduction

1.1 The Vision of the Predictive Enterprise

Driven by globalization, competing markets and fast-

changing customer requirements, economic conditions are

rapidly changing. In response to this pressure, companies

are compelled to react to threats and opportunities in a

timely manner. Thus, continuously monitoring and opti-

mizing business processes towards current business situa-

tions is a prerequisite to remain competitive. However, a

merely type-based analysis of business processes is no

longer sufficient. Instead, each process instance needs to be

adapted and optimized considering its individual business

situation. The growing digitalization of the real world, in

the age of the Internet of Things (IoT), allows for

unprecedented insights into current process and context

situations (Wortmann and Flüchter 2015).

In future, companies that are capable of analyzing their

business operations based on the rapidly growing mass of

data, of predicting the best proceeding process sequence,

and proactively controlling their processes based on this
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knowledge will be a decisive step ahead of their competi-

tors. This kind of company sketches the vision of a ‘‘Pre-

dictive Enterprise’’ as the next stage in the evolution of

real-time enterprises within the age of data as a crucial

competitive asset (Lundberg 2006).

1.2 Motivation and Problem Statement

The vision described above is not sufficiently implemented

in today’s corporate practice. The potential of data, which

can already be collected, is not fully exploited in terms of

business process analytics. Especially traditional industries,

such as steel manufacturing, have not tapped the full

benefits of advancements in sensing technologies and

systems integration that enable fine-grained insights into

manufacturing operations (Unni 2012). This, however,

would contribute to cost savings, productivity and product

quality improvements as well as to a timely discovery of

defects within process executions. According to forecasts

of business analysts, companies are going to face existen-

tial difficulties if problems in business process executions

remain undiscovered or are not anticipated in time (Pettey

and Goasduff 2011). To exploit the potential of data,

myriads of internal and external events originating from

business processes need to be analyzed, forming increas-

ingly masses of data (Dhar et al. 2014). Thus, research

faces the challenge of developing appropriate analytical

methods and software systems that are able to detect and

predict decisive events from collected data in a timely

manner. Taking a look at experimental research gives an

idea of the basic ability of envisioned future enterprise

software. In experiments, the particle accelerator Large

Hadron Collider at the nuclear research center CERN

generates up to 40 million events per second resulting in 1

petabyte of data (Blue Yonder 2013). Currently, data

storage of this scale is technically not feasible. Therefore,

intelligent algorithms executed on clusters of supercom-

puters filter these tremendous event streams to track down

the extremely rare – approximately one in ten million – but

crucial events.

Likewise in business context, enormous quantities of

captured low level events (such as single sensor signals)

need to be transferred into business value (such as an early

discovery of machinery failures or breakdowns). This is

done by filtering event streams to detect meaningful pat-

terns that indicate important situations with a decisive

impact on the efficiency of business processes (Luckham

2012). With Complex Event Processing (CEP) the required

technology that enables the real-time detection of complex

event patterns has been available for years. CEP is con-

sidered to be an important driver to further advance the

domain of BPM (Dixon and Jones 2011). Within the last

decade, this has motivated numerous research efforts

coining the term Event-Driven Business Process Manage-

ment (ED-BPM) (Krumeich et al. 2014d).

1.3 Contribution, Previous Research and Research

Method

Considering existing ED-BPM research, predictive ana-

lytics are rarely applied to CEP. First Event-driven Pre-

dictive Analytics (EDPA) approaches are almost

exclusively used for monitoring purposes in the ED-BPM

domain. Concepts and implementations incorporating both

aspects especially aiming at a proactive control of business

processes are missing (Krumeich et al. 2014d). However,

EDPA yields considerable potentials in terms of computing

situation-aware predictions of individual business process

instances (Janiesch et al. 2012; Redlich and Gilani 2012)

which is indispensable to take the next steps towards the

envisaged goal.

To address this research gap, we conceived the concept

of event-based process predictions (cf. Krumeich et al.

2014b). By means of further investigation, we revealed

requirements for enterprise systems that implements those

predictions. The first version of this investigation was

introduced in Krumeich et al. (2014a). On that base, we

conceived a system architecture. This architecture identi-

fies the technological functional building blocks to con-

struct an event-based process prediction system (cf.

Krumeich et al. 2014c). In parallel, we on a conceptual

level investigated the potentials for planning and control-

ling of manufacturing processes, in particular in the process

industry. This work was presented in Krumeich et al.

(2014e).

The paper at hand finally brings together our previous

research and incorporates a consistent concept on pre-

scriptive control of business processes in process industry.

Here, we extend and detail our previous results conceiving

a profound componentized scheme of a prescriptive control

of business processes using event-based process predic-

tions. In this regard, this paper applies a design-oriented

research method following the guidelines proposed by

Hevner et al. (2004). As the underlying artifact, the

aforementioned concept is conceived in Sect. 3 (Guideline

1) and its implementability sketched in Sect. 5 (Guideline

4). The relevance for constructing the underlying artifact as

well as the related research gap was pointed out in the

introductory section (Guideline 2). To comply with

Guideline 3, the paper applies two evaluation methods: a

motivating scenario that describes the artifact’s utility in

general from a descriptive point of view (cf. Sect. 3.1) and

a revelatory, single case study (cf. Sect. 4.4) that employs

the methodology proposed by Benbasat et al. (1987).

The steel bar production line at one of the largest steel-

producing companies in Germany was chosen as the
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subject of analysis. The two research questions which are

set for the case study are ‘‘What type of data is currently

available in industry processes using state-of-the-art sensor

technology to realize event-based process predictions?’’

and ‘‘Why is it a ‘Big Data’ challenge to analyze this data

appropriately?’’ The results of the case study are consid-

ered to be generalizable to other process manufacturing

enterprises. Since the chosen research design is a single-

case study, it is particularly appropriate to revelatory cases

(Darke et al. 1998), as it is for concepts addressing pre-

scriptive analytics (Jarke 2014) as a relatively new phe-

nomenon in information systems research.

The case study data was collected and analyzed by the

central department of information and communication

technology of the chosen company. As data selection

methods, interview techniques were applied and physical

artifacts – sensor networks – were investigated. The data,

which can already be collected by applied sensor networks,

provides the required data foundation to put the concept

into practice; however, to tap into the full potential of this

data dedicated methods of big data analytics are required.

Hence, the paper derives seven requirements that need to

be addressed for a successful implementation and proposes

a generic architecture of prescriptive enterprise systems (cf.

Sect. 5).

Following the principle of design as an iterative process

(Guideline 6), the refined concept is based on previously

published work and incorporates feedback from several

workshop and conference presentations (cf. Krumeich et al.

2014a, b, c, e). Guideline 5 was accomplished by outlining

the applied research methodology in this section. Last but

not least, the submission of this paper aims at fulfilling

Guideline 7, the dissemination of research results.

2 From Sensor Data to Business Value

2.1 Technological Progress Towards the Internet

of Things and Industry 4.0

In Enterprise Resource Planning (ERP), forecast-based

methods for determining independent requirements have

been used for years (Kurbel 2005). Yet a forecast-based

control of manufacturing processes cannot be attested. This

is because determining forecasts always entails a certain

inaccuracy. In the past, data measured in manufacturing

processes covered operational context situations rather

inadequately. This led to imprecise forecasts. In general,

the larger the quantity and higher the level of detail of

available process observations, the more accurate a process

prediction will be (Dhar 2013). To be more specific, the

accuracy of predictions increases by the square root of the

number of independent observations (Jarke 2014). While,

in principle, it was possible to expand and detail databases,

the related process of data gathering proved to be too

complex, too expensive and not accomplishable in a timely

manner. Hence, processes had been forecasted by using

basic statistical functions. Consequently, for determining

likelihoods of process outcomes and process sequences,

mean and median values, standard deviation and so forth

were computed. However, this approach of descriptive

analytics neither takes into account nor reflects the current

process and context situation in which a specific manu-

facturing process instance takes place.

