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Abstract  

In an online marketplace reality in which customer satisfaction emerges as a key success factor for e-

retailers, it becomes crucial to better understand whether the shoppers are satisfied and what factors 

affect their satisfaction experience. As we are in the Big Data era, Business Analytic techniques could 

assist us to better understand our customers and their respective satisfaction. To this end, this paper 

presents a data mining based approach to identify different satisfaction patterns/profiles from 

satisfaction survey responses. This approach was applied on data from over 120 Greek e-shops across 

18 industries. Apart from its theoretical contribution, the proposed approach extracts hidden 

satisfaction patterns with a view to better understand the specific needs and preferences of customers. 

These insights may be used to support several decisions, ranging from marketing actions per customer 

satisfaction profile, to actionable decision making and customer-oriented strategies. 

 

Keywords: Customer Satisfaction, Data Mining, Business Analytics, e-business 

 

1 Introduction 

In the era of e-business and digital transformation, it becomes crucial for retailers to understand what 

creates a satisfied customer to fulfill the promises of satisfying online shoppers. Therefore, many 

companies have identified the need to not only understand customer purchase behavior, but also the 

customer satisfaction through their online purchase journey. Additionally, technological advances 

enable direct communication with the customer and mass data collection about their behavior and/or 

their responses on surveys. To this end, many researches in both academia and industry focusing on 

analyzing these datasets, to calculate the satisfaction levels and/or identify the factors affecting their 

satisfaction. 

More precisely, many researches aimed to calculate satisfaction in different contexts, such patient (Ortiz 

and Schacht, 2012) or student (Moro-Edigo and Panades, 2009) satisfaction. The traditional methods of 

satisfaction measurements include statistics that describe the satisfaction level, but do not identify what 

affects satisfaction. Therefore, other research used advanced statistical models and data mining 
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techniques, such as regression analysis (Yap et al, 2012, Papaioannou and Martinez, 2016) or 

classification (Dejaeger et al, 2012) in order to extract the factors that affect satisfaction. However, to 

the best of our knowledge, not a lot of research has been conducted to extract hidden satisfaction patterns 

from survey data, with a view to better understand the specific needs and preferences of customers. 

To address this gap, this paper presents a Data Mining based approach, which uses cluster analysis on 

online satisfaction survey data in order to identify customer satisfaction segments and highlight 

customers’ behavior and preferences within each segment. In more detail, the proposed approach is 

applied to real satisfaction survey data from 120 Greek e-shops across 18 industries supplied by an 

online survey company. Based on the results of the analysis, it is concluded that customer experiences 

vary across different industries and there are various levels of satisfaction, with various attributes 

triggering each satisfaction segment. Moreover, this analysis uses data from many e-shops of the Greek 

market, hence allowing the generalization of results between different industries. Considering the 

findings, it provides useful insights about customer satisfaction patterns with a view to understand 

customers behavior and preferences, and sets forth significant implications on customer loyalty, 

actionable decision making and customer-oriented strategies.  

The remainder of the paper is organized as follows. The ‘Background’ section summarizes the relevant 

literature and pinpoints how this study differs from the extant ones. The proposed approach its evaluation 

using online satisfaction data provided by a major Greek survey company, are described in the next 

section. Section 4, presents the identified Customer Satisfaction Patterns. Finally, we conclude with the 

main outcomes of the paper, the theoretical contribution and the practical implications of our approach; 

and some highlights of further research. 

2 Background 

Following industrial revolution, more standardized products of varied assortment at affordable prices 

came to the market satisfying even the most demanding customer needs. However, as far as competition 

and product variety intensified, the shift to market and customer orientation was inevitable. Keeping 

customers happy and satisfied is a goal that was included in Customer Relationship Management (CRM) 

strategies ensuring organization’s long-term success. This goal is called customer satisfaction, i.e. “the 

consumer’s fulfillment response, the degree to which the level of fulfillment is pleasant or unpleasant” 

(Oliver, 1997). 

