
RESEARCH PAPER

Enabling Normalized Systems in Practice – Exploring a Modeling
Approach

Peter De Bruyn • Herwig Mannaert •

Jan Verelst • Philip Huysmans

Received: 28 February 2017 / Accepted: 4 October 2017 / Published online: 11 December 2017

� Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Abstract Contemporary organizations are required to

adapt to a changing environment in an agile way, which is

often deemed very challenging. Normalized Systems (NS)

theory attempts to build highly evolvable software systems

by using systems theory as its theoretical underpinning. A

modeling method which supports the identification of the

NS elements, required for building NS sofware in practice,

is currently missing. Therefore, the paper introduces an

approach for creating both data models and processing

models in the context of NS, as well as their integration. It

is discussed how these models can be taken as the input for

the actual creation of evolutionary prototypes by using an

earlier developed supporting tool. The modeling approach

and its suitability for feeding the tool are evaluated to

discover their current strengths and weaknesses.

Keywords Normalized systems � Data modeling � Process
modeling � Agility

1 Introduction

As their competitive environment changes rapidly, orga-

nizations have to adapt themselves accordingly in an agile

way. This puts evolvability requirements on every com-

pany in all its facets including its strategy, enterprise

models, software systems, etc. Obtaining agility at the IT

level is challenging and consistently ranked as one of the

top 3 organizational IT management concerns (Kappelman

et al. 2014). However, the amount of information systems

(IS) research directed towards the creation of evolvable

systems is marginal (Agarwal and Tiwana 2015): most

research is exclusively directed towards the initial phases

of the IS development life cycle whereas the majority of

the costs for building and maintaining systems is situated in

the later phases.

Normalized Systems (NS) theory attempts to create

highly evolvable software systems by proposing a set of

theorems which are formally proven to be necessary con-

ditions to obtain evolvability (Mannaert et al. 2011, 2016).

The theory exhibits several appealing and unique charac-

teristics for tackling the agility challenge: it is grounded in

concepts from systems theory, the derived theorems pro-

vide specific programming guidance while unifying mul-

tiple software design best practices, and it has proven its

feasibility in practice by multiple implementations for

different types of systems in industry (Mannaert et al.

2012; van der Linden et al. 2017; Eessaar 2016).

While NS software is able to provide evolvability at the

software level, the question on how to model an enterprise

so that it can be supported and operationalized by NS

software has currently remained unsolved. A first goal of

this paper is therefore aimed towards the creation of such a

modeling method. This endeavor is not trivial. To begin

with, as the NS theorems imply a very dense and highly

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s12599-017-0510-4) contains supple-
mentary material, which is available to authorized users.

Accepted after two revisions by the editors of the special issue.

P. De Bruyn (&) � H. Mannaert � J. Verelst � P. Huysmans

Department of Management Information Systems, Faculty of

Applied Economics, University of Antwerp, Prinsstraat 13,

2000 Antwerp, Belgium

e-mail: peter.debruyn@uantwerpen.be

H. Mannaert

e-mail: herwig.mannaert@uantwerpen.be

J. Verelst

e-mail: jan.verelst@uantwerpen.be

P. Huysmans

e-mail: philip.huysmans@uantwerpen.be

123

Bus Inf Syst Eng 60(1):55–67 (2018)

https://doi.org/10.1007/s12599-017-0510-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301373902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s12599-017-0510-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-017-0510-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-017-0510-4&domain=pdf
https://doi.org/10.1007/s12599-017-0510-4

structured code base (which is hard and time-intensive to

obtain by manual coding), it is advised to generate a large

portion of the code by the recurrent use of a set of NS

‘‘elements’’ (Mannaert et al. 2012, 2016). As a conse-

quence, a good modeling method should allow the ade-

quate representation of enterprise requirements in terms of

these NS elements. Additionally, enterprise requirements

which are themselves modeled in such a way that they are

contradicting with NS theorems could still nullify the

overall evolvability of an enterprise. A good modeling

method should consequently also consider possible impli-

cations of NS at this level. A second goal of this paper is to

illustrate how the output of this modeling effort can be used

as an input to feed a supporting tool which was earlier

created to drive the generation of the structured code base,

based on the NS elements. The feasibility of a modeling

approach in terms of NS elements and the synergies with a

supporting tool are shown. We illustrate how this can

simplify the initial phases of the development process of

NS software and further improve the practical impact of the

theory.

The remainder of this paper is structured as follows. In

Sect. 2, we provide background information regarding NS.

Sections 3 and 4 describe, respectively, a modeling

approach and the resulting use of the supporting tool.

Section 5 discusses an evaluation of our approach based on

our current experiences. Our final conclusions are offered

in Sect. 6.

2 Normalized Systems Theory

Changing and adapting their supporting software sys-

tems is crucial for organizations in order to remain agile

and flexible. However, several indications exist that this is

hard to realize in practice. For instance, Lehman’s Law of

Increasing Complexity states that ‘‘as an evolving program

is continually changed, its complexity, reflecting deterio-

rating structure, increases unless work is done to maintain

or reduce it’’ (Lehman 1980, p 1068). This deteriorating

structure implies that applying similar changes to a system

becomes more difficult over time. NS tries to tackle this

phenomenon by demanding BIBO (bounded input, boun-

ded output) stability as defined in systems theory to soft-

ware systems (Mannaert et al. 2011, 2016). This means

that the impact of a bounded set of changes to a software

system should only depend on the type of the changes, not

on the size of the system to which they are applied. Con-

versely, changes which are dependent on the size of the

system are coined combinatorial effects (Mannaert et al.

2011, 2016). In an agile environment, where we can

assume that software systems are ever growing and

changing, such combinatorial effects become eventually

prohibitive as their effort (and therefore, cost) may become

larger than the cost for creating an entirely new software

system. A system which is free of combinatorial effects is

called a Normalized System (Mannaert et al. 2011, 2016).

