
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2013 Completed Research ECIS 2013 Proceedings

7-1-2013

Towards A Minimal Cost Of Change Approach For
Inductive Reference Model Development
Peyman Ardalani
Institute for Information Systems (IWi) at the German Research Center for Artificial Intelligence (DFKI) and Saarland
University, Saarbrücken, Germany, peyman.ardalani@iwi.dfki.de

Constantin Houy
Institute for Information Systems (IWi) at the German Research Center for Artificial Intelligence (DFKI) and Saarland
University, Saarbrücken, Germany, constantin.houy@iwi.dfki.de

Peter Fettke
Institute for Information Systems (IWi) at the German Research Center for Artificial Intelligence (DFKI) and Saarland
University, Saarbrücken, Germany, peter.fettke@iwi.dfki.de

Peter Loos
Institute for Information Systems (IWi) at the German Research Center for Artificial Intelligence (DFKI) and Saarland
University, Saarbrücken, Germany, loos@iwi.uni-sb.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2013_cr

This material is brought to you by the ECIS 2013 Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in ECIS 2013
Completed Research by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Ardalani, Peyman; Houy, Constantin; Fettke, Peter; and Loos, Peter, "Towards A Minimal Cost Of Change Approach For Inductive
Reference Model Development" (2013). ECIS 2013 Completed Research. 127.
http://aisel.aisnet.org/ecis2013_cr/127

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_materials?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2013_cr/127?utm_source=aisel.aisnet.org%2Fecis2013_cr%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

TOWARDS A MINIMAL COST OF CHANGE APPROACH
FOR INDUCTIVE REFERENCE PROCESS MODEL

DEVELOPMENT

Ardalani, Peyman, Institute for Information Systems (IWi) at the German Research Center for
Artificial Intelligence (DFKI) and Saarland University, Campus, Building D32,
66123 Saarbrücken, Germany, peyman.ardalani@iwi.dfki.de

Houy, Constantin, Institute for Information Systems (IWi) at the German Research Center for
Artificial Intelligence (DFKI) and Saarland University, Campus, Building D32,
66123 Saarbrücken, Germany, constantin.houy@iwi.dfki.de

Fettke, Peter, Institute for Information Systems (IWi) at the German Research Center for
Artificial Intelligence (DFKI) and Saarland University, Campus, Building D32,
66123 Saarbrücken, Germany, peter.fettke@iwi.dfki.de

Loos, Peter, Institute for Information Systems (IWi) at the German Research Center for
Artificial Intelligence (DFKI) and Saarland University, Campus, Building D32,
66123 Saarbrücken, Germany, peter.loos@iwi.dfki.de

Abstract

Business Process Management (BPM) has advanced to be one of the most intensely discussed topics in
Information Systems (IS) research. Based on the growing maturity of its concepts, methods and
techniques BPM has, furthermore, gained tremendous importance in organizational practice. More
and more organizations develop and use individual business process models as a fundament for their
operations. As the development of individual business process models is a complex and expensive
endeavour, organisations aim at reusing and adapting already existing business process models, so
called reference models. However, so far only a limited amount of reference models for selected
domains exist, which makes the development of new and reliable reference models a highly relevant
issue. In this contribution, we present a new heuristic approach for the inductive development of
reference process models based on existing individual process models. Our approach focuses on
minimal cost of change (MCC) (based on minimal graph edit distance) when adapting the developed
reference model to match the underlying individual process models. Furthermore, an according
software prototype supporting automated inductive reference model development is presented as a
proof of concept. Finally, our approach is compared to other state of the art approaches in this field in
order to qualitatively evaluate its feasibility and usefulness.

Keywords: Business Process Management, BPM, Reference Modeling, Reference Models.

Proceedings of the 21st European Conference on Information Systems

1

1 Introduction

Business Process Management (BPM) has advanced to be one of the most intensely discussed topics
in Information Systems (IS) research (van der Aalst 2013). In addition to the growing maturity of its
concepts, methods and techniques, BPM has gained tremendous importance in research as well as in
organizational practice. Business process models are the basis for most of the functionalities which are
relevant in the BPM life cycle and more and more organizations document and improve their business
operations using business process models. As the development of individual business process models
is a complex and expensive endeavour, many organisations aim at reusing already existing business
process models and at adapting these so-called reference models according to their individual needs
(Becker et al. 2011). Using reference models as a basis for the development of individual process
models is a promising approach which can provide considerable advantages such as acceleration of the
design of individual models, improvement of model quality or improvement of communication about
the model content in organizations based on a consistent terminology.