Customer satisfaction has been proven important for companies as it can be served as a competitive 

advantage (Craig, 1989). If a customer is satisfied then he/she is more likely to buy again and the 

company holds a competitive advantage against the rivals (Woodruff, 1997). To measure customer 

loyalty towards the firm, the Net Promoter Score (NPS) Key Performance Indicator (KPI), has been 

created. NPS is a KPI that represents with a number the company’s customer loyalty (Reichheld, 2003). 

As stated before, customer satisfaction increases customer retention, but it also reduces customer churn, 

because customers are less likely to abandon the company and turn to a competitor. To this end, a happy 

customer is more likely to visit the store and make more purchases, thus its lifetime value increases. A 

study conducted by InfoQuest (2006) concluded that a ‘totally satisfied customer’ contributes 2.6 times 

more revenue than a ‘somewhat satisfied customer’ and 14 times more revenue than a ‘somewhat 

dissatisfied customer’. Also, customer satisfaction reduces the negative word of mouth (WOM), which 

impacts customer acquisition (Von Wangenheim and Bayon, 2007). According to McKinsey, an 

unhappy customer tells 9-15 about their people, which indicates that it is important to keep the customer 

happy. 

The above factors show the importance of calculating customer (student, patient, user etc.) satisfaction 

in both academia and business. To measure and evaluate this metric, most of the times, customers’ input 

is asked regarding their satisfaction during their shopping experience. More precisely, consumers are 
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asked to rate the product or service and a set of factors related to them; these ratings are used to indicate 

satisfaction. After collecting these data, most researches proceed with calculating descriptive statistics 

(e.g. average, standard deviation per question) and extract trends and insights. Other researches proceed 

with analyzing further the satisfaction data, using multivariate linear regression model (Moro-Edigo and 

Panades, 2009), partial least squares regression (Yap et al, 2012) and logistic regression model 

(Papaioannou and Martinez, 2016). The aforementioned approaches aim to model customer satisfaction 

as the dependent variable Y with on one or more explanatory (or independent) variables X. 

Alternatively, other researches, such as Ortiz and Schlacht (2012) and Subramanian et al. (2014) used 

exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) which describe variability 

among observed, correlated variables in terms of a potentially lower number of unobserved variables 

called factors. 

Apart from the traditional statistical analysis, other researches built models using different data mining 

techniques to understand and explain customer satisfaction. To this end, the work of McAuley and 

Leskovec (RecSys 2013) is utilizing latent models in the context of recommender systems in order to 

predict customer satisfaction/ratings over new products. Barnes et al. (2017) utilize latent dirichlet 

allocation which allows sets of observations to be explained by unobserved, but controllable groups. 

Other researches, exploit sentimental analysis or opinion mining (Kang and Yongtae, 2014) in order to 

study customer satisfaction. Opinion mining refers to the use of natural language processing, text 

analysis and computational linguistics, to systematically extract, quantify, and study affective states and 

subjective information. Additionally, classification has been used to identify to which satisfaction 

category a new observation belongs, based on a training set (Dejaeger et al, 2012). Lastly, clustering or 

cluster analysis, have been used to segment people based on their demographic data and associate them 

with their satisfaction (Beynon et al, 2012), but not on the satisfaction ratings themselves. Clustering is 

a task of grouping a set of items in such a way that items in the same group/cluster are more similar to 

one another than with the items of a different group. Beyond the customer satisfaction scope, 

Adamopoulos (2013) combines econometric, text mining, opinion mining, and predictive modeling 

techniques towards a more complete analysis of the information captured by user-generated content 

taking the advantage of unstructured data.  

Overviewing the existing literature in the e-commerce retail industry, it has been observed that different 

data mining techniques have been applied to analyze customer and sales data, improve the processes of 

the industry and support more customer-centric approach. These analyses are useful to gain customer 

and company insights and support CRM (Anderson et al, 2007). However, they do not take into account 

customer satisfaction. Some researches attempted to evaluate customer satisfaction on a national basis, 

and create a customer satisfaction index (Fornell et al, 1996, Fornell, 1992). However, an alternative 

approach that has been proved successful on identifying patterns in other contexts (e.g. sales data) is to 

utilize cluster analysis on satisfaction survey responses in order to discover satisfaction patterns. 