However, recent technological progress in the fields of

IoT and Cyber-physical Systems make it possible to equip

production processes with sensors in a relatively cost-

neutral way (Lasi et al. 2014). This allows the measure-

ment of internal and external process parameters in a pre-

viously unprecedented level of detail. As a result, real-time

information availability, especially in manufacturing

operations, has reached a new dimension (Bruns and

Dunkel 2010). This paradigm shift is referred to as ‘‘In-

dustry 4.0’’ (Kagermann et al. 2011). Being predominantly

used as a term in the German-speaking area, the thus

envisioned fourth industrial revolution was picked up by

the German Federal Ministry of Education and Research

and has been integrated as a cornerstone into the ‘‘High-

Tech Strategy 2020’’ pursued by the German government

(Lasi et al. 2014). Eventually, this technological progress

will enable the establishment and continuous enrichment of

databases containing sufficient manufacturing data in order

to compute highly accurate process predictions possessing

the capability to control processes.

Nevertheless, most manufacturing companies still per-

form insufficient predictive analytics on the sensor data

that can already be collected – even though the increased

implementation of predictive analytics would positively

influence their economic and ecological performance (Unni

2012). This is in contrast to industries such as insurance or

banking that have fully implemented predictive analytics in

their business models (Minelli et al. 2013).

2.2 Event Processing and Complex Event Detection

As a technological basis to make use of fine-grained data

originating from myriads of physical and virtual sensors

measuring parameters along manufacturing processes, a

timely analysis is essential. A common approach to analyze

sensor data, of which each singular data point can be

considered as an event, is to aggregate them to complex

event patterns that indicate important situations with a

crucial impact on the efficiency of processes (cf. Fig. 1)

(Bruns and Dunkel 2010).

In this regard, Complex Event Processing has emerged

as a novel event processing technology in addition to
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approaches such as simple event processing and event

stream processing. CEP systems enable to determine

potential threats and recognize opportunities in multitudes

of event streams within real-time. Alongside being

researched intensively as a specific research domain, suc-

cessful industry applications of CEP can be found in fraud

detection within banking and finance. Contrary to the

manufacturing industry, it has been possible to examine

financial transaction processes at a fine-grained level by

means of information technology for some years (von

Ammon et al. 2010). Further fields of application include

logistics and supply chain processes, financial investment,

traffic tracking, social sensing and so forth (Aggarwal

2012).

Complex event patterns represent templates which

specify certain event combinations. They can be classi-

fied into various categories such as temporal, spatial,

spatial–temporal, trend, modal and basic patterns with

each category including various subcategories (Etzion

and Niblett 2011). These so-called event patterns can be

provided by experts or be automatically derived using

machine learning algorithms. The actual detection of

event patterns within continuous event streams are real-

ized through predetermined queries. They are enabled by

query processing techniques that are more evolved and

differ from approaches applied within classical database

analysis.

To describe event patterns and rules, special Event

Pattern Languages (EPL) are used. Yet there is no language

standard, which results in diverse competing approaches

(Bruns and Dunkel 2010; Eckert and Bry 2009; Etzion and

Niblett 2011): datastream-oriented languages building

upon the Structured Query Language (SQL), production

rules or rule-based languages applying Event-Condition-

Action (ECA) principles originating from the Business

Rule Management (BRM), as well as imperative script

languages.

Event Processing Agents (EPA) are provided with the

required knowledge about possible event types and their

dependencies by means of event models. In contrast,

declarative event rules specify event patterns and associ-

ated actions that should be started after the event

detection.

To improve the performance of CEP systems, it is

possible to combine multiple EPAs within a so-called

Event Processing Network (EPN) (Etzion and Niblett 2011;

Luckham 2002). Each participating agent may adopt a

different task such as the processing of deducted events.

CEP is increasingly incorporated with other technolo-

gies, namely Business Process Management (BPM). The

purpose of such an integration lays in the potential usage of

real-time information gained from distributed systems and

sensor networks for monitoring, controlling and eventually

optimizing business processes. In this regard, ED-BPM

makes it possible to initiate new process instances, to stop

running ones and to influence their behavior based on

recognized event correlations originating from massive

streams of (sensor) data (Krumeich et al. 2014d).

2.3 Event-Driven Predictive Analytics

The temporal distance between the occurrence of a com-

plex event pattern and the initiation of corresponding

actions means a potential loss of business value in terms of

information disadvantage (cf. Fig. 2). Thus, a timely

detection and handling of complex event patterns is crucial

and consequently an inherent feature of CEP.

This means, the earlier complex events are detected and

processed or even emerging ones can be predicted through

predictive analytics, the more valuable it is to have

Fig. 1 Derivation of aggregated and complex events through abstraction mechanisms (based on Bruns and Dunkel 2010)
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knowledge about them. This can be exemplified by an

obvious example: consider a hurricane as a complex event

whose occurrence is predicted (cf. ‘‘Event predicted’’ in

Fig. 2) and corresponding actions like evacuation pro-

cesses are initiated. It is obvious that the earlier the hur-

ricane is predicted rather than reactively detected, the more

valuable this information is (cf. Fülöp et al. 2012; ‘‘Busi-

ness Value Gained’’ in Fig. 2).

By applying data mining techniques on historical event

data, prediction models can be trained, which can again be

used to make predictions of the occurrence of specific

complex events during runtime (Engel and Etzion 2011;

Engel et al. 2012; Fülöp et al. 2012). This requires the

storage of historical events and event streams which is

conventionally not within the scope of event processing

engines (Bruns and Dunkel 2010); hence, this must be

addressed by additionally connected databases or the

respective operative systems.

By applying EDPA, it is possible to promptly enact

countermeasures to looming events which is crucial for

business processes (Redlich and Gilani 2012; Schwegmann

et al. 2013). Whereas in its simplest form EDPA may only

serve as a basis for enhanced monitoring purposes, the

integration of EDPA with the actual business process

execution control is conceivable. This can be considered as

a revolutionary step, since it enables enterprises proactive

process adaptions (Krumeich et al. 2014d).

2.4 Condition-Based Maintenance

One of the first generally known industry applications that,

in principle, incorporate present process states and events

into forecasts, can be found under the heading Condition-

based Maintenance (CBM). CBM diagnoses failures within

machine components or predicts the time by which failure

may occur. This will result in a maintenance service, ide-

ally with a minimized temporal distance between the ser-

vice intervention and the estimation of the actual machine

failure. Machine components can then be proactively

repaired, overhauled or replaced, depending on the condi-

tion of the component, availability of spare parts and other

variables (Veldman et al. 2011). Here, sensor technology

and the thus acquired machine data aid in the effort to

detect and classify errors, so that equipment problems can

be identified, diagnosed and solved before a failure actually

occurs (Heng et al. 2009). In order to predict the machine

behavior, either physics-based or data-driven models are

used. The latter are mostly used where collecting data

appears to be easier than creating complex physical mod-

els. The paper at hand follows this basic idea.

The literature provides various CBM approaches which

particularly focus on the process industry (cf. Sect. 4). For

example, Goode et al. (2000) present a machine service life

prediction for major facilities in hot rolling mills. Yam

et al. (2001) have developed a so-called ‘‘Intelligent Pre-

dictive Decision Support System’’ for power plants that

performs intelligent condition-based fault diagnosis and is

capable of trend forecasting machinery degradation. Jar-

dine et al. (2006) present a comprehensive analysis of

existing diagnostic and prognostic approaches for use in

the CBM. They consider the trend towards a correlation

and fusion of different sensor data as decisive for the

development of next-generation systems. Veldman et al.

(2011), however, criticize the strong focus on diagnosis

Fig. 2 Business value gained

through event prediction and

proactive actions (based on

Schwegmann et al. 2013 and

Fülöp et al. 2012)
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instead of prognosis. So far, prognosis systems have not

been sufficiently developed and used in practice. As a

cause, they particularly consider the complexity of the

corresponding prediction models and the yet insufficient

availability of operational and reliable data.