However, even though some more or less established business process reference models for certain
domains already exist, the development of new reference models for different domains is still a highly
relevant endeavour to support BPM in organisations in different industries. Thus, adequate and well-
performing approaches for business process reference models development are of considerable
importance. In this context, several approaches for reference model development are known which can
be differentiated into deductive and inductive approaches (Becker et al. 2007). Deductive approaches
focus on building up reference models based on a theoretical fundament or mere conceptual con-
siderations and represent the majority of applied approaches for reference model development. In
contrast, inductive strategies take existing individual process models or real-world business process
execution logs, e. g. from different organizations in a certain domain, as a basis for the development of
a reference model. In such inductively developed models, similarities between individual models or
process execution logs are considered in order to create a “consensual” and at the same time abstracted
model (Walter et al. 2013). Against the background that reference model development is a time-con-
suming endeavour and that more and more relevant data from different IS is available which can
describe processes in organizations (Houy et al. 2011), inductive methods for reference model
development provide considerable potential and gain more and more importance.

In literature, a few approaches are presented describing how reference models can be developed in an
inductive way. However, these approaches often contain certain heuristic elements resulting in
according calculation times or semi-automated elements which cause considerable manual efforts. It is
the goal of our research to address these shortcomings and to contribute to the current state of the art
research in inductive reference model development by investigating the possibilities of further
automating and rendering the calculation process more efficient.

This article introduces a minimal cost of change (MCC) approach for the inductive development of
business process reference models based on the idea of a minimized graph edit distance to match a set
of given underlying process models. Furthermore, a software implementation will be presented as a
proof of concept. Our approach and implementation will then be qualitatively compared to other
current approaches for inductive reference model development and related work in order to evaluate
its feasibility and usefulness.

Our contribution takes a design-oriented research approach as a basis and is structured as follows: In
section two the conceptual foundations of reference modeling and the inductive development of
reference models are presented and discussed. Section three introduces our MCC reference model
development approach and the according algorithms for the prototypical implementation. Section four
presents our proof of concept and its evaluation before section five compares the MCC approach to
essential related work. Finally, section six concludes the paper.

Proceedings of the 21st European Conference on Information Systems

2

2 Reference Modeling and Reference Model Development

The terms reference modeling and reference model have not been consistently defined in literature and
there is still a lively discussion about the topic. This discussion shall not be recapitulated in this con-
tribution. In general, business process reference models can be understood as business process models
which should fulfil certain criteria and offer certain features. However, these criteria are still under
discussion. Referring to Fettke and Loos (2007), we consider the following features as important:

(1) Reusability: Business process reference models represent blueprints for the development of
process-oriented IS which can be reused in different IS development projects.

(2) Exemplary practices: Business process reference models can provide common, good or even best
practices describing how business processes are actually designed in practice or how they could
or should be designed and executed in order to reach certain goals. In this context, a descriptive
as well as a prescriptive or even normative connotation of business process reference models
becomes apparent depending on their interpretation.

(3) Universal applicability: Business process reference models do not only represent business
processes of one particular organization but aim at providing universally applicable business
process representations which are valuable for different organizations in a certain domain.

Reference models can provide benefits for both theory and practice. Besides the provision of general
descriptions of enterprises, which is especially interesting from a theoretical point of view, practice
profits, e. g. from decreases in modeling costs, modeling time and modeling risk as reference models
can represent proven solutions (Becker et al. 2011). Furthermore, increases in model quality based on
the reuse and adaption of already validated process models can be expected.

In literature several approaches for reference model development are discussed which can, as already
mentioned, be differentiated into deductive and inductive approaches. Most of the established
reference models have been initially developed based on deductive approaches which becomes
apparent when consulting the Reference Model Catalog – an inventory of reference models which is
administered by the Institute for Information Systems (IWi) at the DFKI (http://rmk.iwi.uni-sb.de).
Deductive approaches use theories and conceptual considerations for developing reference models for
certain domains or industries. In contrast to that, inductive approaches use existing real-world process
models or process execution logs from organizations in one domain or industry for developing a
domain- or industry-specific reference model based on real-world data. Hence, inductive approaches
serve for developing common practice reference process models in the first place. Referring to Rehse
et al. (2013), the following requirements are important for inductive reference process model
development methods:

(1) inductive development: the method should support a systematic development of a reference
process model based on a set of individual process models,

(2) identification of similarities and commonalities: the developed reference process model should
contain similarities and commonalities of the underlying individual process models,

(3) abstraction from details: the developed reference process model should abstract from specialities
of the individual process models,

(4) generativity: the individual process models should be deducible and developable on the basis of
the reference process model and

(5) support of natural language: formulations in natural language are an essential part of process
models and phenomena like homonymy, synonymy and language-related vagueness typically
occur in process models. Thus, a method for inductive reference model development should con-
sider this aspect.