Overall, it can be observed that there are different data mining techniques that can analyze satisfaction 

data extracting different knowledge. However, to the best of our knowledge there is not an approach in 

the literature that uses data mining and focuses on identifying patterns in the satisfaction survey data, 

with the view to identify different customer behaviors. Focusing on this literature gap, this research aims 

to identify customer satisfaction types across different industries of the Greek e-commerce market using 

data from 120 Greek e-shops across 18 industries. In addition, a comparison between the identified 

customer satisfaction patterns across these industries is also provided. 

3 Data Mining Approach to Identify Customer Satisfaction Patterns 

In this paper, we propose an approach that employs data mining techniques (clustering) to identify latent 

customer satisfaction segments from structured survey data and examine the behavior and 
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discriminating characteristics of each segment, as reflected in their responses to a customer satisfaction 

survey. We have followed the “Design Science” approach (Hevner et al. 2004) that focuses on the 

development and assessment of artifacts. We evaluate our proposed artifact/approach by applying it in 

practice in order to prove its sufficiency to manage the original problem i.e. to discover satisfaction 

patterns. Specifically, we examine patterns and identify segments on actual satisfaction survey responses 

from over 120 Greek e-shops. Our research contribution is the clustering-based artifact described in this 

section, but we also provide insights on the identified satisfaction patterns and emergent response 

segments. 

The data for the design and evaluation of our proposed approach were supplied by an online survey 

company that provides customer satisfaction insights for several e-shops across different industries in 

Greece. The following subsections summarize our analytical approach for discovering satisfaction 

patterns from such data, while in Section 4 we discuss the resulting satisfaction segments. 

3.1 Dataset Description 

The provided datasets consisted of customer responses from a two-part online satisfaction survey. The 

first part was issued when the customer placed an order (checkout part), and the second one after the 

order was fulfilled (aftersales part). More precisely, the collaborating company provided data for about 

1 million orders, placed in over 120 Greek e-shops across 18 industries, between April 2016 and 

February 2017. Around 20 percent of these orders were associated with valid recorded responses to 

either of the survey parts. That happens due to the fact that customers could choose not to complete the 

survey after their purchase. Hence, the dataset included 202 thousand responses for the checkout part, 

and 62 thousand responses for the aftersales part (a response rate of 6 percent). For about 26 thousand 

orders, responses were recorded for both the checkout and the aftersales part. An approximate 80 percent 

of all responses came from e-businesses operating in the Sports, Shoes, Apparel, Online Pharmacy and 

Grocery Retail industries. 

The data provided by the collaborating survey company included three different datasets: 

● A set of any orders placed in the tracked e-shops during the examined period. For each order, 

provided information included unique identifiers for the order, the e-shop and the customer who 

placed the order, as well as the date the order was placed and the category (industry) of the e-shop 

according to the survey company’s taxonomy. Further information about the customer was not 

provided in order to comply with company’s privacy regulations. 

● A set of responses to the checkout part of the online survey. For each response, provided information 

included the unique order identifier and the customer’s answers to each of the survey items of the 

checkout part as described in Table 1. 

Survey Item Rating Range 

Overall Satisfaction 1-10 

Recommendation Likelihood 0-10 

Product Variety 1-10 

Product Availability 1-10 

Prices 1-10 

Security 1-10 

Usability 1-10 

Product Presentation 1-10 

Table 1. Items of the checkout part of the survey. 
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● A set of responses to the aftersales part of the online survey. For each response, provided 

information included the unique order identifier, the date the response was recorded, and the 

customer’s answers to each of the survey items of the aftersales part, as described in Table 2. 

Survey Item Rating Range 

Overall Satisfaction 1-10 

Recommendation Likelihood 0-10 

Delivery Time 1-10 

Shipping Cost 1-10 

Product Quality 1-10 

Delivery Options 1-10 

Packaging 1-10 

Customer Service 1-10 

Table 2. Items of the aftersales part of the survey. 