2.1 NS Theorems and Elements

NS proposes four theorems, which have earlier been pro-

ven to be necessary conditions in order to avoid combi-

natorial effects (Mannaert et al. 2011, 2016):

– Separation of Concerns, stating that a processing

function can only contain a single concern (i.e., change

driver or each part which can independently change);

– Data version Transparency, stating that a data structure

that is passed through the interface of a processing

function needs to exhibit version transparency (i.e., not

impacting processing functions in case it is updated);

– Action version Transparency, stating that a processing

function that is called by another processing function

needs to exhibit version transparency (i.e., not impact-

ing its calling processing functions in case it is

updated);

– Separation of States, stating that the calling of a

processing function within another processing function

should exhibit state keeping (i.e., before calling another

processing function, a state should be kept).

Applying these theorems leads to very fine-grained mod-

ular systems, which are very hard to create by human

programming. Therefore, 5 higher-level detailed design

patterns (so-called elements) have been proposed to create

NS software in practice (Mannaert et al. 2012, 2016), each

aggregating and encapsulating a set of software constructs

and providing the basic functionality of an information

system:

– data elements, to represent data variables and struc-

tures, and including support for cross-cutting concerns

such as remote access and persistence support;

– task elements, to represent processing instructions, and

including support for cross-cutting concerns such as

remote access, logging and access control;

– flow elements, to handle control flow and orchestrations

(i.e., the execution of a number of task elements on a

specific target data element in a stateful way);

– connector elements, to allow the interaction with

external systems (via a user interface or another

application);

– trigger elements, to offer periodic clock-like control

and checking whether a task element needs to be

triggered.

123

56 P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018)

Each of these elements provides, for a particular functional

requirement (e.g., representing data, executing a calcula-

tion), a transformation into software code. That means that

a set of cross-cutting concerns (e.g., data access control,

persistency, etc.) is embedded and generated with each

element instantiation. The elements have been proven to be

free of combinatorial effects against a predefined set of

anticipated changes (Mannaert et al. 2016). Therefore, as

these elements allow to provide all basic functionalities of

contemporary software systems, NS software can be built

by systematically instantiating the above mentioned ele-

ments as required. Moreover, it has been argued that NS

reasoning is applicable to modular structures in general

(De Bruyn 2014; Mannaert et al. 2016).

2.2 The NS Development Trajectory

Figure 1 provides a schematic overview of the system

development trajectory for NS software. First, real-world

functional requirements have to be transformed into

instantiations of the 5 NS elements, indicated by arrow 1.

While the different requirements from the stakeholders can

(optionally) initially be captured by means of high-level

analysis techniques (e.g., use cases), the eventual analysis

should result into a more low-level system requirement

specification in terms of the NS elements (i.e., the domain

model). Next, as indicated by arrow 2, each of these NS

elements is transformed into software code by using the

design patterns which were specified for each element. This

part of the system development lifecycle is highly struc-

tured and results in a large amount of code, which can be

used as a fully operating prototype with standard out-of-

the-box functionalities. Afterwards, plug-in code can be

applied to the generated code to provide specific func-

tionalities which are not embedded by default (e.g., a

particular validation, business rule, calculation, etc.) and to

convert the prototype into a production ready application,

which is indicated by arrow 3. The application based on the

domain model, potentially enriched with plug-in code, can

be shown to actual end users (indicated by arrow 4). The

whole procedure is typically highly iterative as it allows to

incrementally enlarge the scope covered by the application,

show alternative implementations to clarify conflicting

visions (e.g., different stakeholders from different organi-

zational units), and verify whether the high-level end user

needs were correctly translated into an NS application. The

modeling approach proposed in Sect. 3 mainly supports

the identification of the NS elements or domain model (cf.

arrow 1). Specifying this domain model within the sup-

porting tool (as described in Sect. 4) supports the trans-

formation of the domain model into software code (cf.

arrow 2). The earlier developed tool equally allows the

overall management of plug-in code (cf. arrow 3) and the

validation of user expectations (cf. arrow 4).

3 Modeling Approach

As stated before, an NS modeling approach should ulti-

mately deliver an identified set of NS elements, to be

transformed into code afterwards. We are aware that

functional requirements in this form are formulated in a

very detailed and low-level way but stress that any other

analysis approach aiming to deliver actual working soft-

ware should, at some point in time, provide a similar level

of detail. We explicitly aim to leverage existing IS mod-

eling techniques and enrich or restrict them with the pur-

pose of identifying NS elements. Based on NS and its

generalization to modular structures (Mannaert et al. 2016;

De Bruyn 2014), several design implications can be

derived for the modeling of functional requirements, which

we will use to present an NS compliant modeling approach.

Universe of
Discussion

DATA TASK FLOW TRIGGER CONNEC-
TOR

code
harvests

domain model

generated NS
so�ware code

1

2

3

4

Fig. 1 The NS system

development trajectory

123

P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018) 57

As a consequence, our approach embeds certain design

principles into the enterprise modeling procedure.

Consider for instance the Separation of Concerns theorem.

While functional requirement models should provide clarity

regarding data requirements (which information is to be

captured) and processing requirements (e.g., the execution of

algorithms), the theorem implies that data and processing

requirements should be modeled in separate modeling con-

structs. Indeed, data entities (e.g., information regarding an

invoice) and related processing functionalities (e.g., calcu-

lating the relevant amount of VAT) can independently

change and therefore constitute separate change drivers or

concerns. Mixing both would make a modeling construct

subject to multiple change drivers and might therefore hinder

the smooth incorporation of changes within a domain model

(e.g., a single mandatory change is then likely to impact

multiple locations in the domain model). This separation

should however not suppress the need to integrate both

requirement dimensions, as we will discuss later on.

As a separation of data and processing modeling con-

structs is required, we will now discuss each of them

consecutively. Each time, we reflect on the specific mod-

eling implications for them based on NS and provide a

brief example. We also reflect upon related work and how

that differs with our approach. Afterwards, we consider the

integrated enterprise model. As the elements provide a

standard implementation of cross-cutting concerns (cf.

supra), we consider further technical specifications in this

regard out of scope. As the design patterns of the data/task/

flow elements automatically generate their supporting

connector and trigger elements (whenever required) as

well, the explicit connector and trigger element specifica-

tion within the domain model is not required.

3.1 Data Model

We propose a variant on entity-relationship diagrams

(ERD) for modeling data requirements in order to allow the

required separation between data and processing modeling

constructs. This modeling will allow us to identify the

required NS data elements for an application.