In the following section, our MCC approach for inductive reference model development is presented
in more detail. At first, an overview of the approach is given and the relevant definitions are
introduced before the algorithm is explained in more detail.

Proceedings of the 21st European Conference on Information Systems

3

3 The Minimal Cost of Change Approach

3.1 Overview and Definitions

Our minimal cost of change (MCC) approach supports the development of reference models with the
minimal cost of change in the sense of a minimized graph edit distance to match a set of given
underlying process models. In this contribution, we use Event-driven Process Chains (EPC) for the
representation of business processes based on the following definition:

Definition 1 – EPCsSet: Let EPCi be a five-tuple (Ei, Fi, Ci, li, Ai) in which:
• Ei is the set of events (Ei ≠ Ø);
• Fi is the set of functions (Fi ≠ Ø, Fi ∩ Ei = Ø);
• Ci is the set of connectors (Ci ∩ Ei = Ø, Ci ∩ Fi = Ø);
• li: Ci→{and, or, xor} labels connectors with their type;
• Ai ⊆ (Ei ∪ Fi ∪ Ci) × (Ei ∪ Fi ∪ Ci) is the set of arcs.

EPCsSet is set of all given EPCs (EPCsSet = {EPC1, EPC2, …, EPCn}).

The following description of the MCC approach shows how underlying business process models are
processed and assigned to different types of sets. Based on these sets the cost of change for each
model element is calculated and an appropriate reference model is developed. In order to perform
these calculations, we deal with sets and functions which are defined in the following:

Definition 2 – NodesSet: Let Eall denote the set of all events in EPCsSet (∪Ei) and Fall denote the set

of all functions in EPCsSet (∪Fi). Then NodesSet =Eall∪Fall and contains all events and functions in
EPCsSet. Each member of NodesSet represents an event or a function and is called node.

Definition 3 - cost function: Assume that we can insert, delete and move nodes in the reference model
and let O be the set of these operations (O={ins, mov, del}). cost: O×NodesSet→ℕ is a function which
indicates the cost of these operations for each node.

Although these costs can differ for each node, in the following, we assume that all nodes have similar
costs. These values are exemplarily chosen as follows: cost(ins) = 10, cost(mov) = 5 and cost(del) = 1.
This means that inserting a node into a reference model has a ten times higher priority than deleting it.

Definition 4 – ElementsSet: Let ElementsSet denote the set of all elements. An element is a tuple
(node, f) which describes a node and its frequency of occurrence in EPCsSet:

• f = f(element): Let wi be the frequency of occurrence of EPCi in EPCsSet (Σwi = 1) and exist
be a function (ElementsSet×EPCsSet→{0,1}) which indicates if the element exists in EPCi:

Then f(element): ElementsSet→[0,1] is a function which returns the frequency of an element:

),()(
1

i
i

i EPCelement*existwelementf ∑
=

= (2)

Definition 5 – RelationsSet: Let RelationsSet denote the set of all relations. A relation describes an
element and the connection – directly or via a particular connector – to its preceding element
(preelement). A relation is a five tuple (element, preelement, ctype, f, costValue) in which:

• preelement is an element which directly or via a connector precedes an element;
• ctype represents the type of connector (ctype ∈ {AND, OR, XOR, undefined});
• f = f(relation): Let wi be the frequency of occurrence of EPCi in EPCsSet (Σwi = 1) and exist

be a function (RelationsSet×EPCsSet→{0,1}) which indicates if the relation exists in EPCi:

exist(element, EPCi) ={ 1 if element’s node exists in the EPCi (1)
0 if element’s node does not exist in EPCi

Proceedings of the 21st European Conference on Information Systems

4

Then f(relation): RelationsSet→[0,1] is a function which returns the frequency of a relation:

),()(
1

i
i

i EPCrelation*existwrelationf ∑
=

= (4)

• costValue = costValue(relation): RelationsSet→ℕ is a function which indicates the cost
which will be saved when we add an element at a certain position in the reference model.
However, the insertion may cause some other cost-effects while matching the reference model
with other process models. Considering these factors costValue is calculated as follows:

44444444 344444444 214444 34444 21

444444 8444444 76

_movepreelementdelete

move

*cost(mov)(relation)lement))*fexist(pree(l)))*cost(def(relation(
v)))*cost(mof(relation)(f(element*cost(ins)f(element)relation)costValue(

−−−−
−−=

11
 (5)

In this formula, the function exist(preelement): ElementsSet→{0,1} refers to the existence of a
preelement in the ReferenceModelRelationsSet (see definition 6) and is defined as follows:

In our approach, we extract the cost of change for each element from the cost function and calculate
the costValue of each relation to prioritize the candidate relations for the reference model. These
candidate relations will be stored in one of the following sets. The final reference model will be
generated based on these sets.