The basis for integrating the aforementioned data sources is to be able to create a set of unique identifiers 

which could indicate that a specific response has been submitted by Customer X after placing an online 

Order Y. Additionally, if Customer X has responded to both the checkout and the aftersales part of the 

online survey, then both responses should be associated with Customer X and Order Y. Furthermore, if 

Customer X has placed additional orders and has responded to any of the parts in each one of them, then 

all of those responses should be linked to Customer X. 

Cleansing tasks applied on the datasets included eliminating records for corrupt, empty or duplicate 

responses, and handling unique identifier inconsistencies. Thus, we continued the analysis with the 94% 

of the raw dataset.  

3.2 Data Mining Model  

In order to be able to discover previously unidentified satisfaction patterns, unsupervised machine 

learning was employed in the form of cluster analysis. Several pilot data mining models, based on 

implementations of different clustering algorithms, were developed and tested for interpretability and 

compatibility of results with prior knowledge of the field, provided by the collaborating survey 

company. These preliminary results revealed an implementation of the Expectation-Maximization (EM) 

algorithm to perform better in both business and technical terms, while also providing suggestions 

concerning the structure of the training data. 

In the original dataset, each response included a set of numerical values that represented a customer’s 

answers to each of the survey items. While numerical attributes are widely used with data mining 

methods, an approach with discrete attributes was found to be more effective during the preliminary 

tests. Using clustering-based attribute discretization, numerical values were grouped in four satisfaction 

levels, resembling a four-point Likert scale. The process was performed iteratively for each survey item, 

so as to control numerical rating level inconsistencies and bring different variables to the same 

conceptual level. The eventual satisfaction levels for the checkout part are presented in Table 3. 
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Survey Item “Excellent” 

Range 

“Good” 

Range 

“Average” 

Range 

“Poor” 

Range 

Overall Satisfaction 10 8-9 5-7 1-4 

Recommendation Likelihood 10 8-9 4-7 0-3 

Product Variety 10 8-9 3-7 1-2 

Product Availability 10 8-9 3-7 1-2 

Prices 10 7-9 3-6 1-2 

Security 10 8-9 5-7 1-4 

Usability 10 8-9 4-7 1-3 

Product Presentation 10 8-9 4-7 1-3 

Table 3. Eventual satisfaction levels for the checkout part. 

The data eventually used to train the mining model were structured as a table, with each record 

representing a customer response. Each column stored a binary value with 1 indicating that the customer 

responded with that rating, and 0 that not. The columns represented the four different answers on the 

questions, e.g. “Question 1 – Excellent”, “Question 1 – Good”, “Question 1 – Average”, and “Question 

1 – Poor”. If the customer has answered this question, then one of the columns has the value 1, else has 

the value 0. If the customer has skipped this question, then all columns have the value 0. The structure 

of the training dataset is presented in Figure 1. Two mining models were trained, one for the checkout 

part and one for the aftersales part.  

 

responseID Overall 

Satisfaction 

Excellent 

Overall 

Satisfaction 

Good 

Overall 

Satisfaction 

Average 

Overall 

Satisfaction 

Poor 

… 

0000001 0 1 0 0 … 

0000002 1 0 0 0 … 

0000003 0 0 0 0 … 

0000004 1 0 0 0 … 

… … … … … … 

Figure 1. Structure of the training dataset for the checkout mining model. 

The mining model attempts to group similar survey responses (clusters), e.g. responses in which 

customers assigned a similar rating to each aspect of the e-shop. Each one of these response groups 

(clusters) reveals a disparate satisfaction segment, which indicates a distinct customer satisfaction 

pattern based on similar ratings for each aspect of the e-shop.  