3.1.1 NS Theorem Implications

First, the separation of concerns theorem implies that

enterprise modeling and technical implementation details

are different types of concerns and should therefore not be

mixed in the same domain model either. The design pat-

terns used to generate the code for the NS elements take

care of many technical issues (e.g., access control, logging)

and the domain model should therefore limit itself to

business oriented and even exclusively anthropomorphic

entities (i.e., modeling in terms of items having the form of

or being similar to human natural language). For instance,

data entities managing access control or logging cannot be

embedded in an NS domain model. Second, the same

theorem suggests that core modules and non-core (cross-

cutting) modules should be distinguished. We therefore

propose a set of data entity dimensions which acknowledge

the existence of several types of modules at the level of

data requirements (De Bruyn et al. 2016):

– core entities: the most essential ‘‘things’’ of an

enterprise (often the most important nouns in a textual

description of the universe of discussion or concepts

which are crucial in its business model), which might

sometimes also be subject to dynamic behavior (i.e., the

need of being processed or being changed of state, in

which case the entity carries a ‘‘status’’ field to keep

track of the state);

– taxonomy entities: entities which are used to classify

(i.e., apply a taxonomy to) core data entities (within the

application domain) into categories or groups in order

to grasp and lower the complexity of the world;

– directory entities: entities tracking the place of a core

entity within a certain directory system such as

building, affiliations, closets, etc.;

– domain entities: entities with generally accepted infor-

mation about a general domain (e.g., regarding coun-

tries, industries, fiscal codes, etc.) which are typically

required and reused in many applications (therefore not

specifically related to the application domain);

– integration entities: entities which are required for the

functioning of the domain model under consideration but

are provided by another application (internal or external)

with which, as a consequence, integration is required.

Third, the Version Transparency theorems require that the

dependencies between the (modeling) constructs are made

explicit. This can be operationalized by specifying the

relationships between the data entities as well as their

multiplicities: one-to-one, one-to-many or many-to-many.

Further, maintaining version transparency implies that

entities on which other entities depend cannot be removed.

For instance, in a situation where a Phone entity has a

many-to-one relation with a PhoneType entity (work, pri-

vate), this PhoneType entity cannot be deleted as long as

the Phone entity exists (as in traditional cases, the Phone

entity will keep a reference to the PhoneType entity). As

version transparency at the technical level is handled by the

NS elements during software generation, other implications

(e.g., coping with additional or removed fields without

combinatorial effects) are automatically dealt with.

As the Separation of States theorem only holds within a

processing perspective, no specific design implications can

be derived from it within the context of a data model.

123

58 P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018)

3.1.2 Illustration

Figure 2 shows a visual illustration of our proposed data

modeling approach with its data entity dimensions, for the

case of a fictitious and simplified car rental business. The

core entities are indicated in blue (Car, Rental, Booking,

Person, CarPickup, CarDropOff), taxonomy entities in red

(CarModel, CarBrand, CarCategory), directory entities in

green (Location, FleetLocation, ParkingLot), domain enti-

ties in purple (City, Country) and integration entities in

orange (Email, Phone, SocialMediaAccount). Each of these

data entities will correspond to an NS data element when

building an application for the rental company.

3.1.3 Contrast with Related Work

In terms of modeling notations, ERD data diagrams have a

long tradition in data modeling (Chen 1976). Clearly, our

model from Fig. 2 could well be presented in other nota-

tions as well, such as a ORM model (Halpin 2001) or UML

domain class diagram (Booch et al. 1999). The latter would

then need to contain only member variables given our

separation between data and processing. In terms of pre-

scriptive guidelines, the seminal work of Codd (1970)

describes how to design a data model without redundant

data. Some general data model patterns or reference

models (see e.g., Hay 1996; Silverston 2001; Scheer 1998)

provide best practice data model templates for several

domains, although their adoption rate is unclear. Exclu-

sively considering business relevant (i.e., non-technical)

entities within a data model has been suggested previously

by several authors, including contributions within domain-

driven design (Hruby 2006; Evans 2003). We are not aware

of earlier work on theoretically based prescriptive guide-

lines specifically aimed towards the optimization of the

evolvability or adaptability of data models, although

Moody (2003) listed easy incorporation of changes within

data models (labeled as flexibility) as a desired quality

characteristic of data models.

We therefore believe that our proposed approach

regarding data models differs from existing work in at least

the following ways. First, a categorization as the one we

propose is, to the best of our knowledge, new. The cate-

gorization might assist analysts in more exhaustively

identifying required entities and suggests an additional

level of structure (i.e., core data entities with their sur-

rounding non-core data entities). Second, our data model-

ing approach is tuned towards the creation of evolvable

systems and the implementation by NS in particular. Third,

we advocate to the use of existing data modeling notations

but restrict them to only one basic data entity construct and

its relationships: no advanced constructs such as

Fig. 2 Data Model

123

P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018) 59

inheritance (as often employed in object-oriented analysis)

are allowed as they can be detrimental for the agility of the

data model. Suppose for instance that a hierarchical

refinement of the data entity Person is made based on

nationality type: a set of common attributes would be

specified in the general Person entity (e.g., first name and

last name) which would be inherited by its child entities

(BelgianPerson, AmericanPerson, etc.) that hold, at their

turn, also attributes for their specific specialization (e.g., a

SIS number for Belgian Persons). Suppose further that later

on, a distinction has to be made based on age type (junior/

senior), or gender type (male/female), or education type

(none/high school/university). The specific attributes for

these specializations should be duplicated in every already

existing branch (here: each nationality), which is a com-

binatorial effect as the impact is depending on the size of

the system and is resulting in highly non-anthropomorphic

entities such as BelgianJuniorPerson, AmericanSeniorPer-

son, etc. In addition, when aiming for evolvability, it is

advised to avoid inheritance from a technical software

point of view as well (Mannaert et al. 2016). Instead, we

advice to only employ standard data entities for each type

within each refinement dimension (BelgianInformation,

AmericanInformation, MaleInformation, etc.). Via exclu-

sive OR restrictions, an entity can then be refined accord-

ing to several dimensions without introducing

combinatorial effects.