Definition 6 - ReferenceModelRelationsSet: The ReferenceModelRelationsSet is defined exactly like
RelationsSet. It includes the relations which are chosen to be inserted into the final reference model.
Selected relations will be moved from the RelationsSet into the ReferenceModelRelationsSet.

Definition 7 – ReservedRelationsSet: The ReservedRelationsSet is defined exactly like RelationsSet.
It includes the relations selected to appear in the final reference model but whose preelement does not
yet exist in the ReferenceModelRelationsSet in the current step of the algorithm. These relations will
be kept in this set and moved into the ReferenceModelRelationsSet after the preelement has been
added.

As we can see in the general overview of the MCC algorithm (algorithm 1), the MCC approach
comprises three main steps: In step 1, ElementsSet and RelationsSet are initialized based on given
process models. In step 2, the candidate relation with the highest costValue is identified and added to
the relevant sets (ReferenceModelRelationsSet or ReservedRelationsSet). Then, its related relations are
recalculated. This step contains a loop which is continued until a given threshold is met or all existing
relations have been moved from RelationsSet. Finally, in step 3 the reference model is created.
1 begin
2 /* Step 1: Initiation of sets*/
3 InitiateSets();
4 /* Step 2: Creation of the ReferenceModelRelationsSet */
5 do
6 candidate relation = getMaximumRelation();
7 AddToRelevantSets(candidate relation);
8 RecalculateRelatedRelations();
9 while candidate relation.costValue > threshold or candidate relation <> null
10 /* Step 3: Creation of the Reference Model*/
11 CreateReferenceModel();
12 end

Algorithm 1. General overview of the MCC algorithm

exist(relation , EPCi) ={ 1 if relation exists in the EPCi (3)
0 if relation does not exist in EPCi

exist(preelement) ={ 1 if preelement exists in the ReferenceModelRelationsSet (6)
0 if it does not exist in the ReferenceModelRelationsSet

Proceedings of the 21st European Conference on Information Systems

5

Although the MCC approach especially focuses on providing an abstracted reference model which
contains the most relevant elements of the underlying process models, the algorithm is also able to
present a completely integrated model containing all nodes of the underlying process models if no
abstraction threshold is defined. To shed more light on input and output of our approach an example is
shown in figure 1. Three EPCs with different frequencies of occurrence (wi) in a model variant
collection (EPCsSet) represent the input data. We can expect our approach – without setting a
threshold – to create a common practice reference model like the one on the right hand side which can
represent all observable process variants.

Figure 1. EPCs with different frequencies of occurrence and exemplary reference model

3.2 Step 1: Initiation of sets

Each member of the ElementsSet represents an event or a function in the given process models. To
initiate this set, all events and functions are extracted from the given process models and their
frequencies of occurrence (wi) in the EPCsSet are computed using formula (2). In this paper, we
provisionally assume that each node has a clear label which serves for matching similar nodes.
Therefore in our simplified setting, the exist function according to our definitions returns only 0 or 1.
Of course, one could also make use of available mapping functions such as syntactic, semantic,
contextual similarity or a combination of them (van Dongen et al. 2008), instead of this simple
function to have further model similarity information. Against this background and according to the
given models and their frequencies of occurrence in our example (figure 1) the values of f(A) and f(B)
are 1 respectively 0.4.

As already mentioned, each relation in RelationsSet shows one element and its preelement (see
definition 5). The RelationsSet is initialized while we extract the nodes and insert them as elements
into the ElementsSet. For each element and preelement with a specific ctype (connector type) there is
one member in this set. Thus, if one element is related to one preelement with different ctypes in
EPCsSet, they will be displayed as two members in RelationsSet. In case there is no connector
between the elements, ctype is undefined and the next probable preelement will affect it changing it
according to its own ctype. For example, if event X is the direct preelement of function Y in one EPC
with 30% frequency of occurrence and, at the same time, it is the preelement of function Y via an AND
connector in another EPC with 25% frequency, these relations will be mapped into one relation in the
RelationsSet with an AND ctype and a frequency of 0.55. Moreover, for each element which does not
have any preelement, a null element will be added as its preelement.

