
Association for Information Systems
AIS Electronic Library (AISeL)

Selected Papers of the IRIS, Issue Nr 8 (2017) Scandinavian (IRIS)

Winter 12-31-2017

The Empire Strikes Back: The end of Agile as we
know it?
Jeffry Babb
West Texas A & M University, jbabb@wtamu.edu

Jacob Nørbjerg
Copenhagen Business School, jno.digi@cbs.dk

David J. Yates
Bentley University, dyates@bentley.edu

Leslie J. Waguespack
Bentley University, lwaguespack@bentley.edu

Follow this and additional works at: http://aisel.aisnet.org/iris2017

This material is brought to you by the Scandinavian (IRIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in Selected Papers of
the IRIS, Issue Nr 8 (2017) by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Babb, Jeffry; Nørbjerg, Jacob; Yates, David J.; and Waguespack, Leslie J., "The Empire Strikes Back: The end of Agile as we know it?"
(2017). Selected Papers of the IRIS, Issue Nr 8 (2017). 8.
http://aisel.aisnet.org/iris2017/8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301373912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Firis2017%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/iris2017?utm_source=aisel.aisnet.org%2Firis2017%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/iris?utm_source=aisel.aisnet.org%2Firis2017%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/iris2017?utm_source=aisel.aisnet.org%2Firis2017%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/iris2017/8?utm_source=aisel.aisnet.org%2Firis2017%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 44

The Empire Strikes Back:
The end of Agile as we know it?

Jeffry S. Babb1, Jacob Nørbjerg2, David J. Yates3 and Leslie J. Waguespack3

1 West Texas A&M University, Canyon, Texas, USA

2 Copenhagen Business School, Frederiksberg, Denmark
3 Bentley University, Waltham, Massachusetts, USA

jbabb@wtamu.edu, jno.digi@cbs.dk, {dyates, lwaguespack}@bentley.edu

Abstract. Agile methods have co-evolved with the onset of rapid change in
software and systems development and the methodologies and process models
designed to guide them. Conceived from the lessons of practice, Agile methods
brought a balanced perspective between the intentions of the stakeholder, the
management function, and developers. As an evolutionary progression, trends
towards rapid continuous delivery have witnessed the advent of DevOps where
advances in tooling, technologies, and the environment of both development
and consumption exert a new dynamic into the Agile oeuvre. We investigate the
progression from Agile to DevOps from a Critical Social Theoretic perspective
to examine a paradox in agility – does an always-on conceptualization of
production forestall and impinge upon the processes of reflection and renewal
that are also endemic to Agile methods? This paper is offered as a catalyst for
critical examination of and as a call to action to advocate for sustaining and
nurturing reflective practice in Agile and post-Agile methods, such as DevOps.
Under threat of disenfranchisement and relegation to automation, we question
how evolution towards DevOps may alter key elements in the tenets and
principles of the Agile methods phenomenon.

Keywords: Agile Methods, Continuous Delivery, Critical Social Theory,
DevOps, Iteration Pressure, Learning, Reflective Practice.

1 Introduction

In 2001, a wonderfully disruptive phenomenon was formally proffered to the world of
software and systems development in the form of the Agile Manifesto [13, 29] – an
espousal of principles and values which advocated for a progressive view on the art
and craft of software and systems artifact realization. Levied in the context of classic
“waterfall” conceptions of systems development, the set of methodologies gathered
under the “agile” umbrella was a response to changes in the context of software and
systems development. Also, the proliferation of information and knowledge, wrought
by a world rapidly inter-connecting via the Internet, likely played its own part. The
Agile Manifesto may be rightly considered an utterance of emancipation from staid
and ossified beliefs and norms regarding the practice of development, manifested in –
at least in the eyes of some – the CMM-inspired software process improvement

 45

efforts of the previous decade [18, 45, 46, 54]. Sixteen years later, the extent of
disruption and transformation brought about by a world extensively interconnected by
the Internet is staggering if not even incomprehensible.

Agile software and systems practices heralded (and mostly delivered on) an
accentuation of the co-creative possibilities inherent in a stakeholder-developer
partnership, a partnership that is mediated with rituals and habits centered on regular
discursive emergence, learning, and reflection. Among the other compelling aspects
of Agile is its focus on the rapid delivery of customer value. To wit, some of the
reflective and learning-centered aspects of Agile methods were frequent casualties of
the “first shots” of many Agile-driven software projects. Rapid delivery, and the
network effects of prolific delivery, have somewhat saturated the development space
(with tools, frameworks, automation, and knowledge) where expectations of pace may
outstrip learning and reflection inherently [5, 6, 30]. Thus, we begin to see a paradox
in agility take shape: it is nimble in the face of uncertainty and risk, and yet
susceptible to iteration pressure.

In some circumstances and settings, Agile practices are evolving to newer iterative
software development paradigms such as DevOps – integrating development,
deployment and operations tasks and responsibilities [22, 36] – and its companions,
continuous delivery [41] and deployment [34]. We will use the moniker DevOps in
the remainder of the paper to represent this family of methods [25].