3.2 Processing Model

We propose a variant on state machines for modeling

processing requirements, which aligns with the required

separation between data and processing modeling con-

structs. This modeling will allow us to identify the required

NS task and flow elements for an application.

3.2.1 NS Theorem Implications

First, the Separation of Concerns theorem implies that the

tasks of a state machine (e.g., a specific calculation) and the

flow of a state machine (defining the sequence, iteration,

selection of tasks) are different concerns and should be

modeled in different constructs. Indeed, each task (an

individual calculation) as well as the flows (the order in

which tasks are to be performed) can be changed inde-

pendently and therefore constitute separate change drivers

or concerns. As we defined core data entities as entities

which are susceptible for dynamic behavior (in which case

they carry a ‘‘status’’ field), tasks and flows operate on core

data entities. Their status field allows the appropriate task

in the flow to be initiated and will be updated after the

completion of each task. The Separation of Concerns

theorem further implies that every task or flow should only

operate on one single argument data entity as otherwise,

again, multiple change drivers would unnecessarily be

combined. The same theorem demands that every pro-

cessing unit which can independently change is to be

identified as a concern and should thus be modeled as a

separate task. Therefore, in general, this gives rise to a first

set of task types:

– Standard task: the information system itself performs

an actual action, e.g., sending an email, checking the

availability of a part, calculating the VAT, etc.;

– Manual task: a human user is required to perform the

action, and to indicate its completion through a user

interface (e.g., approving an expense report). Every

task executed by another human actor is considered as a

separate task. In case of collaborative tasks, composite

human actors are considered;

– External task: the action is assumed to be performed

outside the considered flow, possibly even within

another information system (e.g., triggering an alarm).

Second, the Separation of States theorem implies that flows

should be performed in a stateful way. Therefore, we

propose to model tasks and states (and therefore, the rel-

evant state transitions) separately.

Third, the Version Transparency theorems require that

the dependencies between the (modeling) constructs are

made explicit. As the scope of the genuine processing

embedded within one flow should be limited to only one

core data entity, many fine-grained flows are identified

which need to be able to interact. This gives rise to a

second set of task types:

– Bridge task: the information system creates one or

multiple instances of another (core) data element that

will be processed in its own flow (in case it has one

operating on it), e.g, creating an order upon an

approved offer;

– Update task: in case a bridge task creates one or

multiple instances of another data element, it might be

required to keep the parent element automatically up-

to-date regarding the child elements (e.g., all parts of

the order are available now). An update task enables

such automatic ‘‘updating’’.

Further, maintaining version transparency implies that data

entities or flows on which other flows depend cannot be

removed. For instance, when an order flow needs to get

updates from all its associated parts, this part element

needs to remain existing. As version transparency at the

technical level is handled by the NS elements during

software generation, other implications (e.g., implementing

a new task version without creating combinatorial effects)

are dealt with at this level.

123

60 P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018)

3.2.2 Illustration

Figure 3 shows a visual illustration of our proposed process

modeling approach for the case of the processing require-

ments regarding a Booking within a fictitious and simplified

car rental business. That is, it concerns a flow operating on

one core data element (in this case: Booking). This booking

flow consists of multiple tasks, having different types being

indicated by means of the letter at the right upper corner of

each task box: S for standard task (PersonRetriever, Pay-

mentChecker, CarReserver), M for manual task (Book-

ingConfirmer), B for bridge task (PersonCreator,

RentalsCreator) and U for update task (RentalChecker). As

we consider a small and simplified case, no external task

(E) is present in this example. Remark from Fig. 2 that the

Booking core data element has a status field in which the

current state of each Booking instance (and the flow oper-

ating on it) is kept (going from Created to PersonExisting to

AdvancePaid, etc.). Similarly, flows can be modeled for the

processing activity regarding Persons, Rentals, etc. Each

flow will correspond to an NS flow element and each of

their tasks will correspond to an NS task element when

building an application for the rental company.

3.2.3 Contrast with Related Work

In terms of modeling notations, our processing models

could clearly be represented in UML state diagrams

(Booch et al. 1999) or Event-driven Process Chains (Keller

et al. 1992) as they allow the indication of tasks and states.

BPMN diagrams would be possible as well, although it is

advised to include states in the notation one way or the

other. In terms of prescriptive guidelines, a set of seven

process modeling guidelines (7PMG) has been proposed by

Mendling et al. (2010) and Moreno-Montes de Oca and

Snoeck (2014) distilled a set of 27 guidelines based on a

broad set of sources. Most of these guidelines are directed

towards the improvement of the general understandability

of business processes and are of a pragmatic nature. Others

focus on the engagement of stakeholders by proposing

certain project management guidelines (e.g., Sammon et al.

2016) or propose comparison and integration methods for

sets of processes (e.g., Xiao and Zheng 2012; de Cesare

and Serrano 2006). Some authors have argued that the

qualitative nature of business processes tends to discourage

formal or algorithmic approaches (Vergidis et al. 2007)

and that specific design rules on how to modularize (i.e.,

design) business processes are largely missing (Reijers and

Mendling 2008) which can be considered problematic

(Becker et al. 2000). Therefore, guidelines specifically

directed towards a specific optimization criterion such as

the evolvability of business processes are scarce

(Van Nuffel 2011). For instance, searches on ‘‘evolvable

‘business processes’’’, ‘‘evolvability ‘business processes’’’

and ‘‘flexibility ‘business processes’’’ in the Web of Sci-

ence in June 2017 returned 0, 0 and 26 hits, respectively

(the search on flexibility often containing work on how to

deal with deviating process instances).

We therefore state that our approach differs from

existing work in that we provide a theoretically based

modeling and design approach to enable evolvability in the

context of processing functionality (particularly in an NS

context). Similar to Sect. 3.1, we advocate the use of

existing processing modeling notations but restrict them to

only one basic data flow construct (with a particular

sequence of tasks), operating on one argument data entity:

no heterogeneous business processes spanning multiple

data entities are allowed. Such design is detrimental for the

agility of the processing model as each business process is

in that case dependent on multiple change drivers which

may result in combinatorial effects.