According to the defined formulas, function A in figure 1 appears once as an element in RelationsSet.
Its preelement is the event Start with an undefined ctype and its frequency is 1; while function D
existed three times as an element in RelationsSet with an undefined ctype and different preelements:
event #3 with a frequency of 0.2, event #4 with 0.4 and event #5 with 0.4.

Proceedings of the 21st European Conference on Information Systems

6

The costValue is related to defined values in the cost function and is the measure for evaluating the
priority of each relation. The possible maximum value for this attribute in our example is 10 for
cost(ins) which shows that the element exists in all models in a certain position. Another important
factor in this step is the availability of the preelement in the ReferenceModelRelationsSet. If the
preelement does not exist in the ReferenceModelRelationsSet, the corresponding node is certainly
positioned in a “wrong place”. Therefore, it needs at least one move operation to be positioned in the
right place and we accordingly have to reduce the costValue by cost(mov). Hence, as we can see from
formula (5), the costValue will be reduced by f(relation)*cost(mov) if the preelement does not exist in
the current ReferenceModelRelationsSet. Table 1 shows all the members of the RelationsSet. In the
initiation step only the costValue of relations with a null preelement are not reduced by the cost for
moving the preelement. For example the costValue for function D and preelement event #3 in the first
step is:

55*4.01*)11(5*)4.01(10*1),3#,(
_

=−−−−−= 3214342143421
movepreelementdeletemove

undefinedDcostValue

By adding the selected relations in each step into the ReferenceModelRelationsSet, the costValue of
related relations will be increased again. Thus, they will have a higher priority and will also be moved
into the ReferenceModelRelationsSet in the next steps.

element preelement f(element) f(relation) ctype costValue
Start (null) 1 1 undefined 10
A Start 1 1 undefined 5
B #1 0.4 0.4 undefined 1.4
C #2 0.4 0.4 undefined 1.4
D #3 1 0.2 undefined 5
D #4 1 0.4 undefined 5
D #5 1 0.4 undefined 5
#1 A 0.4 0.4 undefined 1.4
#2 A 0.4 0.4 undefined 1.4
#3 A 0.2 0.2 undefined 0.2
#4 B 0.4 0.4 undefined 1.4
#5 C 0.4 0.4 undefined 1.4
End D 1 1 undefined 5

Table 1. The members of RelationsSet and their calculated attributes in the first step

3.3 Step 2: Creation of ReferenceModelRelationsSet

The MCC approach provides a step-by-step technique for the selection of appropriate relations for the
reference model. In each round of the second step of algorithm 1, one member of the RelationsSet will
be transferred into ReferenceModelRelationsSet or ReservedRelationsSet and the related relations are
recalculated. This algorithm either continues in order to meet the reference model abstraction
threshold or until all available relations in RelationsSet have been transferred. If the threshold value is
zero (“0”) all nodes with a positive costValue are added to the reference model.

In each round of the algorithm’s loop, the relation with the highest costValue will be extracted and
added to the according set. In contrast to the getMaximumRelation() function in algorithm 1, which
simply finds the relation with the maximum costValue, the two other functions are a bit more compli-
cated. Thus, we will have a closer look at them. In the AddToRelevantSets() function (algorithm 2) we
move a relation from RelationsSet into the ReferenceModelRelationsSet. For this transfer the
preelement should exist in the ReferenceModelRelationsSet. If it does not exist, we store the candidate
relation in the ReservedRelationsSet to make use of it in the next steps.

After adding new relations to the ReferenceModelRelationsSet, we may face some relations in the
ReservedRelationsSet which are successors of relations recently added to the ReferenceModel-
RelationsSet. In each step these relations also have to be extracted from ReservedRelationsSet and
moved to ReferenceModelRelationsSet.

Proceedings of the 21st European Conference on Information Systems

7

function AddToRelevantSets(relation)
1 begin
2 /* check if the preelement exists in ReferenceModelRelationsSet*/
3 if exists(preelement) then
4 move relation to ReferenceModelRelationsSet;
5 /* add related reserved relations */
6 foreach reservedRelation in ReservedRelationsSet do
7 if reservedRelation.preelement = relation.element then
8 move reservedRelation to ReferenceModelRelationsSet;
9 end
10 end
11 else
12 move relation to ReservedRelationsSet;
13 end
14 end