Beyond CBM there are other approaches for a forecast-

based quality assessment of intermediate products, espe-

cially in process manufacturing with continuous rolling

mill processes as an example (Konrad et al. 2012). As a

result, these findings should enable an intelligent produc-

tion control.

The objective of the paper at hand is it to apply the basic

idea behind CBM to the general planning and control of

business processes using event-based process predictions.

3 Conceiving a Prescriptive Process Control Using

Event-Based Process Predictions

3.1 Motivating Scenario

To exemplify shortcomings in utilizing conventional

techniques of descriptive analytics and to outline advan-

tages of a prescriptive control of business processes by

combining predictive analytics and CEP techniques, this

section will illustrate a process example. The scenario is

motivated by the sample presented in Krumeich et al.

(2014e).

3.1.1 Shortcomings in Utilizing Conventional Techniques

In this motivating scenario, a steel manufacturing company

handles two customer orders for which a production

planning has to be carried out. Additionally, the concerning

manufacturing processes have to be controlled. The first

order requires final products of type D with a quality of at

least 90 quality units (QU); the second order for the same

type of product requires only a quality of at least 70 QU.

Assuming the underlying manufacturing process A, as it

is depicted in Fig. 3a, conventional descriptive approaches

would calculate a probability of 80 % that the production

will result in final products of type D with material prop-

erties of 95 and 80 QU (cf. the characteristics of analytical

manufacturing processes in Sect. 4). Hence, both customer

orders could be satisfied and the production plan would

assume the further processing of intermediate products C,

which result in a quality of 90 QU. Based on these

assumptions, the timing of underlying customer orders as

well as machine allocations will be planned accordingly.

In addition to the manufacturing process A, the manu-

facturing process B permits to make final products of type

D out of intermediate products C (cf. Fig. 3b). This man-

ufacturing variant is particularly suitable if resulting

intermediate products C (e.g., originating from process A)

do not satisfy the required quality threshold of 90 QU that

is required for their further processing within production

step A.3a to final products D of at least 80 QU. However,

this alternative in manufacturing final products D con-

sumes more time and considerably greater amounts of

material. Moreover, the resulting final products D within

this production line only meet the required quality criteria

in 25 % of all cases. In the statistically more likely case

(75 %), products with 70 QU will be manufactured, thus

only satisfying the second customer order. In this worst

case, partial quantities of final products must be disposed of

separately or they need to be returned to manufacturing

process A (e.g., in steelmaking by melting them down

again).

Traditional descriptive approaches would assume the

production sequence as outlined above with a probability

of 80 % (cf. ‘‘A.1 ? A.2 ? A.3a’’ in Fig. 3a). Conse-

quently, the reasoning is wrong in almost a quarter of all

instances. This would lead to final products that are not

suitable without additional expense (cf. ‘‘A.1 ? A.2

? A.3b’’ in Fig. 3a). Therefore, the use of descriptive

analytics proves to be insufficient to control individual

process instances, since it may lead to rather incorrect

production planning due to its insufficient means of con-

sidering the contextual situation during the process

execution.

3.1.2 Stronger Situation-Awareness through Predictive

Process Analytics

If the considered manufacturing processes are equipped

with appropriate sensors, a database can be built up that

incorporates diverse situations of production and corre-

sponding manufacturing context patterns. This database

can then be used to build up prediction models that can be

correlated with current process situations detected via CEP

techniques. Hence, in the outlined scenario, a significantly

more accurate prediction could be computed when know-

ing about situations X and Y (cf. Fig. 3). This is possible,

since the production plan would not build on type-based

descriptive analytics, but rather on instance-related pre-

dictive analytics capturing the current process and event

situation.

This means for the underlying scenario: if for instance a

complex event pattern is detected (e.g., certain qualities of

input raw materials, machine variances, or participating

employees) after completing or during production step A.1

within manufacturing process A, this particular situation

can be correlated with the underlying prediction model.

The resulting process forecast will then either strengthen

the probability of process variant A or, in contrast, predict

the statistical exception (e.g., ‘‘A.1 ? A.2 ? A.3b’’ as in
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only 20 % of all instances). Considering the latter, inter-

mediate products C with a quality of 70 QU will result with

high probability. For their further processing to product D,

a resulting quality of 65 QU is predicted. According to this,

it will not be possible to satisfy both customer orders as

initially planned. Based on the determined qualities of

intermediate products C as well as other process parame-

ters, in accordance with the detected situation Y, the pre-

diction will be that the further processing in manufacturing

process B will significantly contribute to the statistical

unlikely product D that is of sufficient quality to satisfy

both customer orders (likelihood of 25 % for resulting

products D with qualities of 75 and 90 QU, cf. Fig. 3b).

This exemplifies that by incorporating process and event

parameters, the further sequence of a process could be

predicted with considerably higher precision. Hence, the

production can be planned more precisely and be proac-

tively controlled. For instance, certain setup procedures for

starting manufacturing process B may already be per-

formed in parallel to the running process step A.2 within

production process A. Stretched production time, increased

material requirements as well as personnel and equipment

utilization could be scheduled earlier or examined for the

computation of possible alternatives.

3.2 From Descriptive to Prescriptive Process Analytics

At this point, the three different perspectives on business

process analytics should be defined and compared (for the

following cf. Akerkar 2013; Evans and Lindner 2012;

Gröger et al. 2014; Jarke 2014).

Descriptive process analytics focuses on a type-based,

mostly ex-post analysis of business processes. Such

approaches typically fulfill reporting and dashboarding

functionalities and are the most common type of analytics.

By computing different statistical functions on historic, but

Fig. 3 Assumed manufacturing processes of the motivating scenario
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increasingly also real-time process data, they help to

answer questions such as ‘‘How has a process performed in

the past?’’ or ‘‘What is the current performance of a process

like?’’ Business process intelligence systems typically

feature a broad range of descriptive analytics capabilities

and help to understand and analyze the performance of

business processes.

Predictive process analytics, on the other hand, differs

from traditional descriptive approaches, since it strives to

predict future process conditions based on analyzing his-

torical process executions, e.g., through machine learning.

The underlying objective is to detect certain rules and

patterns, based on which forecasts of (running) process

instances can be computed while considering current con-

text information (cf. Schwegmann et al. 2013 for a related

approach). In this regard, questions such as ‘‘When will

this process instance end?’’ or ‘‘What will be the cycling

time when executing a certain process sequence?’’ are

considered.

On top of that, prescriptive process analytics, as the third

stage of business process analytics, uses the trained pre-

diction models to forecast process executions. Based on

that, it recommends the best course of action in order to

minimize or maximize certain key performance indicators

(KPI) (cf. Gröger et al. 2014 for a related approach). In this

respect, it helps to answer question like ‘‘What is the best

execution sequence for the currently running process in

order to minimize the overall resource consumption?’’

Thus, prescriptive analytics contribute to a proactive con-

trol of business processes.

3.3 Concept of Prescriptive Control of Business

Processes

This section proposes the concept of prescriptive control of

business processes by using event-based process predictions.

To realize a prescriptive control of business processes, the

subsequently outlined concept consists of four core com-

ponents: component one serves to map complex event pat-

terns and prediction targets in process models. The second

component detects specified event patterns within running

process instances by using methods of CEP. In case a com-

plex event pattern has occurred, a prediction of the running

instance considering the current process situation is trig-

gered in component three. The prediction results are used

within component four to simulate and optimize specified

key performance indicators (KPI) based on a given opti-

mization function. The computed results are used to support

process owners’ decisions according to the principles of

prescriptive analytics. After the components of the concept

have been outlined, a high-level technical realization of

event-driven process predictions will be sketched.

3.3.1 Component 1: Process Blueprints Containing

Complex Event Patterns

The foundation of the concept is based on blueprints of

process models that are instantiated in process engines (cf.