DevOps offers a new conceptualization of Agile development which is consistent
with the logics of accumulation and automation. DevOps practices complement Agile
practices by emphasizing operations input to software and systems development [11],
hence the contraction of “Development” and “Operations” to DevOps. In contrast,
Agile practices emphasize customer input to development [1, 59]. DevOps emerged
from the tenets of Agile software development pertinent to short release cycles [11],
high automation in tooling [38], thus extending the continuous mode of design,
development, testing and integration to delivery, deployment and monitoring [25, 38].
It could be argued that while Agile development espouses an ethos of organizational
change through collaboration and learning, DevOps places more emphasis on
implementing organizational change to achieve business goals (e.g., shorter lead
times, better security, etc.) and on standardizing processes, automation, and data-
driven improvements to process and product [23, 25, 41, 51].

In this paper, we reflect on the shift from Agile methods to DevOps, discursively
and expositorily, and from a critical philosophy of science, to examine a paradox of
agility: will the embrace of the customer and managerial benefits of Agile methods,
evident in DevOps and continuous evolution, undermine the learning and renewal
aspects of Agile methods? In cases where a shift to DevOps has occurred, we see
potential for automation and speed of delivery to alter the focus on reflective practice.

The paper is organized and fashioned after the canonical “Star Wars” metaphor,
which itself follows a familiar “hero’s journey” story arc. In the prequel to the Agile-
to-DevOps story, there is the “Empire” – the steadfast adherence to a technically-
rational epistemology for practice that ensures that software processes can be
systematically perfected with measurement and optimization on measurement. The
“Rebellion” to this are a set of methods that value reflective practice and fluidity in
the face of changing requirements and environments. Thus, we summarize different
stages of Agile theory and practice over the past 18-20 years with examples drawn

 46

from our own field studies, the studies of others, and the original descriptions of Agile
processes. We then posit that, with an emphasis on augmenting people with
technology and process automation, DevOps presents the possibility that the
“Empire” will regain dominance as DevOps discourse focuses on technology and
process and less on people and culture. We do not posit that this has happened, or is
fated to happen, we simply reflect on Agile practice and foresee that reflection and
learning are often exchanged for meeting production deadlines and various attendant
“crises:” shall we expect that increasing technical rationality in the equation may
change the Agile balance?

Finally, in lightly appropriating the “Star Wars” story arc, we take a critical
theoretic view to advocate for emancipation for the Agile/DevOps software
practitioner: to caution against yielding ground to automation when automation
becomes detrimental to the reflective practices necessary for learning and renewal. In
this respect, we relate to the small, but important, body of critical research exploring
the relationship between work and new technology, see; e.g.; [15, 32, 48]; and we call
for a critical examination of how the combination of managerial and organizational
practices and priorities with new development technologies – Agile and DevOps –
shape the work of software professionals. Further to this, we appeal to the
Scandinavian research traditions where critical theory is a natural component of
inquiry in cases where understanding the social, historical and ideological context of
changes in practice is normative. As such, we question Agile’s future by considering
its past and how it has fared in practice. We begin with a prequel: The Capability
Maturity Model and Software Process Improvement.

We structure this paper in the following manner. In section two, we introduce the
matter of software processes and software process improvement as a byproduct of the
maturing that is software and systems development. In sections three and four, we
characterize the evolutionary point at which iterative and continuous software
delivery has challenged initial conceptualizations of software processes. These
sections track a progression from agile methods towards software processes that focus
further on continuous delivery and DevOps. In section five, we progress to utilizing
Critical Social Theory to reflect upon the nature of progression from Agile to DevOps
with respect to the tradeoffs that may impact human reflection and learning. Of
particular interest are the emancipatory aspects of Critical Social Theory. We then
conclude with an eye towards further Critical Social Theoretic inquiry into the
emerging phenomenon that is DevOps.

2 Prequel: The Capability Maturity Model and Software Process
Improvement

In the early 1990’s a structured and disciplined approach to improve software
development and management gained traction: Software Capability Maturity Models
(CMM) [26, 54]. These maturity models contained a set of managerial, developmental
and organizational processes for software development organizations to adopt and
apply to reach higher levels of process maturity, and thereby increasing levels of
predictability, control, and, ultimately, efficiency, of their software development.

 47

With the help of these maturity models, an organization could assess their software
processes and initiate improvements; i.e. changes to processes, practices, management
and organizations, needed to climb to a higher level.

The models sparked an interest in Software Process Improvement among software
development organizations and researchers [28, 39] as well as much criticism [18].
Software engineers criticized the models for aiming to convert software development
into an industrial assembly line process, which would impinge on the creativity and
flexibility required to control the uncertainties inherent in software development.
Particularly the data-driven continuous improvements (Level 5) were believed to
result in incremental improvements to a fundamentally flawed process in need of
radical change [18]. Others have pointed to the strong authoritarian and bureaucratic
perspective on organizations and management espoused by the models and to the lack
of appreciation of the organizational dynamics and politics of software developing
organizations [45, 46]. Critics have also claimed that the models are too cumbersome
and costly for small to medium sized software companies to use [10, 55].

3 Espoused Rebellion: Agile Principles and Practices

The Agile Manifesto was remarkable in its attempt to balance historically competing
forces in software and systems development – the demands of the customer, the
concerns of management, and the efficacy of the development team. When
considering the tenets proffered in the Agile Manifesto, traditional software process
values are acknowledged for their utility, but they are augmented with principles that
highlight balance, largely between the developers and customer. Processes, tools,
documentation, contracts, and planning are all concepts central to the inherent desire
for management to control risks, costs, and productivity. These are natural byproducts
of creating systems where profitability is at stake. The language used in the Agile
Manifesto’s twelve principles clearly describes a balance that is customer focused and
outcomes oriented. Some themes are emergent in the principles where management
are scarcely mentioned and, when mentioned, are then referred to as “business
people.”