Algorithm 2. Adding candidate relations to relevant sets

After the execution of this function, the RelationsSet is updated due to the newly added relations. As
considered before, the relations in ReferenceModelRelationsSet affect the costValue of the relations in
RelationsSet. In the RecalculateRelatedRelations() function we update the costValues of the relations
which are affected by changes in the ReferenceModelRelationsSet. In algorithm 3, relatedRelations
refers to the relations in RelationsSet whose preelements have recently been added to the
ReferenceModelRelationsSet. The costValue of these relations will be increased by the cost for
moving the preelement (see formula (5)) and they will have a higher priority to be selected in the next
steps.
function RecalculateRelatedRelations ()
1 begin
2 relatedRelations = relations having newly added preelement;
3 foreach relation in relatedRelations do
4 relation.costValue += f(relation) * cost(mov);
5 end
6 end

Algorithm 3. Updating the costValue of related relations in the RelationsSet

By meeting the threshold or having transferred all members of RelationsSet, this step in the algorithm
ends and the ReferenceModelRelationsSet contains all required information for creating the reference
model. In the next section, this set will be taken as a basis to create an EPC process reference model
based on defined EPC modelling rules.

3.4 Step 3: Creation of the Reference Model

After the ReferenceModelRelationsSet has been completed, we have a set of relations containing
elements and preelements. Thus, there is no element which does not have any preelement (apart from
start elements) or which is not linked to other elements. This set also contains information about the
ctype which determines what kind of connector should be used while developing the process reference
model.

In relation to our example in section 3.1, the finally calculated ReferenceModelRelationsSet – without
considering any threshold – is displayed in table 2. After 13 rounds, all relations in RelationsSet have
been moved. Some of these relations are at first inserted into the ReservedRelationsSet and then
moved to the ReferenceModelRelationsSet. Relations in the ReferenceModelRelationsSet are shown in
the particular order in which they have been added to this set. The costValue column shows the last
calculated costValue for each relation.

As we can see from table 2, there are some relations in this set which cannot be directly mapped onto a
syntactically correct EPC. For example events #1, #2 and #3 have one preelement (function A), which
is not possible without an adequate connector. In these cases, we insert fitting connectors to correctly
link the nodes in the model.

Proceedings of the 21st European Conference on Information Systems

8

Round element preelement f(element) f(relation) ctype costValue
1 Start (null) 1 1 undefined 10
2 A Start 1 1 undefined 10
3 #1 A 0.4 0.4 undefined 3.4
4 B #1 0.4 0.4 undefined 3.4
5 #2 A 0.4 0.4 undefined 3.4
6 #4 B 0.4 0.4 undefined 3.4
7 D #4 1 0.4 undefined 5
8 End D 1 1 undefined 10
9 C #2 0.4 0.4 undefined 3.4
10 #5 C 0.4 0.4 undefined 3.4
11 D #5 1 0.4 undefined 5
12 #3 A 0.2 0.2 undefined 2.2
13 D #3 1 0.2 undefined 5

Table 2. The completed ReferenceModelRelationsSet

Moreover, there are some other situations which prevent the ReferenceModelRelationsSet from being
displayed as a correct EPC model. In our proof of concept we defined several rules to amend the
structure of an EPC (table 3). These rules resolve possible invalid relations and normalize the pre-
sented reference model according to common EPC modeling rules.

Conflict How to resolve it
Functions are right after
“OR” or “XOR” connector

One event should be inserted between each function and connector. One function
should be inserted right in front of the connector in order to have an alternating
order of functions and events.

First node is a function A “Start” event should be inserted in front of the first node.
Last node is a function An “End” event should be added after this function.
Nodes have the same
preceding node with
different connector types

Add connector between nodes and preceding node according to type of relations:
• undefined – undefined : Connector type will be “XOR”
• undefined – Other types : Connector type will be like other type
• For relations with different connector types, an “OR” connector is added
• For relations with same connector type, a connector with that type is added.

Two nodes are after each
other with same connector
type

Two connectors with the same type will be inserted in front of and after the
nodes. For example, these two sequences: A > B > C > D and A > C > B > D will
be interpreted to A > (B AND C) > D

Table 3. Rules of interpreting possible conflicts in ReferenceModelRelationsSet for EPCs

4 Proof of Concept and Evaluation

In order to provide a first evaluation of the presented approach and to analyse the obtained results, a
proof of concept has been implemented using JAVA. This implementation represents a module of a
software prototype for reference model mining. EPC models can be processed using the Event-driven
Process Chain Markup Language (EPML) or the ARIS Markup Language (AML) as file format. In
this platform, several approaches for inductive reference model development have been implemented.
In this paper, however, we concentrate on the presentation of the MCC approach.