Fig. 4, 1). These models can be extracted from completed

process instantiations according to the principles of process

mining (van der Aalst et al. 2012). Yet, to realize event-

based process predictions, it is not the foremost challenge

to mine and store intra-process related data, like cycling

times of single process steps, but in particular cross-process

related event situations with a decisive impact on the

process execution. These situations, represented as com-

plex event patterns, should be embedded into process

models and should also feed into CEP engines as technical

specifications, such as queries (cf. component 2). Complex

events can be part of decision rules, i.e., of primary

structural respectively control-specific nature; on the other

hand, the presence of specific patterns can have significant

influence on fluctuations of process KPIs. The mapping of

such information into process models is only to a limited

extent possible with current modeling techniques

(Vidačković 2014). To address this research gap, some first

approaches explicitly seek a graphical solution for the

specification of CEP event patterns, e.g., Vidačković

(2014) proposes an extension to the Business Process

Modeling Notation (BPMN) 2.0 and Krumeich et al.

(2015b) suggest an extension to the Event-Driven Process

Chain (EPC) modeling notation.

Furthermore, there is a need for embedding prediction

targets into process models, i.e., specific process parame-

ters, such as cycle times, likelihoods of specific events

occurring, as well as execution probabilities of certain

process branches. Based on such predicted values, proac-

tive decisions can be made without the necessity to wait for

actually resulting values. Without doubt, there is a certain

divergence between prediction targets and actual prediction

potential in terms of prediction accuracy rates awarded to

available process data sets (Dhar 2013). Whereas predic-

tion targets are requested and accordingly specified by

domain experts and owners of processes, prediction

potentials are analyzed by data scientists (Buhl et al. 2013;

Dhar 2013; Kowalczyk and Buxmann 2014; Viaene 2013).

As already mentioned in Sect. 2, the accuracy of predic-

tions increases by the square root of the number of inde-

pendent observations (Jarke 2014). In this regard,

technological progress in sensor technology as well as the

increasing digitalization of physical goods triggers the

possibility of grasping contextual data in an unprecedented

fine-grained manner. On the other hand, this mass of

potential information makes great demands on the analyt-

ical power in the context of big data (cf. Sect. 4).
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3.3.2 Component 2: Induction of Complex Event Patterns

and Their Detection in Process Instantiations

To automatically identify event patterns influencing pro-

cess outcomes, different algorithms of pattern matching

and recognition can be applied (Widder et al. 2007). They

determine the significance of certain events influencing the

likelihood of executing different process branches or con-

suming more or less resources as well as longer or faster

cycle times. However, utilizing such machine learning

approaches, like rule induction, for cluster detection has

not been sufficiently analyzed in research and industry

(Metz et al. 2012; cf. Margara et al. 2014; Mehdiyev et al.

2015a, b, 2016 for first approaches). These clusters reflect

so called complex events yielding a higher significance in

affecting process outcomes. Hence, only the concurrent

(non-)occurrence of multiple atomic events represents a

significant situation for process executions. As a result,

these mined complex event patterns need to be stored with

their respective process blueprints to be used in process

instantiations (cf. Fig. 4, 2). They do not occur in each

process execution, but need to be detected using means of

CEP. Such detection of a complex event is based on event

patterns and rules described by dedicated Event Pattern

Fig. 4 Interactions of the four components for a prescriptive control of business processes based on event-based process predictions
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Languages (EPL). Here, data-stream oriented languages,

rule-based languages and imperative script languages can

be distinguished (Krumeich et al. 2014d).

3.3.3 Component 3: Process Forecasting Using Event-

Based Process Predictions

As a result of detecting current process and context situa-

tions as complex events via component 2, they can be

matched with the underlying process model and its inher-

ently stored history of process instances. This makes it

possible to compute prediction models for the further

proceeding of the process as well as determined prediction

targets, often represented as KPI. Due to the situation-

awareness of predictive analytics, this kind of forecast

calculation enjoys significant advantages over conventional

BPI and PPM methods, which frequently compute mean

values over all process instances (Schlegel et al. 2013).

Even if they can be drilled down to certain properties, these

approaches always possess the risk of falling short con-

sidering a specific, perhaps exceptional situation; hence, a

situation-aware control of process instances cannot be

realized.

Figure 4, 1 exemplifies certain likelihoods within a

running process instance on the basis of mean values

originating from historical process executions. Accord-

ingly, with a probability of 59 %, process step ‘‘C’’ as well

as the associated KPI will result after the first (non-influ-

enceable) decision point (regarding non-influenceable

decision points cf. Sect. 4.1 on analytical material flows

and non-linear production outputs in process industries).

Even though this probability is accurate on average, the

currently given process situation could include an excep-

tional case – especially in case the probability exhibits a

high variance. Event-driven process predictions mitigate

this shortcoming through a specific consideration of the

current process and context situation. In case Complex

Event CE1 is detected (cf. Fig. 4, 3a), the probability for

P(C) evolves towards 0.67.

As a matter of fact, predictive analytics itself can be

applied to derive forecasts of the occurrence of specific

complex events (Engel et al. 2012; Fülöp et al. 2012;

Krumeich et al. 2015a). As depicted in Fig. 4, 3b, the

likelihood of the occurrence of event z – as an atomic event

– can be predicted based on already detected process and

context events, e.g., w, x and y. In case w, x and y have

occurred, the probability of z has been computed to

P(z) = 0.87. This number may exceed a certain predefined

threshold to trigger z as a predicted event. In this case, the

corresponding complex event CE2 will be detected by CEP

and associated actions will be proactively initiated. Of

course, this example abstracts from different characteristics

of composite events that make them complex, such as

temporal or spatial properties.

The prediction of CE2 might significantly influence the

prognosis of the ongoing process progress as well as

resulting KPIs. The conditional probabilities depicted as a

Bayesian network in Fig. 4, 3 show that the probability for

P(C | CE1 and CE2) increases to 0.84 and KPI a (time

consumption) will be significantly different in case com-

plex event CE2 takes place and process step ‘‘D’’ or ‘‘E’’

will be processes. Actually the applied prediction approach

will not compute a probability mass function for the

associated KPIs, but rather a probability density function.

3.3.4 Component 4: Prescriptive Process Control

Through utilizing event-based process predictions, the

process execution can eventually be proactively controlled

based on desired KPIs. In more detail, an optimization

function o(a, b, c,) must be defined based on a weighting of

the considered KPIs (Fig. 4, 4). On this foundation, the

further (most optimal) process sequence can be computed

and used for a prescriptive process control. In the present

scenario, the assumption that the predicted complex event

CE2 is going to occur would suggest to perform step

‘‘D‘‘after completing ‘‘C’’. To consider the average would

in contrast suggest to perform ‘‘E’’ (cf. a = 3.3 vs. a = 2.4

since o(a, b, c) should be maximized and b and c can be

considered as constant). Hence, the decision between step

‘‘D’’ and ‘‘E’’ is influenceable. In this case, machineries

used in step ‘‘D’’ can already be started to be instantly

ready as soon as ‘‘C’’ is completed. This finally realizes a

prescriptive control of business processes (cf. Sect. 4.3 for

a consideration of the state-of-the-art of planning and

control systems in process industry).

3.3.5 Technical Realization of Event-Based Process

Predictions

To realize event-based process predictions from a technical

perspective, i.e., to incorporate the increasingly large

amounts of events, a powerful event processing technology

is needed in the first place. In this respect, a CEP engine is

considered as the basic enabler for a real-time analysis of

event streams (cf. Fig. 5, 1). The required knowledge about

possible event types and their dependencies is provided to

Event Processing Agents (EPA) by means of event models

(cf. Fig. 5, 1).

After detecting aggregated or complex events (cf. Sect.

2.2), certain procedures can be initiated within connected

Event Handler, such as prediction or process engines (cf.