Agile methods arguably co-evolved with the proliferation of Internet use and
ubiquitous access to the World Wide Web. What is certain is that many aspects of
responding to “Internet speed” [9] are fatiguing to the human element of software
development and technical operations, even with advent of more capable and more
sophisticated tools. Some responses – frequent iterations culminating in continuous
delivery and continuous deployment [34, 41]; gravitating to fixed architectural
patterns; componentization and reuse, for example, as embodied in microservices
[42]; performing quality assurance earlier and more frequently [56]; amplified
feedback; and, method tailoring – all present challenges to the human element. The
high velocity of the current environment, producing such a frenzy around emerging
tooling and frameworks causes visible and apparent fatigue [19] and even burnout
[22].

It is reasonably self-evident that Agile methods have had great impact on the
software and systems development world [1, 21, 24]. Not stated in the Agile

 48

Manifesto and principles are the means of routinizing and controlling these methods
of practice [16]. Thus, there are epistemological concerns afoot in our consideration
of Agile methods and whether they have lost their way. While the original principles
behind the Agile Manifesto may seem simple guidelines, they espouse an ethos and
epistemology of practice that remains important. They speak to a “whole package”
that includes customer orientation, individual excellence, reflective practice, technical
excellence, and responsiveness to change. A 2012 survey of practitioners bears this
out [61]. When asked whether (and what) would be changed about the Agile
Manifesto’s principles, most suggestions focused on communication, learning, and
collaboration. At issue is whether these connect to viable and working product, which
depends on the competency and disposition of the team [14]. To put Agile methods
into practice can be difficult, and its focus on customer feedback, where quicker
cycles offer early detection of problems, is just one ingredient. Another, that is
perhaps losing ground, is renewal via learning and reflection.

Toward this end, we will briefly discuss the application of three principles
associated with Agile software development: ongoing customer contact; learning
teams; and empowered and self-organizing teams. Based on findings from studies of
Agile practice we will discuss how these principles are implemented in practical
Agile software development projects.

3.1 The Principle of Ongoing Customer Contact

The principle of daily interaction between the development team and the customer is
often abandoned or modified in practical applications of Agile software development
[7, 31]. Particularly, small software companies with few developers and many
customers have found it impractical or impossible to have customers and teams
communicate frequently. Among other reasons for infrequent or lacking customer
contact are: customers’ lack of time commitment and understanding of Agile
practices, distance (e.g., in off shore development), and the customer representative’s
insufficient skills and experience [31].

Development teams and companies apply different tactics to overcome the lack of
customer contact, particularly a customer proxy or product owner, who acts on behalf
of the customer when defining and interpreting user stories, planning a development
cycle, and assessing outcomes. The lack of direct contact between the developers and
the customer will, however, cause information distortion and delays, leading to
misunderstood requirements, rework, increasing costs, and potential loss of customers
[31, 49].

3.2 The Principle of Learning Teams

The Agile Manifesto values learning and self-empowered teams that reflect upon and
improve their skills and practices on an ongoing basis. Agile methods such as XP and
Scrum embody this principle in practices such as pair programming, frequent
customer contact, stand-up meetings, reviews and retrospectives. Our research show
that these practices are often adapted or omitted in Agile software development

 49

projects with dire implications for in-team learning and reflection [5, 6, 30].
Developers frequently refer to lack of time and an increasing focus on producing
software, when they explain why learning and reflection practices are omitted or
strongly adapted. Particularly very small companies with limited resources and a
strong need to ship (and be paid for) software tend to omit practices such as pair
programming and retrospectives. Elsewhere, we have warned that this iteration
pressure and the increasing attention to productivity at the expense of team – and
individual – development and improvement, may have long term negative effects on
the team’s performance and agility [6, 30].

3.3 The Principle of Empowered Self-organizing Teams

Agile software development is supposed to be organized in teams who work on a
single project for a customer. The team is empowered and self-organizing, meaning
that it manages the backlog of tasks, prioritizes and selects tasks for a Sprint or
timebox, and distributes work among the team members.

Our observations of Agile software practices indicate, however, that these practices
are susceptible to erosion. In very small companies, where customers far outnumber
the developers, each developer is effectively a team of one, which is allocated to
several projects; i.e.; one for each customer. Customer contact, task management and
prioritization are furthermore the responsibility of the manager/owner in such
organizations [7]. With variations, we have observed similar patterns emerge in other
organizations, as briefly illustrated in the following examples from a preliminary
analysis of observations and interviews in software development organizations in
Denmark and the US.

The startup. The startup develops an innovative software product, and employs about
10 developers, all working in the same room, but loosely organized into teams based
on the product architecture. Stories are defined and managed by a management group
and allocated to sprints and teams. The team breaks the stories down into tasks, which
are allocated to individual developers. The team uses Kanban boards, burndown
charts, and other information radiators to manage the Sprint.

The mature SME. The mature SME is a web-agency, which develops web-sites and
portals for different customers. The customers range from small to very large private
and public companies and organizations. The relationship can extend for several years
beyond the initial development of a site. The developers are organized into teams,
each working for several customers. The team structure is not fixed, however, with
developers being moved between teams to close resource gaps. Each team has a
project manager, who is the primary liaison between the company and the customer,
although other team members can participate in meetings with customers.