 

4 Identified Customer Satisfaction Patterns 

The mining model on checkout data revealed nine response segments (clusters), each survey response 

belongs uniquely into one segment. Via examining the responses in each segment, we identify and 

characterize the different customer satisfaction patterns. An example of the detailed clustering results 

for one satisfaction segment (checkout part) is presented in detail in Table 4. The percentages in each 

cell represents the probability a response that belongs in this segment to be classified as “Excellent”, 

“Good”, “Average” or “Poor”. This segment accounts for 8.5 percent of all checkout data and its 

responses tend to include “Good” ratings for most of the items. However, Product Availability is rated 
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“Average” in nearly all responses, while Product Variety ratings are more mixed, with one half of the 

responses assigning a “Good” rating and the other half an “Average” rating. Aside from identifying the 

rating patterns represented in each segment, the calculation of the following descriptive statistics for 

each segment can help better defining its behavior: the percentage of total responses associated with this 

segment in each industry, the percentage of responses recorded on mobile devices - smartphones or 

tablets - as opposed to personal computers, as well as the percentage of total responses associated with 

impulse purchases as opposed to planned purchases. This segment was specifically associated with the 

Fashion and Shoes industries, while being largely absent from Books and Electrical Goods e-shops. It 

included significantly more responses from computers (only 24 percent from mobile devices). A typical 

47 percent of responses of this segment were associated with impulse purchases, as shoppers stated.  

 

Survey Item Excellent Good Average Poor 

Overall Satisfaction 18% 67% 14% 1% 

Recommendation Likelihood 14% 68% 17% 1% 

Product Variety 3% 48% 49% 0% 

Product Availability 5% 0% 94% 1% 

Prices 0% 100% 0% 0% 

Security 9% 76% 15% 0% 

Usability 12% 72% 16% 0% 

Product Presentation 7% 72% 21% 0% 

Table 4. Detailed results of Segment 8. 

A challenging task when examining the characteristics of each segment is to actually identify the 

satisfaction pattern beyond the quantitative results. For this specific segment, lower scores in Product 

Availability and Variety suggested that customers either were unable to purchase an item of an existing 

product which was unavailable or out of stock (eventually assigning a lower rating to Product 

Availability), or were looking for a product that was not available for purchase in the particular e-shop 

(assigning a lower rating to Product Variety). An evaluation of this segment by the domain experts of 

the collaborating survey company revealed that this was actually a pattern already reflected in their 

qualitative measurements, but one they had been unable to associate with specific responses before. This 

was further reinforced by the fact that many of these responses came from Apparel and Shoes e-shops, 

where there is a higher level of product customization and shoppers are still likely to substitute one 

product for another if their preferred color or size is not available. It is also suitable that this segment 

was less frequent in online bookstores or e-shops with electrical goods, not due to an absence of 

availability issues in these industries, but rather because shoppers are more likely to switch to another 

e-shop or not place the order at all if their book or electrical product of choice is not available at the 

moment of intended purchase. 

The nine response segments identified and their corresponding share of all responses are summarized in 

Table 5. The segment described in detail above is Segment 8 (“Substitution-related Issues”). 

 

Segment Segment Name Percent (%) of all responses 

Segment 1 Overall Excited 18.7% 

Segment 2 Overall Satisfied 11.7% 

Segment 3 Overall Disappointed 7.4% 
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Segment 4 Pricing Concerns 11.8% 

Segment 5 Product Offering Concerns 17.8% 

Segment 6 User Experience Concerns 9.2% 

Segment 7 Security-driven Satisfaction 7.0% 

Segment 8 Substitution-related Issues 8.5% 

Segment 9 Selective Answering 7.9% 

Table 5. Customer Satisfaction Patterns for the checkout part. 

Three of the other, more well-defined segments (Segments 1, 2 and 3) contained responses assigning a 

similar rating to every survey item and were associated with “Excellent”, “Good” and “Average” 

evaluations of an e-shop respectively. Segment 1 (“Overall Excited”) was highly associated with Books 

and Electrical Goods e-shops, as 24 percent of responses from both industries were included in this 

segment. Segment 1 responses were less frequent in online supermarkets, accounting for only 13 percent 

of that industry’s responses. Segment 1 included more mobile responses from most of the other segments 

with 31 percent of its responses recorded from smartphones or tablets. Impulse purchases accounted for 

52 percent of all Segment 1 responses. Segment 2 (“Overall Satisfied”) was also present in online 

bookstores, as well as online pharmacies, while being largely absent from the Fashion and Shoes 

industries. Mobile responses accounted for 25 percent of Segment 2 responses, while 47 percent of 

Segment 2 responses were associated with impulse purchases. Segment 3 (“Overall Disappointed”) was 

strongly present in online supermarkets and pet stores, while being less frequent in e-shops with office 

supplies. Responses from mobile devices accounted for 30 percent and impulse purchases for 46 percent 

of Segment 3 responses. 

