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Abstract

With the rapid advance of digital technologies, task automation has recently come to the

forefront of the debate on skill-biased technological change. Building on a network
theory, this study develops a new systematic methodology to identify comprehensive
task types in the overall economy, and to quantitatively measure the degree of
automation for each task type. Using comprehensive dataset on occupational skill
requirements in 2015, we construct a two-mode network, and identify 13 task types
using a non-parametric clustering algorithm. Our findings suggest that routine
cognitive task and information processing are most automated tasks, and that flexible
thinking and dynamic physical task are least susceptible to automation in 2015. The
major contribution of our approach lies in the estimation of degree of automation for
different task types. The methodology presents a promising avenue for evaluating the
impact of automation on labor market outcomes, such as wage inequality and job
polarization.
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Which Tasks Will Technology Take?

Introduction

“Current trends could lead to a net employment impact of more than 5.1 million jobs lost to disruptive
labor market changes over the period 2015-2020...”

- World Economic Forum (Leopold et al. 2016)

With the rapid advance of technologies, automation has recently come to the forefront of the debate on
skill-biased technological change (SBTC) (Brynjolfsson and McAfee 2011). Since information technology
(IT) has advanced tremendously in the past few decades, it has been blamed for this societal challenge.
Brynjolfsson and McAfee (2014) highlight the exponential growth in digital technologies, referred to as
Moore’s Law, and discuss the disruption to labor markets introduced by technological innovation over the
period of what they have characterized as “second-half” of exponential growth. Frey and Osborne (2013)
suggest that about 47 percent of total U.S. employment is at risk from computerization. On the other hand,
Bessen (2016) argues that new computer technologies increase wage gaps by shifting employment and
requiring new skills, rather than eliminating jobs. In line with these works, this study aims at contributing
to this topic that has been subject to much debate among policy makers and researchers.

The extant literature in SBTC has paid attention to the degree of automation in order to examine the
labor market outcomes, such as wage inequality and job polarization which have been remarkable
phenomena since the 1990s (Acemoglu and Autor 2011; Van Reenen 2011). In particular, given that
computers could automate a specific task rather than a job per se, it is important to investigate the
research question in assessing the impacts of automation on jobs and wage structures: Which tasks have
been or not been automated by technologies?

However, previous studies have limitations in several ways. Firstly, these studies attempt to
categorize skill sets or task types, a priori. Despite distinct merits of theory-driven approach, they are
possibly subjected to ex ante biases. For instance, Autor et al. (2003) propose a task model in which tasks
are divided in two dimensions: routine versus non-routine and cognitive versus manual. Elliott (2014)
separates the capabilities into four general areas which can be compared to human capabilities: language,
reasoning, vision, and movement. However, their task classifications tend to be subjective and not
comprehensive, leading to different conclusions from different studies. In addition, predefined skill sets
might not be appropriate in the era of rapid technological advance because the nature of tasks occupations
undertake has changed over time (MacCrory et al. 2014).

More importantly, prior literature does not provide important insights about how much tasks are
automated, possibly due to a lack of appropriate methodology and data. In the absence of a relevant
measure, previous studies rely on a logical inference or subjective judgements about susceptibility to
automation. For example, Autor et al. (2003) suggest that routine tasks are vulnerable to automation,
whereas non-routine tasks are complementary to technologies. However, they do not answer to the
critical questions: Which non-routine cognitive tasks are more complementary to automation, analytical
or interpersonal? While there is anecdotal evidence mentioning the new characteristics of automation, we
have limited understanding of the nature of tasks and degree of automation (see Brynjolfsson and McAfee
(2014) for broad discussion on technological advance and their consequences in the digital economy).

To fill such voids, this study develops a new systematic methodology to identify comprehensive task
types in the overall economy, and to quantitatively measure the degree of automation for each task type.
Using comprehensive dataset on occupational skill requirements for 651 jobs from O*NET, our data-
driven approach rules out ex ante inference bias and provides more comprehensive view of task types
performed by occupations in the overall economy. To achieve two main goals of identifying task types and
measuring the degree of task automation, we construct a two-mode network, namely “job-skill network,”
in which jobs and skills are two classes of nodes. Then, the two-mode network is projected to a one-mode
network, namely “skill network,” whose weights of edges between skill nodes are the skill correlation
which represents latent interdependence among skills. From the skill network, we identify 13 task types
using a non-parametric clustering algorithm.

It is worth noting that this dataset provides a measure of “degree of automation” for each job,
allowing us to directly measure the degree of automation for each skill, thereby for each task. In this
study, the degree of automation for each skill is defined as the degree of how much the focal skill is
correlated with the degree of job automation. If a skill is required proportionally to the degree of job
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automation across occupations, this skill can be considered to be highly automated. For each task type,
which is a cluster of interdependent and relevant skills, we measure the degree of automation by
averaging measures of skill nodes which belong to the task.