Fig. 5, 2, 3). By utilizing predictive analytics on event

streams, the likelihood of occurrence of complex events, of
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which only a subset has already occurred, can be forecasted

(cf. Engel et al. 2012; Fülöp et al. 2012). This results in

predicted events that feed back into the CEP engine (cf.

Fig. 5, 2), which in turn triggers actions within the con-

nected event handler such as a process engine (cf. Fig. 5,

3). Via process simulation and optimization algorithms, the

prediction knowledge will be used to calculate an opti-

mized process execution sequence according to KPIs pro-

vided by process managers in a dashboard layer (cf. Fig. 5,

4). Since the detected complex event has not fully occurred

so far, but relies on certain predicted events, the initiated

action in the process engine can be considered as proactive.

Either the actual occurrence of the predicted complex

event, in case it was not mitigated through proactive

actions, or the absence of the predicted event has to feed

back into the prediction engine, in order to constantly train

the underlying prediction models.

4 Production Planning and Control in the Steel

Industry – Characteristics and Case Study

4.1 Characteristics of the Process Industry

Manufacturing processes are classified by numerous

criteria that may appear in a variety of combinations.

One example is the differentiation of production pro-

cesses regarding their relation to specific branches of

industry. This is conducted by using several industry

taxonomies (e.g., International Standard Industrial Clas-

sification of All Economic Activities by the United

Nations 2008).

Besides such rather general characteristics, manufac-

turing processes are also classified regarding their trans-

formation of underlying products and materials (cf.

Fig. 6). In this regard, synthetic and analytic processes,

mixed transformation forms as well as purely modifying

processes are differentiated (Riebel 1963, p. 57). Whereas

synthetic processes synthesize quantities of inputs into one

output (n:1 relation); analytical processes, on the other

hand, process single inputs into several separated outputs

(1:n relation).

Synthetic processes are characteristic for discrete man-

ufacturing processes, as they can be found, for example, in

the automobile assembly. In contrast, analytical material

transformations are inherently featured in process manu-

facturing, as in the chemical and the steel producing

industry. In discrete manufacturing, input and/or output

factors are quantifiable, whereas companies processing

materials such as gases or liquids are allocated to the

process manufacturing industry or process industry

respectively.

Fig. 5 Prescriptive control of

business processes using event-

based process predictions

Fig. 6 Different forms of material transformation in manufacturing processes (Loos 1997)
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A closer look at process industries reveals several

interesting specifics. These are outlined in the following

with a dedicated focus on steel manufacturing, which is a

typical example of the process industry. Figure 7 illustrates

the usual process sequence within steel production and

points out the inherent industry characteristics.

4.1.1 Divergent/Analytical Material Flows

Caused by the characteristics of analytical processes, var-

ious types of co- and by-products as well as waste originate

while producing the actual main product (cf. Fig. 7, 1).

These additional products can be differentiated into cost

and revenue-neutral, cost-generating but revenue-neutral,

and revenue-generating ones (Loos 1997, p. 41). From a

production logistics point of view, revenue-generating co-

products are of the greatest interest as they can be further

processed and used in succeeding processing steps.

Production processes commonly feature multiple steps

covering a mixture of synthetic and analytical processes. In

process industries, divergent material flows can particularly

be found at earlier production steps, while in later steps

syntactical processes are more common (May 1996).

4.1.2 Production Cycles

Resulting co- and by-products, but also waste, are often

cyclically added to manufacturing processes or are

continuously required for additional production lines (cf.

Fig. 7, 2). These cyclical relations between output and

input factors are diametrically opposed to traditional

manufacturing industries, e.g., the automotive industry as a

typical assembly industry (Rapp 2002).

4.1.3 Non-Linear Production Outputs and Non-

Controllable Production Deviations

Both main products as well as co- and by-products origi-

nating from analytical processes often differ in terms of

quantity and quality, i.e., do not follow a linear production

function (cf. Fig. 7, 3). This means that increasing the

number of inputs will not result in an equally increasing

amount of produced outputs. However, quantity and quality

have to be considered in the ongoing production planning

and control (Hahn and Lassmann 1999). These fluctuations

have different reasons: varying qualities of raw materials,

external influences such as temperature or pressure, as well

as internal influences such as reaction rates e.g. in the

chemical industry (Rapp 2002; Scheer 1998).

4.1.4 Customer-Specific End Products

A look at steel manufacturing companies reveals that

resulting main products are tremendously customer-specific,

specifically in terms of their levels of quality (cf. Fig. 7, 4);

standard products only rarely exist. This clearly contrasts

Fig. 7 Schematic representation of steel production processes and their characteristics (based on Allwood and Cullen 2011)
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with discrete manufacturing. Even though, for example, in

the automotive industry, complexity is given due to the wide

range of variations, there is no heterogeneity in terms of the

actual quality of products that can be measured and the

process sequences controlled accordingly.

4.2 Challenges in Production Planning and Control

As a result of these characteristics, production planning and

control within the process industry is an adequate domain

for the application of the concept presented in Sect. 3. This

is mainly due to the need of process manufacturing com-

panies to analyze and control each of their process

instances individually, since customer orders require

diverse and individual material properties and qualities as

well as production processes are non-linearity.

This can be illustrated by an example: a standard process

in steel making may include the steps peeling, furnace

treatment, and finally cutting the steel into bars; however,

the raw steel cannot go through those steps if a sensor net-

work detects a curving, as an example of a production

deviation. In this case, this intermediate either needs to be

post-processed in a dressing and straightening machine to

comply with quality requirements, or the processing of the

intermediate can continue for another customer with lower

quality demands. Therefore the production planning for this

process instance is obsolete and needs to be re-initiated in

order to meet quality promises to and deadlines of all cus-

tomers, e.g., the steel bars need to be inserted into the normal

process flow after conducting ad-hoc processing step. Since

production planning systems frequently compute an almost

full capacity for the following days in batch mode, a simple

insertion of a process instance into the running production

flow may contradict the planned execution.

Even though such deviations are unavoidable since

production in process industries is not fully controllable

(May 1996, p. 38; Scheer 1998, p. 398), influencing factors

– such as varying material properties of cast iron or devi-

ations from nominal values of employed production facil-

ities – are more and more detectable via modern sensor

networks. Consequently, impending deviations within

production can be predicted, and thus, corresponding

countermeasures, such as a proactive re-scheduling, may

be initiated before deviations occur.

Due to the common absence of such a predictive process

control, produced goods partly need to be considered as

steel scrap and have to be melted down again – with all

corresponding economic and ecological consequences. In

this regard, Allwood and Cullen (2011) found that in 2008,

from a globally required amount 1040 million tons of steel

products, 334 million tons were discarded as waste, which

is a ratio of one to three. This waste is reintroduced to the

production cycle together with scrap metal which is

however also needed to a certain ratio as cooling scrap to

stabilize the temperature of liquid steel (cf. Fig. 7, 2).

Nevertheless, more than two thirds of the steel scrap is only

recognized as such and discarded as waste in the later

stages of production, meaning that these 236 million tons

are run through the entire production process. This

emphasizes the potential of a predictive planning and

control of production processes, especially within the

process industry.

4.3 State of the Art of Production Planning and Control

Systems

Production planning and control systems are usually divi-

ded into three system classes that are hierarchically related

to each other (Shobrys and White 2002). At the top level,

planning systems support the management with a planning

horizon of several weeks or months. Mid-level scheduling

systems efficiently distribute activities on the available

production machinery over a time scale of days to weeks.

Below this operating level process control systems manage

the real-time execution of the respective production

machine.

In the field of process control systems, so-called Model

Predictive Control (MPC) is considered to be an important

achievement (Chan et al. 2014). MPC was developed in the

late 1970s and since then has constantly evolved (Camacho

and Bordons 2007). However, MPC does not describe a

special regulatory procedure, but rather a wide range of

control methods that use a physical model of the controlled

process to predict its future behavior depending on possible

control signals. Thus, control signals for achieving optimal

process results can be calculated for upcoming time peri-

ods. A disadvantage is the relatively high computational

effort, though attempts to reduce efforts by applying

approximation are being made (Graichen et al. 2010). MPC

approaches are often used in engineering processes that are

common for the process industry. For example, consider

the contributions of Niamsuwan et al. (2014) – for con-

trolling milk pasteurization processes –, Chan et al. (2014)

– in the field of power plant processes –, and Kittisupakorn

et al. (2009) – for steel pickling processes.