It is worth mentioning that Segments 1, 2 and 3, accounting for a cumulative 38 percent of all responses, 

might indicate that it is possible that many customers could be equally satisfied with every aspect of an 

e-shop and there are no differences between different aspects. While that might be true for some 

customers, an evaluation of these segments on business terms should raise questions relating to the 

validity of these responses and the possibility of uniform satisfaction across all aspects. Even more 

important should be the fact that the remaining 62 percent of all responses, similar to Segment 8 

responses as previously described, reflected more complex satisfaction patterns. 

Segment 4 (“Pricing Concerns”) accounted for 12 percent of all responses and included responses 

scoring an “Excellent” rating in every survey item except for Prices, revealing pricing concerns. Such 

responses often came from beauty e-shops, while the segment was expectedly less frequent among e-

shops with deals and offers. Mobile responses accounted for 28 percent and impulse orders for 47 

percent of segment responses. 

A significant 18 percent of all responses were included in Segment 5 (“Product Offering Concerns”), 

and were associated with “Excellent” or “Good” ratings for items relating to the user interface and 

content management of the e-shop, but revealed problems with Prices, Product Variety and Availability. 

This segment had a stronger presence in e-shops with apparel or baby products, while it was mostly 

absent from the Office Supplies and Grocery industries. Responses of this segment were more frequently 

submitted from personal computers, with only 23 percent coming from mobile devices. 

The opposite situation was observed in Segment 6 (“User Experience Concerns”), where “Good” scores 

for product-related items and overall were weighed down by “Average” ratings for Usability and Product 

Presentation. A significant 37 percent of segment responses also rated Product Variety as “Average”, 

which might indicate that problems with product assortment and content organization eventually 

prevented customers from locating preferred products. Segment 6 was particularly strong in online 

grocery stores. One in four responses came from mobile devices, while impulse purchases accounted 

for a comparatively low 44 percent. 
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Segment 7 (“Security-driven Satisfaction”) was associated with very strong scores for Security, Overall 

Satisfaction and Recommendation Likelihood, indicating customers who were fully satisfied with their 

online experience mostly because they are used to purchase from or felt safe with a specific e-shop. 

These responses came from online pharmacies, where purchasing a product might indicate a certain 

amount of trust, as well as from e-shops with office supplies, which point to loyal customers or habitual 

buying behavior. In contrast, Segment 7 accounted for only 5 percent of responses in e-shops with deals 

and offers. About 30 percent of responses came from mobile devices, while impulse purchases 

accounted for 46 percent of segment responses. 

Segment 9 (“Selective Answering”) contained responses which included answers to one or two items, 

and were associated with both satisfied and unhappy customers. This segment was highly associated 

with impulse purchases, accounting for 64 percent of segment responses, while being distinctly present 

in accessories e-shops and deals websites. A comparatively stronger 47 percent of segment responses 

came from mobile devices. 

A similar approach was applied to the aftersales dataset, resulting in the ten satisfaction segments 

presented in Table 6.  

 

Segment Segment Name Percent (%) of all 

responses 

Segment 1 Overall Excited 24.1% 

Segment 2 Overall Satisfied 6.4% 

Segment 3 Overall Disappointed 7.4% 

Segment 4 Overall Unhappy 4.0% 

Segment 5 Shipping Cost Concerns 12.0% 

Segment 6 Packaging & Delivery Concerns 11.7% 

Segment 7 Excited Passives 10.8% 

Segment 8 Express Delivery 9.3% 

Segment 9 Late Delivery 7.6% 

Segment 10 Selective Answering 6.7% 

Table 6. The ten response segments for the aftersales part. 