Tasks are negotiated with the customer, and assigned to developers by the project
manager in two-week sprints. A developer can, in other words, work on several
different “projects” during a Sprint!

 50

These are just a few examples, representative of what we have observed in
companies in both Denmark and the United States. Although we are in the early
stages of analysis, we believe the examples reveal a general trend in the application of
Agile software development, at least in certain kinds of software development
organizations.

3.4 Erosion of Agile Principles

We observe that modern software organizations embrace the Agile ideals of
evolutionary development, short cycles, and adaptive planning, but that several of the
principles – or ideals – associated with Agile development seem to have been
abandoned or heavily modified: the customer proxy or product owner has replaced the
“customer on site,” and team learning and reflection has given in to iteration pressure
and frequent deliveries. Loosely coupled individuals, managed by a project or product
manager, have replaced the self-organizing team, and a Sprint is a planning frame
where each developer is assigned a selection of tasks to solve for several customers.

There are probably several causes behind these developments, but the quest for
higher productivity and shorter turnaround times – note that the duration of a Sprint or
timebox has been reduced to only two weeks (or less!) over the past decade – seem
plausible candidates.

4 DevOps: The Lingering Empire?

The agile approach to software and systems development brought programmers,
testers and quality assurance employees together to ensure closer collaboration as a
team, and shorten the time between software releases from several months or years to
weeks. The DevOps approach aims to further increase the IT organizations’
capabilities to react quickly and release new software versions frequently – possibly
several times per day – by removing organizational and practical boundaries between
development and operations [25]. In practice, this is accomplished by automating
operations oriented tasks, such as hardware configuration and set-up, systems
integration, deployment, and monitoring. It reflects an emergent environment of
operations which has progressed beyond the scope of the operational context under
which Agile methods were conceived.

DevOps and its companions, continuous integration and continuous deployment,
aim for a continuous and highly automated flow from programming, to test, delivery,
and deployment. It depends on standardized architectures and sophisticated tools
automating build, test, deployment, and monitoring processes. Measurements of the
software development process and the product in use are fed back to development to
inform changes or additions to the product and improvements to the process [51].

While there is still not much research about DevOps practices and their
implications, it appears that the move to DevOps risks a further reduction in team
control and authority towards outside managers, supported by monitoring and metrics

 51

that, when applied blindly to improve processes, serve the business but don’t account
for their impact on people and culture [36].

4.1 Emerging Contexts of Practice

As this paper critically examines the impact of DevOps directly on the developer as a
reflective practitioner, we must take care to examine DevOps as it is. Software and
systems development, at “Internet speed” creates its own unique context. With
continuous delivery comes continuous integration and the need to interact with the
operational realities of adjusting features and content in real time. In this context, the
discourse surrounding agility changes as practical considerations about the cycle of
design, build, implement, measure, react, learn and change involve the highly detailed
(and technically rational) world of IT and systems operations. Thus, the DevOps
movement is, in part, about addressing imbalances of power and/or understanding that
exist between developers and operations people [12, 22, 34, 42, 59]. In addressing
human problems, DevOps focuses on building culture, teamwork, and serving the
mission of the teams on which one serves. DevOps espouses themes that include
collective ownership, servant leadership, trust, empathy, etc. [36]. Principles and
practices supporting these themes are challenged, however, if either “Dev” or “Ops”
has all or most of the power in an organization.

4.2 Evolution is Resilience

We consider DevOps, in part, an evolution of Agile methods in a new context.
DevOps is positioned as such where Agile methods are the accelerant and catalyst for
the “Dev” component of the symbiosis [12, 59]. Thus, in the need for high availability
in a continuous mode, it was necessary to look beyond “potentially shippable”
products and extend Agile into the culture and conditions of operations. It could be
argued that Agile, in celebration of continuous customer contact, relegated the
developed system as something you “threw over the wall” to operations when the
customer expressed satisfaction. Agile principles and practices, however, essentially
establish the roots and referents necessary to critically examine the essence and
accidents inherent in the use of both Agile and DevOps.

The DevOps reality is that the operating modes of Amazon, Facebook, Google, and
Netflix, for example, have little precedent and have elicited DevOps as a resilient
response where the traits of Agile that have proven to be of worth – a focus on small
teams continually delivering high-quality code to customers – have been hybridized
and retained [36]. However, our central question remains: How will Agile’s focus on
learning and reflection fare in a merger with operations, and the increased focus on
rapid delivery and “automated” decision-making?

 52

5 Return of the Jedi: Adopting a Critical Response

To examine the implications for reflection and learning in a merger of development
and operations, we adopt a critical theoretic perspective. In doing so, we also appeal
to a sociotechnical epistemology of theory and practice. We assert that the
sociotechnical perspective is aligned with Agile and DevOps according to the
democratizing aspects assumed on issues related to open design; early customer
value; egalitarian views on power, authority, and information; and continuous
improvement and continual learning [22, 50]. Agile and DevOps also favor system
theoretic perspectives in that problem solving and setting require a balanced
perspective on matters such as complexity, the proclivities of the participants and
stakeholders of the system, and role of chaos and entropy in design that favors early
and iterative development [24, 36]. In this regard, Checkland’s Soft Systems
Methodology [20] strongly considers a general systems theoretic component.