Before a process can be regulated, scheduling systems

forecast which jobs should be processed at what time, in

what sequence, and on which machine. A recently pub-

lished article by Harjunkoski et al. (2014) provides a

comprehensive overview of existing scheduling algorithms

that have been developed specifically for the process

industry. Accordingly, scheduling procedures range from

computer-aided manual schedule generation (e.g., by using

interactive Gantt charts) and extend to expert systems,

mathematical programming methods, heuristics, and arti-

ficial intelligence up to stochastic optimization approaches.
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In the field of artificial intelligence, a review of litera-

ture reveals various approaches of so-called multi-agent

systems that have also been applied within the industry. For

instance, Fischer et al. (2004) developed a multi-agent

system for steel production. It uses a distributed planning

and scheduling algorithm, in which each production unit

acts as an agent, and thus independently calculates a set of

possible solutions. Finally, another agent performs the

overall optimization. The real-time system monitors the

planned execution, identifies potential problems, and sug-

gests how to resolve them. Jacobi et al. (2007) developed

this system called MasDISPO further and recapped the

lessons learned from the productive use in a steelmaking

company. However, the system does not reveal forecast

functions. Another example of an agent-based production

system is provided by Elghoneimy and Gruver (2011), who

focus on wood product manufacturing.

Before scheduling, a system-wide planning needs to be

performed. For example, modern data mining approaches

are used to gather implicit knowledge from complex pro-

duction data and consequently generate planning rules.

This forms the basis of so-called knowledge-based pro-

duction planning systems. For this purpose, Rainer (2013)

developed a process model and demonstrated its use with a

case study from the production of semi-finished aluminum.

Focusing on the process industry, i.e., more precisely,

steelmaking and continuous casting, Zhu et al. (2010)

provide a novel optimization model to improve the effi-

ciency and performance in production planning. Their

optimization model is coupled with a simulation model and

provides an online evaluation and adaptation of the pro-

duction schedule. A detailed review of scientific literature

on simulation techniques regarding different domains has

been presented by Jahangirian et al. (2010), who compared

almost 300 different approaches.

The mutual integration of the three described system

classes is crucial to the successful operational use. With

regard to this question and by dedicatedly looking at the

process industry, Loos and Allweyer (1998) presented

principles and concepts to achieve a comprehensive

integration.

Thus, production in process manufacturing industries is

neither characterized by strong linearity (as in discrete

manufacturing), nor is the quality of resulting co-products

easily detectable or even deterministic, e.g., based on bills

of materials. Manufacturing processes can thus be consid-

ered as strongly interweaved (Loos 1997). From an infor-

mation systems’ point of view, the optimization of

production processes in process manufacturing can conse-

quently be considered as particularly challenging (Loos

1997). Hence, choosing this type of manufacturing as the

underlying object of investigation proves to be particularly

appropriate for using event-based predictions for a

prescriptive process control (cf. motivating scenario in

Sect. 3.1). However, to do so, a foundation of data must

exist in order to be able to generally compute forecasts with

high accuracy. To outline what type and size of data is

currently available in process manufacturing industries

using state-of-the-art sensor technology, the following

section will present a case study of the steel bar production

at one of Germany’s largest steel manufacturers (cf.

Krumeich et al. 2014a, b, c, e).

4.4 Case Study: Manufacturing Processes in Steel Bar

Production

The following case study analyzes a segment of the produc-

tion processes at one of Germany’s largest steel manufac-

turers (for an overview of steel producers in Germany, see

Statista 2015) and discusses some of the current challenges

that the company is facing in controlling its production pro-

cess in a proactive manner. The data sketched in this study

was collected and evaluated by the department for process

control computer applications of the chosen company.

In the considered production branch half a million tons

of steel are produced annually. To meet customer-specific

quality standards for the various end products, the manu-

facturer has implemented extensive quality tests within the

production line. These tests include diameter controls with

laser, surface testing by magnetic particle testing, checks

for internal steel errors by ultrasound, and a variety of

temperature and vibration measurements.

All these measurements continuously generate sensor

data at the lowest system level (L1). Furthermore, addi-

tional sensor systems are installed in production (ambient

and positioning sensors) to monitor the control of steel bars

via a material flow tracking system (L2-system level).

Based on this basic data and the available customer orders,

a rough timetable is calculated by means of production

planning and monitoring systems (L3 to L4 system level).

In this regard, the international standard IEC 62264 (In-

ternational Electrotechnical Commission 2013) provides a

differentiation of system levels within enterprise systems.

Currently, the sensor networks that are integrated into

the production processes are continuously providing too

much data to be entirely appropriately processed. The

employed information and control systems as well as the

analysis techniques available on the market are not capable

to monitor and control the entire production processes in a

proactive manner. Thus, no future states and events, such

as looming production deviations, can be predicted on

time. Hence, control production process control is instead

executed in a reactive way.

In the following, sample data obtained from the applied

sensor networks are described using the big data charac-

teristics in accordance with the classification of the German
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Association for Information Technology, Telecommuni-

cations and New Media (BITKOM 2012). If the entire

sensor networks within the production process are con-

sidered – which would be necessary for a comprehensive

production planning and control on an L3-/L4-systems’

level –, the Big Data challenge will multiply.

4.4.1 Volume

An example from the sensor network illustrates the

immense amount of data (volume) that is associated with

monitoring the production process. In the rolling mills 31

and 32, there are two optical surface test sensors that can

continuously provide real-time data for the detection of

surface defects during the rolling process. This makes it

possible to take into account the varying customer demands

for a particular surface quality. The plant already imple-

ments an error detection (using a detector) and a classifi-

cation of the error types (using a classifier). This optical

test sensor generates annually about 400 terabyte of video

data for each rolling mill, which corresponds to a data rate

of one gigabyte per minute. Currently it is only possible to

realize a sporadic reactive analysis of this data. The pre-

ferred option of linking it with context data originating

from other sensor networks and systems settled on levels

L2 and L3 is currently not possible in real-time due to the

volume of the data that is to be analyzed. Although these

systems can in principle detect problems in batch mode,

this detection is too slow to be able to react on time and

avoid production deviations.

4.4.2 Variety

While this is merely an example of very large amount of

data from individual sensors in one segment of the pro-

duction, another example shows the high data diversity

(variety) that is continuously generated by various sensor

networks throughout the production line. This places high

demands on an analysis according to big data principles.

The further processing of steel bars already provides half a

million of sensor data records per month, which reflects in

detail the context situation of this production area. This

corresponds to a sampling frequency of about five seconds

for a record size of several megabytes. Although the data

size of these real-time sensor data streams is considered to

be relatively small from an isolated point of view, for a

comprehensive analysis across all production areas and a

correlation with prediction models, conventional methods

quickly reach their limits. Within the next months, the

sensor performance at this point will have improved so that

over 1.5 million sensor data records will be available on

level L1 and L2 every month. In accordance with the

principle of CEP, however, only the identification of

relevant event patterns within this flood of homogeneous

and heterogeneous data sets will detect production devia-

tions on time. At this point, the basic claim of a scalable

solution becomes obvious, as the equipped sensor network

should be extendable in a flexible way, and at the same

time analyses and predictions should be performable in the

required time scale. Within the next three years, the com-

pany is additionally planning to increase its sensor cover-

age in this section to generate an output of more than five

million data records, which corresponds to a sampling rate

of two data sets per second.