3.3 An Integrated Enterprise Model

3.3.1 Overview

While we started this section by stating that a clear sepa-

ration is required between data and processing modeling

constructs, this does not mean that they are not related to

one another or should not interact. Figure 4 visualizes an

integrated enterprise model resulting from our NS based

approach. Here, three planes can be discerned:

Fig. 3 Processing model

123

P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018) 61

– the horizontal plane (indicated by number 1), depicting

(a subset of) the data entities;

– the vertical plane (indicated by number 2), depicting (a

subset of) the flows operating on core data entities;

– the plane perpendicular (indicated by number 3) to

both the horizontal and vertical plane, depicting the

dependencies between the data entities and flows.

The figure assists in explicitly clarifying several charac-

teristics of our approach. First, the figure reflects the

application of the NS theorems (enabling evolvability)

during our modeling efforts. The horizontal and vertical

plane provides evidence of the applied Separation of

Concerns regarding data and processing. Within the verti-

cal plane, the stateful sequencing of tasks within each flow

provides evidence of the applied Separation of States the-

orem. The perpendicular plane expresses the dependencies

which should be taken into account in order to guarantee

Version Transparency. Second, the figure highlights the

strict and systematic integration of our models. The hori-

zontal and vertical plane show that each flow (consisting of

one or multiple tasks) operates on one and only one core

data entity. The perpendicular plane shows that some data

entities are dependent on other data entities by multiplicity

relationships (see Fig. 2), while some flows are dependent

on other flows by bridge or update tasks. It is interesting to

remark that this plane relates to both the data entities and

flows in the same way. Stated otherwise, the dependencies

between data and processing occur in a parallel way:

indeed, bridge and update tasks represent tasks working on

a core data entity and typically connecting to another data

entity with which that entity has a one-to-many (or many-

to-one) relationship. Therefore, our approach avoids – by

definition – a schism between data and process modeling.

Finally, the figure illustrates the possibility for a gradual

way of working. Without the need to tackle the full com-

plexity of an enterprise (universe of discussion) at once, an

analyst can first create (a subset of) the data model as

shown in the horizontal plane: typically, some core data

entities are identified at the start which are later on sup-

plemented with non-core data entities. Next, some flows

operating on them can be added (the vertical plane). At all

times, the dependencies should be managed appropriately

(the perpendicular plane). Later on, this model can be

gradually extended with some additional data entities,

flows, tasks, etc. Such way of working is expected to be

more difficult in case no categorization of data entities is

performed or processing requirements are purely modeled

on the basis of their current chronological order in isolation

from the data model. Therefore, our approach is believed to

result in an enterprise (domain) model which can more

easily cope with change.

3.3.2 Contrast with Related Work

Studying the integration between data and processing

views on information systems is obviously not new. For

instance, already Jackson Structured Programming (JSP)

was a ‘data first’ approach in which the structure of the

program was advised to be aligned with the structure of

data processing (Jackson 1975). In the object-oriented

paradigm, data and action are even ‘‘integrated’’ at the

construct level of a class. Interaction between constructs is

then visualized via, for instance, UML interaction diagrams

(Booch et al. 1999). The concept of coupling has been put

forward as a way to operationalize dependencies between

Fig. 4 Integrated enterprise

model

123

62 P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018)

constructs (Yourdon and Constantine 1979) and has been

applied to evaluate several design alternatives (Larman

1997). And related to our flow conceptualization as

working on data entities, it needs to be mentioned that

several entity-centric modeling approaches exist (see e.g.,

Sanz 2011) and parallels with early entity life histories can

be drawn (Jackson 1975). Therefore, we believe that our

integration approach is not necessarily new in terms of

modeling notation or general rationale, when compared to

existing work. Rather, the unification of the 3 different

dimensions (planes) as discussed above in alignment with

NS theorems is deemed to provide a new perspective.

4 Tool Support

A supporting tool was developed earlier to drive the gen-

eration of NS software. We discuss how the results of our

proposed modeling approach can be used by analysts as

input for that tool, i.e., how our models in terms of NS

elements can be transformed into working NS software

(prototypes). Later on, these prototypes can be further

developed into production ready applications incorporating

organization specific plug-in code.

4.1 Prototype Definition

In order to enter the enterprise model in the tool, an analyst

should define a new application. Next, several components

can be added to this application: typically, several standard

components (providing default functionality such as user

management) and one application specific component are

added to the application. Within this application specific

component, the domain model can be specified. That is, the

different data, task and flow elements can be created as

shown in Fig. A1 in the appendix (available online via

http://springerlink.com). The data elements correspond to

the entities in the data model (e.g., Fig. 2), the task ele-

ments to the square boxes in the processing model (e.g., the

squares within Fig. 3) and the flow elements to the flows in

the processing model (e.g., the state transitions as visual-

ized within Fig. 3). For each data element, fields (i.e.,

attributes within the data model) can be specified as well as

their value types (text, number, link to other fields), options

(e.g., display options) and finders (search operations). For

each task element created, the target data element can be

indicated (i.e., a blue core data entity) as well as its target

class (empty test code or an actual task implementation)

and options (e.g., whether it is a bridge task or not). For

each flow element created, a target data element should be

specified, together with its corresponding status field (re-

flecting the changing state of an instance of a data element)

and a set of state transitions (defining which state – the

black dots from Fig. 3 – results in which other state –

another black bullet – by the execution of which task ele-

ment, being defined above). As connector and trigger ele-

ments are automatically generated when needed for

data/task/flow elements, their manual specification is not

required. Remember from Sect. 2 that each element will

be provided with a set of cross-cutting concerns (such as

security, remote access, etc.) during code expansion (pro-

viding typical non-functional requirements). This means

that all mandatory information to generate a prototype can

be directly derived from the data and processing model

presented in Sect. 3: it is merely a formal equivalent of the

graphical representations from Figs. 2, 3 and 4. Remark

that this model specification is technology agnostic and

thus fully remains within the role of the analyst as domain

expert.

For instance, when considering an application for a

typical car rental business, the data elements as identified

during data modeling efforts are entered in the tool as can

be seen in Fig. A1: Booking, Car, CarDropoff, Person,

Rental, etc. Further, one can notice that for each data ele-

ment, such as the Booking element in Fig. A1, the relevant

fields (bookingDate, numberOfCars, etc.) are defined.