From a sociotechnical perspective, we consider the impacts of iteration pressure
and how it has transformed Agile practice. Specifically, we appeal for a consideration
of these issues via the lens of the critical/neohumanist paradigm [43]. Relegation of
the developer to code-producer is a departure from the tenets of Agile methods and
Critical Social Theory (CST) encourages researchers to assume a value-laden inquiry
with aim to question the shift to “neo-Taylorism” afoot in the evolution of Agile
methods [47]. It is useful, if not overly simplistic, to consider the phase shift that
Agile may be experiencing as it has encountered and digested aspects of the “Lean”
movement and similar influences from the Japanese automobile manufacturing from
the late 20th century.

Whereas some Agile methods have taken their clues from the Lean phenomenon
from the start, there is a distinct end of the spectrum of Agile methods that is arguably
aligned with a “human-centrism.” This is evident in aspects of Extreme Programming
[12] and Scrum [59]. Whereas Agile methods such as Scrum took care in minimizing
the “us-vs-them” dichotomy between management and workers, developer relegation
under iteration pressure reintroduces these aspects [47]. To wit, it would seem that
some “democratic Taylorism” is envisioned in Agile methods’ evolution towards the
Lean and Continuous paradigms [2] inherent in DevOps.

Without considerable time afforded for renewal and learning through reflection,
the “trappings” of the Agile Manifesto and principles may be visible at the surface,
but are they still implementable with 1-week sprints or daily deliverables? The
necessity of standardization inherent in all process optimizations is understandable,
but the epistemology of technical rationality [57] inherent in these optimizations
brings into question how learning will occur. Despite the inherent wisdom in
“refactoring mercilessly to patterns” – as an example – questions arise as to how this
inherently technically rational view will allow for the adaptation and innovation also
inherent in Agile methods.

To appropriate CST in this case, we uphold its assertions: researchers are capable
of inquiry that is value laden and that seeks to expose injustice. The creativity and
freedom assumed in the original characterizations of Agile methods are in danger of
being subsumed into a knowledge interest that is purely technically rational and
practical. The relevance of our inquiry, as engaged scholars desirous of direct action,

 53

would naturally lead to a knowledge interest rooted in emancipation. Consistent with
the underlying concerns outlined by Habermas [27], to take a critical theoretic
perspective on the evolution of the Agile paradigm that charts a course away from a
human-centricity, is to consider the mediating and moderating role of technology in
the social relations upon which Agile methods are founded [44]. Further, we argue
that an emancipation imperative exists in the call to action that is the Agile Manifesto
and its principles. The Agile Manifesto and its principles introduce a dialectic that
seeks to maximize benefits to developers, management, and customers with
equanimity and equality.

5.1 The Emancipation Imperative

Central to a critical theoretic response to not just the lacuna we characterize in Agile’s
epistemology, but to the continued mis-calibration between the necessity of technical
rationality and the imperative to recognize that human potential is shaped by our own
innovations [52]. We would be naïve to think that this reshaping is always for the
better. As it has been suggested that critical theoretic treatments are tantamount to a
“missing paradigm” in information systems (IS) research, its value may persist
inherently given the perturbations our own systems cause to known order.

Howcroft and Trauth [33] outline key themes in critical research that are relevant
to the “agile” paradox. First, the emancipatory component of critical theory has a
focus on freeing individuals from adverse or detrimental power relations which lead
to disenfranchisement, alienation, and domination. Further, a willingness to undertake
critique of tradition – to disrupt the status quo by revealing and highlighting
incongruences, anomalies, and inequities to foment positive change. A non-
performance (conformance) theme highlights tools and mechanisms designed to
bolster managerial efficiency over human considerations.

5.2 Strategies for Emancipation

Poignantly, CST calls for critique of the technological determinism also known as
technical rationality. In Agile’s progression towards DevOps, the efficacy and
efficiency of the artifact is often the sole determinant of quality. Further, CST values
reflection in a manner where some advocacy and interest is inherent in the researcher,
making the process value-laden: in this sense, it is to act in advocacy for justice.
Myers and Klein [40] offer a set of principles for critical research from which some
validation of the arguments made in this paper is possible. See Table 1 below.

Table 1 Applying the Principles of CST to the Agile Paradox. (Based on Myers and Klein [40])

Myers and Klein Critical Theory
Elements

This Paper’s Position

Insight The “agile” paradox: Agile’s progression
towards continuous delivery and lean
principles may unwittingly upset the balance
between learning/renewal and production to

 54

disenfranchise developers.
Critique: Core Concepts from Critical
Social Theorists

Habermas: Reason in practice requires
reflective judgment and critique such that
the renewal of practice is possible by
“seeing” the totality of the problem.

Critique: Taking a Value Position The lean-influenced continuous delivery
evolution of Agile is relegating the
reflective practice component of Agile
development for the developers involved.

Critique: Revealing and Challenging Norms In a neo-Taylorist manner, DevOps
emphasizes the feedback from automation
and artificial intelligence over the time for
reflection.

Transformation: Individual Emancipation Pauses for reflection required for the
renewal of human insight and repertoire.
This time and occasion is characterized as
an afterthought in the nascent elaborations
on DevOps.

Transformation: Improvements to Society As a result of rapid feedback vis-à-vis
automation, are we becoming smarter? Or,
will innovation in software and systems dry
up as quick cycles stifle the reflection,
learning and renewal needed to innovate?

Transformation: Improving Social Theories Argyris and Schön [4] theory of action and
Schön’s [57, 58] epistemology of reflective
practice remains relevant and a context from
which critical investigations are possible.