It is worth noting that these segments also reveal satisfaction patterns across industries. For example, 

responses from online bookstores tend to be clustered with Segments 1 and 2, indicating both a generally 

high level of satisfaction in the industry and, more importantly, consistent satisfaction levels across all 

survey items, revealing book online shoppers to be less demanding or associated with a kind of halo 

effect. The opposite is observed in the Beauty, Apparel and Shoes industries, where responses were 

more diverse, with customers satisfied with some aspects of an e-shop and dissatisfied with other aspects 

at the same time. Online grocery stores were associated with middling customer experiences, while deals 

responses revealed greater satisfaction with product prices, but also a limited feeling of security. 

5 Conclusion 

While customers’ behavior and expectations are changing over the years, companies have identified the 

importance of understanding their customer satisfaction in order to better meet their needs. As a result, 

customer satisfaction surveys are recognized as insightful information sources for monitoring and 

enhancing satisfaction levels. Motivated by the above-described business need, this research paper 
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presents an approach to identify customer satisfaction patterns by applying cluster analysis on structured 

satisfaction survey data.  

To the best of our knowledge, there is no other approach that utilizes clustering techniques on survey 

data and describes how to extract hidden satisfaction patterns with a view to better understand the 

specific needs and preferences of customers. While other researchers aim to find the factors that affect 

satisfaction, this research evaluates all satisfaction attributes equally and tries to identify if common 

ratings are given to any of them, hence indicating common beliefs across different customers. In more 

detail, this research provides a different perspective in satisfaction tracking for e-shops. While other 

analyses conclude to complex statistics, i.e. numeric means and standard deviation that might be difficult 

to comprehend by the end business user, this research suggests nine different satisfaction 

personas/patterns, each one of which representing a satisfaction profile. The goal of this research is to 

provide a simple-to-comprehend segmentation of the mass survey data available in the business context 

that can provide actionable insights. Combining them with customer profiles extracted from their 

demographical and behavioral data, the analysis would lead to a complete customer profiling. 

In order to evaluate our proposed approach, we identified customer satisfaction patterns across different 

industries of the Greek e-commerce market using data from 120 Greek e-shops across 18 industries. By 

applying our proposed approach to real data, we extracted useful insight about shoppers’ behavior, and 

we also identified that the satisfaction patterns differ across different industries. Considering the 

findings, we provide useful insights about customer satisfaction patterns and set significant practical 

implications on customer loyalty, actionable decision making and customer-oriented strategies. 

Via comparing the resulting customer satisfaction segments derived from different e-shops of the same 

market, enables benchmarking across different e-shops between the same industry, as well as 

benchmarking within different industries. Comparing with the results of the best performing companies, 

it is possible to set goals and targets that will drive future strategic decision making. Moreover, 

understanding the satisfaction levels of the customer, can support personalized marketing actions and 

direct communication, e.g. targeted email campaigns based of the customer satisfaction profile. In more 

detail, if an e-shop could track directly in which satisfaction patterns/profile a shopper belongs to 

immediately after he/she completes a survey, then automated marketing messages and content could be 

triggered. For instance, imagine that we have detected an “Overall Disappointed” shopper, or a shopper 

with “Pricing Concerns”, after his/hers purchase. We could show directly a message to this shopper, e.g. 

about a price discount for the next purchase, or we even call him/her back. In the same spirit, we could 

trigger actions when we detect an “Overall Excited” shopper. It could be the right moment to ask them 

share something about our e-shop at social media, or write a review.  

Future research could focus on comparing the customer satisfaction profiles with their purchase profiles. 

This way we can enable understanding if different product categories drive more satisfaction and how 

differences occur. Moreover, further research could combine satisfaction analysis with the customer 

segmentation analysis in order to enrich the insights and the companies obtain a full understanding of 

their customers’ behavior. With such results, an even more targeted communication with the customer 

and thus better business results can be achieved. 

From a technical perspective, it could be interesting to compare different segmentations algorithms, e.g. 

k-means versus the expectation-maximization algorithm, or different data mining algorithms, such as 

factor analysis and latent class models versus cluster analysis. Also, studying whether there are 

alternative ways to identify customer satisfaction patterns it could be of great interest. For instance, we 

can exploit customer reviews via applying text mining, or we can utilize browsing data and analyze 

whether different navigation patterns affect customer satisfaction.  
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