Within the tabs ‘‘TaskElement’’ and ‘‘FlowElement’’ the

identified task elements (RetrievePerson, CheckPayment,

ConfirmBooking) and flow elements (BookingFlow) are

entered similarly.

4.2 Prototype Generation

After the domain model has been entered, an application

instance can be created. Here, the GUI framework (e.g., a

combination of bootstrap and knockout) can be chosen, as

well as the type of application server (e.g., Java EE

application server) and the underlying database (e.g.,

HSQL). Based on these application instance details, the

standard code base for the application can be generated

(i.e., ‘‘expanded’’) and inspected by the tool (see Fig. A2 in

the appendix). For instance, when considering the car

rental business application, more than 30 java classes (e.g.,

BookingAgent, BookingBean, BookingClient, Book-

ingCruds) will be generated for each defined data element

in the application, together with the required database

schemas as well as generated html and jsp files for

inspecting and modifying information regarding Bookings,

Rentals, etc. (a more detailed overview of this code gen-

eration process can be found in Mannaert et al. 2016).

The code can subsequently be compiled (i.e., ‘‘built’’)

and deployed. This results in a usable prototype of the

specified domain model. Some of the current out-the-box

features include CRUD functionality for every data ele-

ment via a standard web page, clickable linkages between

data elements, search functionalities on upfront specified

123

P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018) 63

http://springerlink.com

fields, import clients, report generation and a master-detail

overview for all one-to-many data elements throughout

multiple levels. Flows defined on core data elements can be

illustrated by creating an instance of that element with a

status field value corresponding to the start status of the

flow. By doing so, this status will be detected by the

engines, which will make the data element go through the

different states in its lifecycle (only performing genuine

business functionalities when manually added). For

instance, when considering the car rental business appli-

cation, the prototype will allow users to perform CRUD

operations on Bookings, Rentals, etc. via a GUI in the

browser. Search operations can be executed (e.g., which

Rentals had a price higher than 250 euros?), reports can be

printed (e.g., all detail information regarding a person as

well as his related bookings and rentals) and master-detail

screens (e.g., showing the information of all Rentals

associated with a particular Car in one screen) can be

inspected.

This prototype can be shown to potential end users and

test data can be entered. Based on this operationalization of

the enterprise model, end users can explore and experiment

with the application. Missing or misunderstood require-

ments can be communicated to the analyst who can itera-

tively refine the domain model and re-expand the

application until it complies with the actual enterprise

model.

4.3 Addition of Plug-in Code

After initial prototypes have been created and refined, the

domain model (and therefore, initial prototype) can be

shared with the developers. They can add plug-in code

between predefined ‘‘anchors’’ within the generated code,

for instance to implement the genuine processing func-

tionality of a certain task or to customize the lay-out of a

generated CRUD screen. This code can be compiled

together with the automatically generated code but can also

be set aside (‘‘harvested’’) and re-inserted afterwards

(‘‘injected’’) in case a new version of the domain model is

expanded so that these customizations do not get lost. For

instance, when considering the car rental business appli-

cation, validations should be performed (e.g., the book-

ingDate should be in the future) and the tasks (e.g.,

CheckPayment) should be implemented. As the tool pro-

vides a structured overview of all plug-in code, the analyst

can monitor to which data elements or task elements cus-

tomizations were added, to which features they correspond

and how complex (e.g., amount of code) they were.

Therefore, performing enterprise modeling conform Sect.

3 and using that as input for the supporting tool allows the

analyst to manage sets of applications and their domain

models, generate initial prototypes, follow-up

customizations, generate advanced prototypes (up to pro-

duction ready applications) and validate requirements with

end users in a highly iterative way.

4.4 Contrast with Related Work

Many modeling tools regarding data and processing

(Eichelberger et al. 2009; Evéquoz and Sterren 2011) exist,

some of them allowing our advocated separation of data

and processing functionality. Also, several tools have been

created before which generate code based on specified

functional requirement models (Kelly and Tolvanen 2008;

Stahl et al. 2006). As before, we do not claim that our

modeling notations or the code generation aspect as such is

new. Rather, our theoretically based focus on evolvability

at both levels differs from earlier work. Therefore, it is

important to mention that the resulting prototypes and

applications can vary according to multiple evolvability

dimensions:

– domain model: data elements or attributes, links or

cardinalitities can be added or changed;

– technology: the preferred technology frameworks to

implement the elements can be changed (e.g., a

different database or user interface technology might

be chosen);

– plug-in code: additional plug-in code or a better

implementation of an existing functionality (plug-in

code) can be required (e.g., an improved calculation

algorithm);

– element structure (design patterns): the element struc-

tures can change as new features are embedded (e.g., a

better way of handling a cross-cutting concern).

Consequently, our approach enables the tendency towards

agile approaches (e.g., DevOps) as we facilitate develop-

ment by short iterative cycles in tight cooperation with end

users. We also largely align with the idea of (architecture-

centric) Model-Driven Software Development (MDSD)

(Stahl et al. 2006), in which a model is used to generate

large parts of the code. While these approaches focus

mainly on the agility of the software development process,

we try to complement them with products which are

evolvable as well.

5 Evaluation

Our approach was iteratively refined over the course of 2

years and was mainly evaluated by means of frequent

qualitative and informal feedback conversations in the

context of real-life projects (differing in scope, goal and

related industry) and trainings given to practitioners and

students. Mentioned benefits included the ability to create

123

64 P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018)

more complete data models (due to the suggestions and

complexity reduction offered by the different entity

dimensions), a more manageable (adaptable) processing

model and an increased integration between data and pro-

cessing aspects. Also awareness of agility issues at the

organizational level and the ability to rapidly show end

users working prototypes (which allows easier communi-

cation) were regularly mentioned. Modeling NS flows on

core data entities was systematically indicated as a pro-

foundly new but positive experience for the participants.

While the above mostly relates to syntactic and semantic

model quality properties (Krogstie 2016), the mentioned

challenges were often related to other quality properties.