We appropriate these principles here in a call to action to IS researchers. In a

previous call to action (emergent about the same time that Agile methods had
emerged), which largely resulted in the contemporary design science movement in IS
research, various voices arose asking a simple question: Where is the IT artifact in our
research [3, 53, 60]? We extend this call here by suggesting that Agile methods, and
their evolutionary progression, so central in delivering many compelling IT artifacts,
are worthy of our inquiry. The rush to the incorporation of “lean” and “smart”
processes into our development cycles requires some pause, caution, and reflection in
order to appreciate what is gained and lost.

5.3 Appealing to Scandinavian Traditions in IS Research

We consider that the critical research that we call for is firmly rooted in Scandinavian
traditions of research and scientific inquiry. While the transition to DevOps in
response to the challenges of continuous delivery and deployment does not present a
uniquely Scandinavian problem, research traditions in Scandinavian are at least
instructive. Bansler [8] characterizes three traditions in Scandinavian research in
systems development that have some direct bearing on our characterization of the
progression of Agile methods: systems-theoretical, socio-technical, and critical. This
is so as Scandinavian research on systems development, and the antecedent and

 55

guiding theories often referenced, consistently reflect Agile principles in their own
espoused world-view. In Table 2 below, we utilize a rigorous scholarly digest and
reflection on the impact of Agile and reference Scandinavian research traditions for
analysis.

Table 2 Relating Traditions in Scandinavian Research to Agile Principles. (Adapted from
Nerur et al. [50])

Agile Principle Related Research Tradition
Emphasis on Individuals Sociotechnical Systems
Emphasis on Balancing Quality with Human
Concerns

Sociotechnical Systems
Critical Theory

Learning and Adaptation Systems Theory
Participative Development Sociotechnical Systems
Accepting and Leveraging Change Sociotechnical Systems

Critical Theory
Self-organization Systems Theory
Minimum Viable Product Sociotechnical Systems
Reflective Practice Critical Theory

Thus, as a final point, we appeal to continued application of the Scandinavian
tradition in investigating the Agile-to-DevOps shift currently afoot. Systems thinking
and the socio-technical perspective, considered from a critical theoretic footing, hold
promise to develop insight for understanding. We did not seek to commit an “act” of
technological determinism by giving the impression of vilifying DevOps. Rather, we
hold the same concerns that others expressed on the advent of Agile methods [17],
and appeal for a mindful, reasoned and considered appreciation of this arising.

6 Conclusion

This paper has presented a position which characterizes how an evolution towards
continuous delivery and DevOps presents a number of paradoxical conundrums. In
the face of these developments, we take the position that the implications for learning
and reflection are understudied and present the principle call to action around which
this paper is designed. Where speed is paramount, quality becomes harder to sustain
and cost is difficult to manage. Fred Brooks talked about building “one to throw
away” and it is likely that, given “Internet speed,” many projects are “throwaways” as
the foundations upon which they are built are now irrelevant and perhaps
unsupportable. Managers and developers face an “always on” mode where the
boundaries between projects, be they parallel or linear, are grey and fuzzy. When
there is no beginning and no end, what is the subject of a Sprint review or
retrospective? What is the basis for learning? What is a Sprint when operation is
continuous? Increasingly, learning is at least partially – if not fully – delegated to
algorithmic machine learning based on data-driven tooling, which is far more capable
of learning through aggregation without leveraging the very human use of metaphor.
When quality is negotiable versus, for example, reliability and security, and the

 56

creativity wrought by metaphor is subsumed, then high velocity development is at risk
of yielding a “lowest common denominator” product where distinction based on
quality is irrelevant.

Whereas Agile emanated from seasoned professionals who had the benefit of a pre-
and proto-Internet era to cultivate their ideas, the cadence of high velocity is likely so
fast that their innovation would have been missed in a contemporary environment.
This may be why DevOps has a more hurried and urgent feel to it. As a cultural
movement, it lacks a manifesto and lacks consistent prescriptive methodologies.
These phenomena make the discourse around DevOps fluid at best and confusing or
incomprehensible at worst. It is therefore not surprising that DevOps is still evolving
and a successful implementation, even in the most capable organizations, requires a
journey that takes years of effort and often remains challenging to scale.

Essentially, we return to our core line of inquiry: How has the characterization of
the “agility” changed in the Agile to DevOps transition? Have things regressed from
an ideal of the “agile” (nimble and reflective) practitioner as an artisanal master of
craft with a keen eye to productivity, learning and renewal in a reflective practice, to a
“mechanical turk” able to produce software and systems “tidbits” akin to the way a
short-order cook delivers fast food [35, 37]? And will data-driven improvement
replace reflection, learning and creativity with incremental optimization of flawed
products and processes, similar to the critique raised against the CMM? Or, is
DevOps a response to a new context and environment where the canonical
articulations of Agile methods, such as Scrum and XP, no longer fit operational
reality? While the former characterization may appear too brash on first blush, it is
worth consideration at this progressed juncture in the history of Agile methods, as
they have intermingled with the iterative, lean, and continuous delivery aspects of the
uptake of Agile methods that have ontological and epistemological considerations for
IS researchers.