4.4.3 Velocity/Analytics

Thus, in terms of analyzing this large and diverse data, the

responding time is crucial, since velocity is a decisive

competitive factor in analytics (velocity/analytics). Classic

reporting or batch processing would definitely be too slow,

so that so-called high velocity technologies must be per-

formed in near-real-time analyses. For the purposes of the

outlined vision of predictive enterprises, it is also crucial to

conduct accurate forecasts of the process sequences. Each

day, an average of one terabyte of video data is recorded in

a single subsection of the plant. However, a pure video

analysis method is not sufficient for predictive analytics. In

the existing system, it has been shown that only a few

production deviations could be detected by this classical

approach. In addition, there is no feedback for a proactive

process optimization. Therefore, process data need to be

included in the model formation and forecasting. Here, as

outlined, over one million data sets will occur in the

coming months. For analyzing the dependencies between

process and video data, data from a longer period must be

used for model training. In this case, the data volume may

rapidly exceed 50 terabytes. For a real-time adaptive pre-

diction, on average one-tenth of the data should be used. At

present, however, such a number of data can hardly be

processed in real-time. A direct compression of the data is

impossible because of its variety to be considered.

Due to this big data problem, the current production

process is a long way from an envisioned optimum with

regards to a proactive control. Technically, the company

could integrate additional sensors into its production pro-

cesses to achieve an even more fine-grained monitoring;

however, current analytical methods take too long to com-

plete an analysis and to gain an economic benefit from this.

5 Architecture Proposal for Prescriptive Enterprise

Systems

In this section, seven requirements that need to be fulfilled

in order to systematically implement a prescriptive control
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of business processes are illustrated. The requirements

were motivated by the research in Krumeich et al. (2014c)

and were derived from the analysis of the case study

conducted in Sect. 4. After this, a corresponding system

architecture is proposed (cf. Krumeich et al. 2014e), which

emphasizes the outlined requirements, and may serve as a

blueprint for prescriptive enterprise systems.

5.1 Requirement Analysis

As the case study analysis revealed, the overall challenge

of computing accurate predictions has shifted from being

able to capture process and context situations – as the

baseline for deriving forecasts – to being able to manage

and adequately consider this huge quantity of data. In

addition, the case study illustrated that the masses of data

are progressively growing – which is accompanied with

general expectations (Dhar 2013) – resulting in the

necessity of possessing a scalable platform for integrating

sensor technology. This leads to the first requirement of a

system architecture.

Requirement 1 Providing scalable means for extending

sensor networks throughout production processes and

storing the masses of data in descriptive process and con-

text models.

In addition to collecting and storing process data in

historical description models – as a knowledge base for

process predictions –, it is compulsory to investigate cur-

rent real-time conditions of processes through analyzing

their current events and context situations. Due to the wide

variety of heterogeneous sensors which are used in enter-

prises, this particularly is a challenge of big data analytics

in terms of data variety (cf. case study analysis in

Sect. 4.4). To address this, these streams of atomic data

have to be searched for patterns in real-time, e.g., by CEP

technologies.

Requirement 2 Providing means for detecting and filtering

complex events within tremendous streams of sensor data.

Such CEP permits to correlate current conditions with

historical ones as the baseline for deriving event-based

predictions. Through this correlation, event-based forecast

models can be derived and constantly adapted. As a tech-

nical infrastructure, a platform must be available which

combines a batch-oriented analysis with that of a dis-

tributed stream mining analysis. Whereas batch-oriented

methods are important for training prediction models,

stream-oriented ones are compulsory for the actual real-

time analysis of incoming data streams. In particular for the

automatic analysis of image and video sensors – as outlined

in the case study –, dedicated algorithms need to be

available in order to derive structured information from

unstructured data. The necessity to realize a real-time

correlation of complex events with historical process data

leads to the third requirements.

Requirement 3 Providing capabilities for real-time data

analyses to correlate and analyze data collections and

streams that can be classified as ‘‘big’’ in terms of high

volume, high variety and high velocity.

Based on such correlations, prediction models com-

prising forecasts of the future progress of business pro-

cesses can be computed, which allows for a proactive

reaction to predicted problems. Several prediction tech-

niques and algorithms can be applied, all of which have

to be capable of processing big data and have to cope

with real-time requirements, which is another challenge

in terms of big data analytics. In this regard, sophisti-

cated CEP techniques are required to predict likelihoods

of the occurrence of future atomic events that will

eventually trigger complex ones. These probability

assumptions will realize a predictive complex event

detection.

Requirement 4 Deriving and continuously adapting (event-

based) prediction models.

Based on event-based prediction models, forecasts of

substantially higher accuracy can be computed, since pre-

dictions are not purely based on stochastics. Instead, the

actual current state is decisive for the computation. Hence,

process progressions can be forecasted and certain devia-

tions from planned and required process execution objec-

tives can be proactively detected leading to corresponding

system responses.

Requirement 5 Creating alerts as responses to predicted

deviations from planned process objectives based on cal-

culated forecasts.

Within computed prediction models, not only one single

possible future process progress will be forecasted, but

multiple ones whose occurrences are depended on both non-

influenceable events and influenceable actions. Thus, rec-

ommendations or automatic decisions and actions should be

provided to positively influence and control the outcome of

business processes in accordance with specific process

objectives. This will make it possible to realize a proactive

incident management in contrast to a reactive incident

handling as a prerequisite of a predictive enterprise.

Requirement 6 Deriving recommendation and automatic

decisions for mitigation actions.

As a result of intelligent algorithms it should further be

determined whether changes enacted within one process

instance – as a response to detected deviations, defects and

problems – will impact other running instances that in turn

will affect recommendations and automatic actions. These

automatic or manually triggered actions based on real-time

event-based predictions eventually realize an intelligent
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proactive process planning and control and thus the vision

of a predictive enterprise.

Requirement 7 Enacting sophisticated proactive process

adaptations on the basis of computed recommendations and

decisions.

5.2 Architecture Proposal

This section outlines a functional description of compo-

nents required for realizing a prescriptive control of busi-

ness processes (cf. Fig. 8).

On the basis of the previously derived requirements, the

architecture comprises three inherent layers that are typically

considered within analytical processes of big data (Akerkar

2013): a descriptive (cf. Requirements 2, 3), a predictive (cf.

requirement 4) and a prescriptive layer (cf. Requirements 5,

6). On top of these, an adaptation layer (cf. Requirement 7)

allows for intelligent actions incorporated into business

process engines as responses to prescriptive decisions.As the

architecture’s baseline, an integration layer (cf. Requirement

1) realizes the system’s physical interweaving into produc-

tion process and facilities.

5.2.1 Integration Layer: Events, Transactions, Process

Data, Big Data

The foundation of this system is a solid integration plat-

form that connects the system to a company’s existing IT

infrastructure. In an Industry 4.0 context additional adap-

ters for sensor and IoT object integration are required. Due

to the wide variety of heterogeneous sensors which are

used throughout enterprises, an initial classification is

required, which can be realized via ontology-based enter-

prise models. The use of ontologies realizes the semantic

interoperability of context data and thus in principle

enables an automated analysis.

5.2.2 Descriptive Analytics Layer: In-Memory Data

Management and Connectivity

Due to the high volume of data and the velocity in which it

is generated, an in-memory data management platform is

utilized, allowing for distributed in-memory data manage-

ment with extremely low, predictable latency and fast data

access (microseconds) for real-time data handling. An in-

memory data store will act as a central point of coordina-

tion, aggregation and distribution. Besides data manage-

ment, events such as alerts or system messages are

communicated by using an event bus by means of which

components can publish and to which they can subscribe.

To manage the diverse data sources and connected enter-

prise systems, an API management component is

introduced.