For instance, regarding deontic quality, Fig. 4 was con-

sidered difficult to construct in realistic situations given its

(visual) complexity. Regarding pragmatic quality, the fine-

grained processing models were considered as potentially

difficult to understand by non-technical end users. And,

regarding the physical quality, the supporting tool was

sometimes experienced as error-prone when used inatten-

tively (e.g., due to typos).

Based on this feedback, in order to get a more system-

atic insight, a supplementary survey (see the Appendix)

with a set of statements (to be rated on a 7 point likert

scale) was distributed at the end of the second year to a set

of practitioners (analysts/developers) who received a 2-day

training on our modeling approach (after having attended a

1-day session on NS fundamentals) and students who fol-

lowed a 3-h lecture and brief follow-up session (as they

were already familiar with NS at the software level). The

practitioners familiarized themselves with the supporting

tool via in-class exercises, whereas the students acquainted

themselves via self-study. At the end, the practitioners

were asked to construct an NS application within their own

working context whereas the students were given an

assignment to model and build an NS application for a

fictitious bank. All participants were able to produce

functional requirements of an NS application and build a

corresponding prototype which was based on our approach,

without significant problems. The statements in the survey

were primarily aimed towards discovering the confidence

of the respondents of being able to identify the suitable set

of data, flow and task elements, and the degree to which

our approach facilitated some of the benefits mentioned

above. Only the responses of finalized surveys were taken

into account. Moreover, regarding the students, we only

considered responses coming from students enrolled within

the main MIS program who were present during the lecture

and follow-up session. This led to 13 valid student

responses and 6 practitioner responses. Table 1 provides

some descriptive statistics regarding the most pertinent

evaluation questions (i.e., the median and percentage of

answers with a score equal to or higher than 5, indicating

that the respondent agrees to some extent with the

statement).

Overall, the survey results seem to align with the find-

ings from the informal feedback. However, interesting

additional insights emerge. First, based on questions 1A,

2A and 3A, it is clear that the practitioners were more

confident in their ability to identify the required data, task

and flow elements and envision their interaction. This is

not surprising given their practical experience (which the

students lacked) and the fact that several non-evolvability

related analysis challenges (e.g.,‘‘how generally applicable

should my model be?’’) are not targeted by our approach.

Questions 1B and 2B suggest that about two thirds of the

practitioners agreed that our approach (when compared to

others) enables more manageable processing models and

more complete data models. This latter benefit was rated

even higher by the students, which might indicate that the

approach might perhaps compensate to a certain extent

their lacking experience in that regard. It was surprising to

observe from questions 3A and 3B that only a minority of

the students considered our approach to offer a (more) clear

integration between data and processing requirements

(although they regularly mentioned this during informal

feedback moments and their assignments exhibited a tight

integration between both), which is in contrast with the

practitioners responses. On the one hand, it could be that

our discussion of this part was not adequate enough for

Table 1 Evaluation questions

Question (shortened, see the appendix (available online via http://link.springer.com)

for full questions)

Practitioners Students

Median C 5 (%) Median C 5 (%)

1A: I am able to identify the data elements 6 100 5 62

1B: I am able to create more complete data models 5.5 67 5 92

2A: I am able to identify the task and flow elements 6 83 5 54

2B: I create a more manageable processing model 5 67 5 69

3A: I am able to comprehend the data and processing interaction 5 67 4 46

3B: I am able to create models with a better integration between data and processing 5 67 4 46

4: I have a better insight regarding the agility of analysis models 5 67 5 77

123

P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018) 65

http://link.springer.com

students with little experience. On the other hand, a pos-

sible explanation could be that our approach automatically

‘‘forces’’ analysts to integrate both data and processing

perspectives and that this might not always stand out for

students having little real-life experience with integration

problems. The survey results confirmed that, in general,

respondents indicated to have gained a better insight

regarding the agility of analysis models. Whereas the end

assignment for practitioners was limited to 3 hours, the

student assignment was a multiweek project in which they

were expected to iteratively identify about 30 data elements

(and associated tasks and flows). Here, the average time

reported to come up with a prototype, once being famil-

iarized with the tool, amounted to 16 hours.

It should be stressed that our evaluation is only tentative

and has several important limitations. That is, our evalua-

tion was primarily based on informal feedback and the

number of respondents in the survey was limited. In par-

ticular, several validity threats may be present due to a

possible response bias (e.g., instructor-pleasing behavior

during informal feedback, the students filling in the eval-

uation form may have had a significantly more positive or

negative experience with our method) or the fact that we

asked respondents to (subjectively) compare their own

performance to assignments in the past (when they were

less experienced). As a consequence, additional evaluation

(e.g., containing more respondents) which could confirm or

refine our initial findings in future research is deemed

appropriate.

6 Conclusions

NS aims to create evolvable software systems by system-

atically reusing a set of NS elements, proven to be free of

combinatorial effects. This paper has proposed a modeling

approach to identify these elements and discussed how

these models can be used as input for a supporting tool to

generate NS applications. This paper contributes to theory

by illustrating the feasibility of transforming actual func-

tional requirements into an enterprise model in terms of NS

elements. We reflected upon the implications of performing

enterprise modeling in compliance with NS theorems and

how simple yet highly integrated models can be used to

generate advanced software applications. To practitioners,

this paper offers initial guidance on how to perform

enterprise modeling in an NS compliant way within actual

projects. The ability to use these models as direct input for

a supporting tool also entails important practical implica-

tions for the development of NS software (e.g., the ability

to easily generate prototypes). Future research will be

mainly directed towards a more extensive evaluation of our

approach and the creation of a tool to automatically

transform a graphical domain model into the specifications

required for the supporting tool. Also, as the resulting

software applications are based on NS elements (which are

designed to exhibit evolvability) and the enterprise mod-

eling is performed while taking the NS theorems into

account, one might expect an improvement of the overall

agility of the adopting company. Therefore, studies vali-

dating this actual enterprise evolvability resulting from our

approach within a long time perspective are deemed

interesting.