This paper is offered as both a metaphoric “discussant” and a call to action. The
emphasis on rapid delivery and accrual of value, even when necessary in web and
cloud environments, calls into question when and where renewal through reflective
practice may occur. Ships can’t stay at sea indefinitely; they must rest and refit at
regular intervals – just like learning from experience and re-calibrating repertoire is
necessary for the reflective software developer. We have presented an argument that
the learning paradox arising from agility may have deleterious effects not only on the
quality of the product, but also on developer enfranchisement to the process. To adopt
a critical social theoretic stance in this issue is to consider how to emancipate both the
developer, and perhaps Agile methods, from this growing imbalance. Another
approach would be to disavow Continuous and DevOps from its Agile past – which,
although possible, is not practical. We call on more engaged scholarship, and in
utilization of an action learning cycle, to better understand the “agile” learning
paradox and its implications for future practice. This is so as the design, development,
implementation, and maintenance of systems remains a core concern of the IS
discipline.

 57

References

1. Abrahamsson, P., Conboy, K., & Wang, X. (2009). ‘Lots done, more to do’: The current
state of agile systems development research. European Journal of Information Systems 18,
281-284.

2. Adler, P. (1995). ‘Democratic Taylorism’: The Toyota Production System at NUMMI. In
Lean work: Empowerment and exploitation in the global auto industry, 207-219.

3. Alter, S. (2003). Sidestepping the IT Artifact, Scrapping the IS Silo, and Laying Claim to
‘Systems in Organizations’. Communications of the AIS 12(1), 30.

4. Argyris, C., & Schön, D. A. (1974). Theory in Practice: Increasing Professional
Effectiveness. Jossey-Bass, San Francisco, CA.

5. Babb, J. S., Hoda, R., & Nørbjerg, J. (2013). Barriers to Learning in Agile Software
Development Projects. Agile Processes in Software Engineering and Extreme
Programming, 14th International Conference, H. Baumeister, & B. Weber. Springer
Verlag, Vienna, Austria 149, 1-15.

6. Babb, J. S., Hoda, R., & Nørbjerg, J. (2014). Embedding Reflection and Learning into
Agile Software Development. IEEE Software 31(4), 51-57.

7. Babb, J. S., Hoda, R., & Nørbjerg, J. (2014). XP in a Small Software Development
Business: Adapting to Local Constraints. 5th Scandinavian Conference on Information
Systems (SCIS), T. H. Commissio, J. Nørbjerg, & J. Pries-Heje, Ringsted, Denmark,
Springer.

8. Bansler, J. (1989). Systems development research in Scandinavia: Three theoretical
schools. Scandinavian Journal of Information Systems 1(1), 3-20.

9. Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., & Slaughter, S. (2003). Is ‘Internet-
speed’ Software Development Different? IEEE Software 20(6), 70-77.

10. Basri, S., & O’Connor, R. V. (2010). Understanding the Perception of Very Small Software
Companies towards the Adoption of Process Standards. 17th EuroSPI Conference,
Springer, Grenoble, France.

11. Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A Software Architect’s Perspective.
Addison-Wesley, Boston, MA.

12. Beck, K. (2004). Extreme Programming Explained: Embrace Change, 2nd ed. Addison-
Wesley, Reading, MA.

13. Beck, K. et al. (2001). Manifesto for Agile Software Development. Agile Alliance. At
http://agilemanifesto.org/, Retrieved 10 December 2016.

14. Berczuk, S. (2007). Back to basics: The role of agile principles in success with a distributed
scrum team. Agile Conference (AGILE).

15. Bergvall-Kåreborn, B., & Howcroft, D. (2014). Persistent problems and practices in
information systems development: A study of mobile applications development and
distribution. Information Systems Journal 24(5), 425-444.

16. Binstock, A. (2012). Interview with Alan Kay, Dr. Dobb's, July 10.
17. Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer 35(1), 64-69.
18. Bollinger, T. B., & McGowan, C. (1991). A critical look at software capability evaluations.

IEEE Software 8(4), 25-41.
19. Cancialosi, C. (2016). DevOps, culture change and the brass ring of velocity. Forbes,

March 28.
20. Checkland, P. B. (1981). Systems Thinking, Systems Practice. John Wiley & Sons,

Chichester, UK.
21. Conboy, K. (2009). Agility from First Principles: Reconstructing the Concept of Agility in

Information Systems Development. Information Systems Research 20(3), 329-354.
22. Davis, J., & Daniels, K. (2016). Effective DevOps: Building a Culture of Collaboration,

Affinity, and Tooling at Scale. O’Reilly Media, Sebastopol, CA.

 58

23. Dennehy, D., & Conboy, K. (2016). Going with the flow: An activity theory analysis of
flow techniques in software development. Journal of Systems and Software.

24. Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and Software Technology 50(9-10), 833-859.

25. Fitzgerald, B., & Stol, K.-J. (2015). Continuous software engineering: A roadmap and
agenda. Journal of Systems and Software.

26. Haase, V., Messnarz, R., Koch, G., Kugler, H. J., & Decrinis, P. (1994). Bootstrap: Fine-
Tuning Process Assessment. IEEE Software 11(4), 25-35.

27. Habermas, J. (1972). Knowledge and Human Interests. Heinemann Educational, London,
UK.

28. Hansen, B., Rose, J., & Tjørnehøj, G. (2004). Prescription, Description, Reflection: The
Shape of the Software Process Improvement Field. International Journal of Information
Management (24), 457-472.