5.2.3 Predictive Analytics Layer: Streaming Analytics

Real-time data accessible via the in-memory data man-

agement platform can be preprocessed. In particular for

the intelligent evaluation of image and video sensors as

outlined in the case study, special algorithms have to be

Fig. 8 Layers and functional building blocks of a prescriptive enterprise systems’ architecture (Krumeich et al. 2014e)
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developed in order to derive structured information from

unstructured multimedia data. The results are fed back to

the in-memory data store. The aggregated data is used for

both ex-post and ex-ante analysis. From an ex-post point

of view, historic data can be analyzed for pattern detec-

tion and correlated with respective business process

behaviors. Based on these patterns, real-time event

detection, such as deviations of production progress from

an expected state, can be learned, optimized and applied

to monitor real-time data streams. Here, an extension of

the sub group search for distributed stream analysis could

be developed. This technique is suitable to recognize the

deviation from the normal state as well as to generate

predictions. Furthermore, modern Bayesian approaches

could be combined with it, which are specifically opti-

mized for large amounts of data. Data analysis compo-

nents can communicate detected patterns to the event bus

on which a complex event processing engine (CEP) is

operating to correlate business process relevant events

from data analysis results. These can then be used for

process prediction.

5.2.4 Prescriptive Analytics Layer: Real-Time Decision

Making

In order to enable process owners to make qualified real-

time decisions, all relevant data needs to be aggregated and

visualized appropriately. Here, dashboarding functionali-

ties similar to current business activity management solu-

tions can be applied. In addition, process owners must be

notified proactively if a decision is required or when a

deviation from the current state of a process instance is

detected. Besides pure visualization and notification, a

recommendation is generated based on historic process

analysis. To understand why a recommendation was made,

drill-down functionalities allow to navigate to previous

process instance information and enable process users to

make qualified decisions.

5.2.5 Adaptation Layer: Intelligent Actions

Based on the data gathered and the resulting process pre-

diction, business processes can either be adapted on an

instance base (process instance adaptation) by adjusting the

current process execution, or by optimizing the entire pro-

cess type (instance-to-model). However, adaptations in a

process instance can lead to necessary adaptations in other

correlated process instances such as supporting or following

processes (instance-to-instance). Here, the process owner is

also supported. Once the adaptations have been decided on, a

governance process ensures a consistent transition of chan-

ges back into the process execution system(s).

6 Conclusion and Outlook

In order to keep up with increasing market demands in global

competition, companies are forced to dynamically adapt each

business process instance by considering its individual busi-

ness situation. Companies that have the capability of analyz-

ing the current state of their business processes, forecasting

their most optimal further sequence and proactively control-

ling them based on this knowledge will be a decisive step

ahead of their competitors. Such a company sketches the

vision of a predictive enterprise in the age of data as a decisive

competitive asset. Thus, research faces the challenge of

developing appropriate analytical methods and software sys-

tems that are able to detect and predict decisive events from

collected data in a timely manner.

This paper explored new potentials through the applica-

tion of predictive analytics on big data. Thus, it proposed a

concept for the prescriptive control of business processes by

using event-based process predictions. Nowadays, finance

and insurance companies are no longer the only enterprises

with fine-grained insights into their business processes.

More particularly, industries with a dedicated focus on

physical objects, like the manufacturing ones, have reached

new dimensions in data sensing through technological

advancements resulting from the rise of the IoT.

In this regard, this paper focused on production planning

and control in the context of process manufacturing, which

includes several key industries not only in Germany, but

also worldwide. Based on a case study of a German steel

producing company, the paper outlined which data

becomes available when using state-of-the-art sensor

technology. This will be the foundation to realize the

concept that was proposed by the paper. However, a con-

sideration of the data size revealed that dedicated methods

of big data analytics would be required to tap the full

potential of already available data. Consequently, the paper

derived seven requirements that need to be addressed for a

successful implementation of the concept and additionally

proposed a generic architecture of prescriptive enterprise

systems.

Whereas the paper sketched how large quantities of

low level data can be transferred into business value, the

paper abstracted from more technical implementation

details required to analyze these masses of data. In the

ongoing research project iPRODICT, an interdisciplinary

team of researchers and industry experts explore the

technical realization of the proposed concept (cf.
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zur schnellen modellprädiktiven Regelung nichtlinearer Sys-

teme. Automatisierungstechnik 58(8):447–456
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Wortmann F, Flüchter K (2015) Internet of things. Technology and

value added. Bus Inf Syst Eng 57(3):221–224

Yonder Blue (2013) Industrial Big Data: Die Zukunft kennen –

Prozesse automatisieren. Blue Yonder, Karlsruhe

Yam R, Tse P, Li L, Tu P (2001) Intelligent predictive decision

support system for condition-based maintenance. Int J Adv

Manuf Technol 17(5):383–391

Zhu D, Zheng Z, Gao X (2010) Intelligent optimization-based

production planning and simulation analysis for steelmaking and

continuous casting process. J Iron Steel Res Int 17(9):19–30

123

280 J. Krumeich et al.: Prescriptive Control of Business Processes, Bus Inf Syst Eng 58(4):261–280 (2016)

http://www.gartner.com/newsroom/id/1530114
http://www.gartner.com/newsroom/id/1530114
https://www.gartner.com/doc/2326815/magic-quadrant-business-intelligence-analytics
https://www.gartner.com/doc/2326815/magic-quadrant-business-intelligence-analytics
https://www.gartner.com/doc/2326815/magic-quadrant-business-intelligence-analytics
http://de.statista.com/statistik/daten/studie/153022/umfrage/die-groessten-stahlproduzenten-nach-produktionsmenge-in-deutschland/
http://de.statista.com/statistik/daten/studie/153022/umfrage/die-groessten-stahlproduzenten-nach-produktionsmenge-in-deutschland/
http://de.statista.com/statistik/daten/studie/153022/umfrage/die-groessten-stahlproduzenten-nach-produktionsmenge-in-deutschland/
http://www.sensorsmag.com/process-industries/steel-manufacturing-could-use-more-sensing-and-analysis-10249
http://www.sensorsmag.com/process-industries/steel-manufacturing-could-use-more-sensing-and-analysis-10249

	Prescriptive Control of Business Processes
	New Potentials Through Predictive Analytics of Big Data in the Process Manufacturing Industry
	Abstract
	Introduction
	The Vision of the Predictive Enterprise
	Motivation and Problem Statement
	Contribution, Previous Research and Research Method

	From Sensor Data to Business Value
	Technological Progress Towards the Internet of Things and Industry 4.0
	Event Processing and Complex Event Detection
	Event-Driven Predictive Analytics
	Condition-Based Maintenance

	Conceiving a Prescriptive Process Control Using Event-Based Process Predictions
	Motivating Scenario
	Shortcomings in Utilizing Conventional Techniques
	Stronger Situation-Awareness through Predictive Process Analytics

	From Descriptive to Prescriptive Process Analytics
	Concept of Prescriptive Control of Business Processes
	Component 1: Process Blueprints Containing Complex Event Patterns
	Component 2: Induction of Complex Event Patterns and Their Detection in Process Instantiations
	Component 3: Process Forecasting Using Event-Based Process Predictions
	Component 4: Prescriptive Process Control
	Technical Realization of Event-Based Process Predictions


	Production Planning and Control in the Steel Industry -- Characteristics and Case Study
	Characteristics of the Process Industry
	Divergent/Analytical Material Flows
	Production Cycles
	Non-Linear Production Outputs and Non-Controllable Production Deviations
	Customer-Specific End Products

	Challenges in Production Planning and Control
	State of the Art of Production Planning and Control Systems
	Case Study: Manufacturing Processes in Steel Bar Production
	Volume
	Variety
	Velocity/Analytics


	Architecture Proposal for Prescriptive Enterprise Systems
	Requirement Analysis
	Architecture Proposal
	Integration Layer: Events, Transactions, Process Data, Big Data
	Descriptive Analytics Layer: In-Memory Data Management and Connectivity
	Predictive Analytics Layer: Streaming Analytics
	Prescriptive Analytics Layer: Real-Time Decision Making
	Adaptation Layer: Intelligent Actions


	Conclusion and Outlook
	Acknowledgments
	References