As shown in figure 2, the user interface of our proof of concept software comprises three main parts:
Given EPCs are shown as a tab panel on the left side in top of the form (CE1, CE2, CE3). The created
reference model can be seen on the right side of the tab panel after each processing step. At the bottom
of the interface the calculation area is situated. A user can follow the algorithm either step-by-step or
directly proceed to the final result. Descriptions of executed calculations in each step are shown in the
area below the calculation buttons. There, all execution steps of the algorithm can be traced.

Proceedings of the 21st European Conference on Information Systems

9

Figure 2. User interface of our proof of concept, referring to our example in figure 1

Although the created reference models typically provide an abstraction from the underlying individual
models, the approach can also generate a “complete” reference model containing all elements (as
shown in our example). Using the mentioned step-by-step calculation feature, the threshold can be
appropriately configured. After initiating the different sets, only relevant relations will be calculated
and updated in each step. Therefore, redundancies are minimized and the speed of obtaining results
can be increased in comparison to other approaches (see related work).

Our approach also has some limitations which are discussed in the following. First, many reference
models have the claim to represent good or best practices, such as the SAP reference model, the
Information Technology Infrastructure Library (ITIL) or the Supply Chain Operations Reference
Model (SCOR). Hence, many models are considered and interpreted as normative models. However,
our inductive approach serves for developing common practice reference process models in the first
place. Such common practice models describe process schema which can indeed be observed in
organizations. They are typically considered and interpreted as descriptive reference models instead of
normative models. However, they can support the reuse of common model parts and can, nevertheless,
serve as candidates for best practice reference models. Furthermore, our approach, so far, only
supports the fundamental elements of EPCs (functions, events, connectors) in the first place. However,
other important EPC elements such as organizational units or process paths have so far not been
considered. Hence, it remains to be investigated how the presented algorithm can be further developed
in order to handle this. Moreover, we have assumed that each node of a process model can be clearly
identified by means of the label. However, there are several problems related to this assumption based
on the vagueness of natural language. We aim at improving our approach and making use of available
semantic similarity measurement methods for the further development of our approach in order to
make it work in more realistic settings. Finally, a useful feature of the MCC approach is that the
related cost of change as well as the abstraction threshold can be separately defined and adapted for
different needs. However, we need further experience concerning how to define this threshold in order
to get valuable common practice reference models which can also serve as good or best practice
candidates. In the following, we will compare our approach to related work in the field of inductive
reference process model development.

Proceedings of the 21st European Conference on Information Systems

10

5 Related Work

We investigate three relevant contributions providing approaches for inductive reference model
development. They serve as a basis of a comparison with our MCC approach. Li et al. (2010) provide
a technique for discovering reference models out of process model variants with minimum efforts
which is, thus, quite similar to our approach. However, in contrast to the MCC approach, it requires
block-structured process models, which means that sequences and loops have to be represented as
blocks with well-defined start and end nodes. Their method aims at merging the different process
variants under consideration of internal order relations between the nodes. The block-structured
process models are presented in a so-called order matrix containing the order relations between each
pair of nodes. Based on these matrices, an aggregated order matrix is produced and the most similar
nodes in the latter matrix are merged as one block. The new matrices are recalculated and the
procedure continues until it meets a similarity threshold. In order to compute these matrices, all
possible traces for each variant have to be extracted and all order relations have to be calculated in
each step. Although further detailed proof using quantitative comparisons is needed, we can expect
this approach to produce higher calculation costs than the MCC approach during the creation of a
reference model. Moreover, its necessary precondition restricts its application to block-structured
process models, which is not the case with the MCC approach.

La Rosa et al. (2012) suggest an approach to create a model that subsumes a collection of process
models. It uses abstracted configurable business process graphs which are independent of a certain
modeling technique and merges one pair of processes or sub-processes at a time. In this approach the
union of edges is computed and then annotations for each edge are created in order to partition differ-
ent model regions. In the next step, the most common regions are identified and reconnected to each
other in order to form the merged business process graph. Moreover, a set of reduction rules to
simplify the merged process graph is presented. However, in contrast to our approach this approach
also contains semi-automated steps during the development of the reference model (the so-called
“digest extraction”) which are not necessary for the MCC approach.

The approach presented by Gottschalk et al. (2008) uses process mining techniques on normalized
process execution log files in order to provide configurable process reference models. This method
focuses on integrating process model representations based on their execution logs and uses process
mining algorithms to extract a reference model from concatenated log files. In contrast to the MCC
approach, this technique does not support inductive model development based on existing process
models in the first place.