29. Highsmith, J., & Fowler, M. (2001). The agile manifesto. Software Development Magazine
9(8), 29-30.

30. Hoda, R., Babb, J. S., & Nørbjerg, J. (2013). Toward learning teams. IEEE Software 30(4),
95-98.

31. Hoda, R., Noble, J., & Marshall, J. (2011). The impact of inadequate customer
collaboration on self-organizing Agile teams. Information and Software Technology (53),
521-534

32. Howcroft, D., & Taylor, P. (2014). ‘Plus ca change, plus la meme chose?’—Researching
and theorising the ‘new’ new technologies. New Technology, Work and Employment 29(1),
1-8.

33. Howcroft, D., & Trauth, E. M., Eds. (2005). Handbook of Critical Information Systems
Research: Theory and Application. Edward Elgar Publishing, Cheltenham, UK.

34. Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley, Reading, MA.

35. Ipeirotis, P. G., Provost, F., & Wang, J. (2010). Quality management on Amazon
Mechanical Turk. ACM SIGKDD Workshop on Human Computation, 64-67.

36. Kim, G., Debois, P., Willis, J., & Humble, J. (2016). The DevOps Handbook: How to
Create World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press, Portland, OR.

37. Levitt, G. M. (2000). The Turk, Chess Automation. McFarland & Company, Incorporated
Publishers.

38. Limoncelli, T. A., Hogan, C. J., & Chalup, S. R. (2016). The Practice of System and
Network Administration: DevOps and Other Best Practices for Enterprise IT. Addison-
Wesley, Boston, MA.

39. Mathiassen, L., Pries-Heje, J., & Ngwenyama, O., Eds. (2002). Improving Software
Organizations. From Principles to Practice. Addison-Wesley, Reading, MA.

40. Myers, M. D., & Klein, H. K. (2011). A Set of Principles for Conducting Critical Research
in Information Systems. MIS Quarterly 35(1), 17-36.

41. Neely, S., & Stolt, S. (2013). Continuous Delivery? Easy! Just Change Everything (Well,
Maybe It Is Not That Easy). Agile Conference (AGILE).

42. Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Sebastopol, CA.

43. Ngwenyama, O. K. (1991). The critical social theory approach to information systems:
Problems and challenges. Information systems research: Contemporary approaches and
emergent traditions, 267-280.

44. Ngwenyama, O. K. (1993). Developing end-users’ systems development competence. An
exploratory study. Information and Management (25), 291-302.

 59

45. Ngwenyama, O., & Nielsen, P. A. (2003). Competing Values in Software Process
Improvement: An Assumption Analysis of CMM from an Organizational Culture
Perspective. IEEE Transactions on Engineering Management 50(1), 100-112.

46. Nielsen, P. A., & Nørbjerg, J. (2001). Assessing Software Processes: Low Maturity or
Sensible Practice. Scandinavian Journal of Information Systems 13(1-2), 23-36.

47. Niepcel, W., & Molleman, E. (1998). Work design issues in lean production from a
sociotechnical systems perspective: Neo-Taylorism or the next step in sociotechnical
design? Human relations 51(3), 259-287.

48. Nørbjerg, J., & Kraft, P. (2002). Software practice is social practice. Social Thinking -
Software Practice, R. Klischewski, Floyd, C. & Dittrich, Y. Eds. MIT Press, Cambridge,
MA.

49. Nørbjerg, J., & Shakir, S. N. (2015). The End of the Line: Project Management Challenges
in Small Software Shops in Pakistan. Strategic Project Management, K.-M. Osei-Bryson &
C. Barclay. CRC Press, Boca Raton, FL, 107-131.

50. Nerur, S., Cannon, A., Balijepally, V., & Bond, P. (2010). Toward an Understanding of the
Conceptual Underpinnings of Agile Development Methodologies. Agile Software
Development: Current Research and Future Directions, Springer, Germany, 15-29.

51. Olsson, H. H., & Bosch, J. (2014). Post-deployment Data Collection in Software-Intensive
Embedded Products. Continuous Software Engineering, J. Bosch, Springer, 143-154.

52. Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in
organizations: Research approaches and assumptions. Information Systems Research (2), 1-
28.

53. Orlikowski, W. J., & Iacono, C. S. (2001). Research commentary: Desperately seeking the
‘IT’ in IT research—A call to theorizing the IT artifact. Information Systems Research
12(2), 121-134.

54. Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability Maturity
Model for Software, v. 1.1. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

55. Pino, F. J., Garcia, F., & Piattini, M. (2008). Software process improvement in small and
medium software enterprises: A systematic review. Software Quality Control 16(2), 237-
261.

56. Roche, J. (2013). Adopting DevOps Practices in Quality Assurance. Communications of the
ACM 56(11), 38-43.

57. Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic
Books, New York, NY.

58. Schön, D. A. (1987). Educating the Reflective Practitioner: Toward a New Design for
Teaching and Learning in the Professions. Jossey-Bass, San Francisco, CA.

59. Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum (vol. 1).
Prentice Hall, Upper Saddle River, NJ.

60. Weber, R. (2003). Still desperately seeking the IT artifact. MIS Quarterly 27(2), iii-xi.
61. Williams, L. (2012). What agile teams think of agile principles. Communications of the

ACM 55(4), 71-76.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Winter 12-31-2017

	The Empire Strikes Back: The end of Agile as we know it?
	Jeffry Babb
	Jacob Nørbjerg
	David J. Yates
	Leslie J. Waguespack
	Recommended Citation

	The Empire Strikes Back: The end of Agile as we know it?