References

Agarwal R, Tiwana A (2015) Editorial - evolvable systems: through

the looking glass of is. Inf Syst Res 26(3):473–479

Becker J, Rosemann M, von Uthmann C (2000) Guidelines of

business process modeling. In: van der Aalst WMP, Desel J,

Oberweis A (eds) Business process management, models,

techniques, and empirical studies, vol 1806. Lecture notes in

computer science. Springer, Heidelberg, pp 30–49

Booch G, Rumbaugh J, Jacobson I (1999) Unified modeling language,

the user guide. Addisson Wesley, Pearson

Chen PPS (1976) The entity-relationship model—toward a

unified view of data. ACM Trans Database Syst 1(1):9–36

Codd E (1970) A relational model of data for large shared data banks.

Commun ACM 13(6):377–387

de Cesare S, Serrano A (2006) Collaborative modeling using uml and

business process simulation. In: Proceedings of the 39th annual

HICSS conference

De Bruyn P (2014) Generalizing normalized systems theory: towards

a foundational theory for enterprise engineering. PhD thesis,

University of Antwerp

De Bruyn P, Huysmans P, Mannaert H (2016) Tailoring an analysis

approach for developing evolvable software systems: experi-

ences from three case studies. In: Proceedings of the 18th

conference on business informatics, pp 208–217

Eessaar E (2016) The database normalization theory and the theory of

normalized systems: finding a common ground. Baltic J Mod

Comput 1:5–33

Eichelberger H, Eldogan Y, Schmid K (2009) A comprehensive

survey of uml compliance in current modemodel tools. Softw

eng 143:39–50

Evans E (2003) Domain-driven design: taking complexity in the heart

of software. Addison-Wesly, Boston

Evéquoz F, Sterren C (2011) Waiting for the miracle: Comparative

analysis of twelve business process management systems

regarding the support of BPMN 2.00 palette and export. Tech.

rep., University of Applied Sciences Western Switzerland

Halpin T (2001) Information modeling and relational databases.

Elsevier, Amsterdam

Hay DC (1996) Data Model patterns: conventions of thought. Dorset

House, New York

Hruby P (2006) Model-driven design using business patterns.

Springer, Heidelberg

Jackson M (1975) Principles of program design. Academic Press,

Cambridge

Kappelman M, Eand McLean V, Johnson Gerhart N (2014) The 2014

SIM IT key issues and trends study. MIS Q Exec 13(4):237–263

Keller G, Nüttgens M, Scheer A (1992) Semantische Prozessmodel-

lierung auf der Grundlage Ereignisgesteuerter Prozessketten

123

66 P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018)

(EPK). Veröffentlichungen des Instituts für Wirtschaftsinfor-

matik (89)

Kelly S, Tolvanen JP (2008) Domain-specific modelling: enabling

full code generation. Wiley, New jersey

Krogstie J (2016) Quality in business process modeling. Springer,

Heidelberg

Larman C (1997) Applying UML and patterns. Prentice Hall, New

jersey

Lehman M (1980) Programs, life cycles, and laws of software

evolution. Proc of the IEEE 68:1060–1076

van der Linden D, De Sitter G, Verbelen T, Devriendt C, Helsen J

(2017) Towards an evolvable data management system for wind

turbines. Comput Stand Interface 51:87–94

Mannaert H, Verelst V, Ven K (2011) The transformation of

requirements into software primitives: studying evolvability

based on systems theoretic stability. Sci Progr 76(12):1210–1222

(Special Issue on Software Evolution, Adaptability and

Variability)

Mannaert H, Verelst J, Ven K (2012) Towards evolvable software

architectures based on systems theoretic stability. Softwa Pract

Exp 42(1):89–116

Mannaert H, Verelst J, De Bruyn P (2016) Normalized systems

theory: from foundations for evolvable software toward a general

theory for evolvable design. Koppa

Mendling J, Reijers H, van der Aalst W (2010) Seven process

modeling guidelines (7pmg). Inf Softw Technol 52(2):127–136

Moody D (2003) The method evaluation model: a theoretical model

for validating information systems design methods. In: Ecis 2003

proceedings

Moreno-Montes de Oca I, Snoeck M (2014) Pragmatic guidelines for

business process modeling. Technical Report, Leuven

Reijers H, Mendling J (2008) Modularity in process models: review

and effects. In: Dumas M, Reichert M, Shan MC (eds) Business

process management, vol 5240. Lecture notes in computer

science. Springer, Heidelberg, pp 20–35

Sammon D, McNulty J, Sugrue A (2016) Tasc2c: desdesign a data

driven business process. J Decis Syst 25(S1):639–646

Sanz J (2011) Entity-centric operations modeling for business process

management: a multidisciplinary review of the state-of-the-art.

In: Proceedings of the 6th IEEE international symposium on

service oriented system engineering (sose), pp 152–163

Scheer A (1998) Business process engineering: reference models for

industrial enterprises. Springer, Heidelberg

Silverston L (2001) The data model resource book: a library of

universal data models for all enterprises, vol 1. John Wiley, New

Jersey

Stahl T, Völter M, Bettin J, Haase A, Helsen S (2006) Model-driven

software development. Wiley, New Jersey

Van Nuffel D (2011) Towards designing modular and evolvable

business processes. PhD thesis, University of Antwerp

Vergidis K, Tiwari A, Majeed B, Roy R (2007) Optimisation of

business process designs: an algorithmic approach with multiple

objectives. Int J Prod Econ 109(1):105–121

Xiao L, Zheng L (2012) Business process design: process comparison

and integration. Inf Syst Front 14(2):363–374

Yourdon E, Constantine L (1979) Structured design: fundamentals of

a discipline of computer program and systems design. Prentice

Hall, New Jersey

123

P. De Bruyn et al.: Enabling Normalized Systems in Practice, Bus Inf Syst Eng 60(1):55–67 (2018) 67

	Enabling Normalized Systems in Practice -- Exploring a Modeling Approach
	Abstract
	Introduction
	Normalized Systems Theory
	NS Theorems and Elements
	The NS Development Trajectory

	Modeling Approach
	Data Model
	NS Theorem Implications
	Illustration
	Contrast with Related Work

	Processing Model
	NS Theorem Implications
	Illustration
	Contrast with Related Work

	An Integrated Enterprise Model
	Overview
	Contrast with Related Work

	Tool Support
	Prototype Definition
	Prototype Generation
	Addition of Plug-in Code
	Contrast with Related Work

	Evaluation
	Conclusions
	References