To conclude, our approach can contribute to the current state of the art of inductive reference model
development providing a fully automated development of reference process models while offering the
possibility to use process models without special preconditions.

6 Conclusion

The development of business process reference models has gained tremendous importance in the last
years. Well-performing approaches for their development are, thus, of considerable importance. We
have presented a minimal cost of change (MCC) approach for the inductive development of common
practice reference models. Furthermore, a software implementation supporting EPCs has been
developed as a proof of concept. Then, we have compared the MCC approach to other relevant
approaches for inductive reference model development and illustrated its advantages. In the future, we
will investigate the applicability of the MCC approach for inductively building up larger reference
models in order to quantitatively evaluate its performance. Moreover, an extension of our approach
towards the usage and integration of available model similarity measures is planned for the future.

Proceedings of the 21st European Conference on Information Systems

11

Acknowledgement: The research described in this paper was partly supported by a grant from the
German Research Foundation (DFG), project name: “Konzeptionelle, methodische und technische
Grundlagen zur induktiven Erstellung von Referenzmodellen (Reference Model Mining)”, support
code GZ LO 752/5-1. The authors would also like to thank the anonymous reviewers for their valuable
comments which helped to improve this paper.

References

Becker, J., and Meise, V. (2011). "Strategy and Organizational Frame" in: Process Management. A
Guide for the Design of Business Processes, J. Becker, M. Kugeler and M. Rosemann (eds.),
Springer, Berlin, pp. 91-132.

Becker, J., and Schütte, R. (2007). "A Reference Model for Retail Enterprises" in: Reference
Modeling for Business Systems Analysis, P. Fettke and P. Loos (eds.), Idea Group, Hershey,
PA, pp. 182-205.

Fettke, P., and Loos, P., eds. (2007). Reference Modeling for Business Systems Analysis. Idea,
Hershey, PA.

Gottschalk, F., van der Aalst, W. M. P., and Jansen-Vullers, M. H. (2008). "Mining Reference Process
Models and Their Configurations" in: On the Move to Meaningful Internet Systems – OTM
2008 Workshops, LNCS 5333, R. Meersman, Z. Tari and P. Herrero (eds.), Springer, Berlin,
pp. 263-272.

Houy, C., Fettke, P., Loos, P., van der Aalst, W. M. P., and Krogstie, J. (2011). Business Process
Management in the Large. Business & Information Systems Engineering (BISE) 3 (6),
385-388.

La Rosa, M., Dumas, M., Uba, R., and Dijkman, R. M. (2012). Business Process Model Merging: An
Approach to Business Process Consolidation. ACM Transactions on Software Engineering
and Methodology (TOSEM) 22 (2).

Li, C., Reichert, M., and Wombacher, A. (2010). The MinAdept Clustering Approach for Discovering
Reference Process Models out of Process Variants. International Journal of Cooperative
Information Systems 19 (3), 159-203.

Rehse, J.-R., Fettke, P., and Loos, P. (2013). "Eine Untersuchung der Potentiale automatisierter
Abstraktionsansätze für Geschäftsprozessmodelle im Hinblick auf die induktive Entwicklung
von Referenzprozessmodellen" in: Proceedings of the 11th International Conference on
Wirtschaftsinformatik (WI-2013), R. Alt and B. Franczyk (eds.), Leipzig, Germany,
pp. 1277-1291.

van der Aalst, W. M. P. (2013).Business Process Management: A Comprehensive Survey. ISRN
Software Engineering (Article ID 507984).

van Dongen, B., Dijkman, R., and Mendling, J. (2008). "Measuring Similarity between Business
Process Models" in: Advanced Information Systems Engineering – CAISE 2008, LNCS 5074,
Z. Bellahsène and M. Léonard (eds.), Springer, Berlin, pp. 450-465.

Walter, J., Fettke, P., and Loos, P. (2013). "How to Identify and Design Successful Business Process
Models: An Inductive Method" in: Promoting Business Process Management Excellence in
Russia - Proceedings and Report of the PropelleR 2012 Workshop, April 24-26, Moscow,
Russia, J. Becker and M. Matzner (eds.), European Research Center for Information Systems,
Münster, pp. 89-96.

Proceedings of the 21st European Conference on Information Systems

12

	Association for Information Systems
	AIS Electronic Library (AISeL)
	7-1-2013

	Towards A Minimal Cost Of Change Approach For Inductive Reference Model Development
	Peyman Ardalani
	Constantin Houy
	Peter Fettke
	Peter Loos
	Recommended Citation

	Microsoft Word - ECIS_2013_Ardalani_et_al_MCC-Approach_final