By applying this methodology to O*NET datasets, our findings suggest that routine cognitive task
and information processing are most automated tasks, and that flexible thinking and dynamic physical
task are least susceptible to automation in 2015. To the best of our knowledge, this is the first study to
quantitatively measure the degree of automation for task types. We believe that this study would provide a
solid foundation for future empirical research and practice, as long as the source dataset continues to be
updated. Our measure of degree of automation can be applied to investigate the impacts of SBTC and
automation on wage inequality and labor market outcomes. Moreover, the systematic methodology
proposed in this study can allow researchers and policy makers to “track the development of the
(technological) capabilities and anticipate the full range of their consequences” over time (Elliott 2014).

Literature Review

“Digital technologies change rapidly, but organizations and skills aren’t keeping pace. As a result,
millions of people are being left behind. Their incomes and jobs are being destroyed...”

- Race Against the Machine, Brynjolfsson and McAfee (2011)

SBTC is a shift in technologies that favor skilled over unskilled labor by increasing its relative
productivity, and thus its relative demand (Autor et al. 1998). SBTC has maintained upward pressure on
the demand for highly skilled and educated workers while many lower skilled jobs have disappeared and
median incomes have stagnated, contributing to increasing inequality (Acemoglu 1998; Machin and Van
Reenen 1998). Recent studies suggest that IT complements skilled labor (Autor et al. 1998; Bresnahan et
al. 2002; Michaels et al. 2014; Park and Lee 2016). Bresnahan et al. (2002) show how the sharp decline in
IT prices leads to a cluster of changes in IT use, organizational practices, and product innovation, thereby
increasing the demand for skilled labor. According to Frey and Osborne (2013), educational attainment is
negatively associated with an occupation’s probability of computerization. Michaels et al. (2014) suggest
that IT has contributed to the decline in the demand for middle-skilled jobs by substituting for rule-based
routine tasks.

The disruption of jobs is introduced by technological innovation when certain tasks can be performed
by technology and no longer need to be performed by workers (Autor et al. 2003). Given that computers
could automate a specific task, which is a cluster of relevant skills, rather than a job per se, previous
studies segment the workforce into skill categories or task types, in assessing the impacts of automation
on jobs and wage structures (See Table 1 for task classifications in the extant literature). Autor et al.
(2003) propose a task-based model, separating tasks in two dimensions: routine versus non-routine and
cognitive versus manual. The model predicts that IT contributes to the job polarization by automating
and substituting for the routine tasks, mainly executed by middle-skilled occupations (e.g., production
workers and clerks) (Acemoglu and Autor 2011; Autor et al. 2003; Michaels et al. 2014). On the other
hand, IT is likely to increase the demand for non-routine cognitive tasks of high-skilled workers (e.g.,
managers). Since it is not yet easy to use IT to automate non-routine manual tasks requiring hand-eye
coordination and responses to the unforeseen, IT has largely not affected the relative demand for low-
skilled workers performing non-routine manual tasks (e.g., hairdressers).

Table 1. Task Classifications in the Extant Literature

Autor et al. (2003) Routin(? cogn.itive, routine manual, nqn-routine cognitive
(analytical / interpersonal), non-routine manual

Frey and Osborne (2013) Manipulation, creative intelligence, social intelligence

MacCrory et al. (2014) Cognitive, manual, supervision, interpersonal, initiative

Elliott (2014) Language, reasoning, vision, movement

Deming (2015) Routine, non-routine analytical, social skill, service

Frey and Osborne (2013) suggest that “engineering bottlenecks” create three categories of tasks that
are not susceptible to automation: perception and manipulation tasks, creative intelligence tasks, and
social intelligence tasks. Based on these task compositions, Frey and Osborne calculate an occupation’s
probability of computerization, arguing that about 47 percent of total U.S. employment is at risk from
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computerization. However, they rely on subjective judgements about susceptibility to automation
(McAfee and Brynjolfsson 2016), and do not focus on tasks’ probability of computerization or automation,
which is our main focus.

Prior literature has several limitations to be addressed in this study. First, task classifications in
previous studies are “defined a priori, and are thus limited by the assumptions inherent in logical
inference” (MacCrory et al. 2014). Although theory-driven approaches have well explained the patterns
and underlying mechanism of the labor market, their task classifications tend to be subjective and not
comprehensive, leading to different conclusions from different studies. In addition, since the nature of
tasks has also rapidly evolved, predefined skill sets might not be appropriate to assess the impacts of
automation in the era of rapid technological advance. Using a data-driven approach, this study aims to
rule out ex ante inference bias and provide more comprehensive view of task types performed by
occupations in the overall economy.

Second, previous studies do not provide important insights about how much tasks are automated,
possibly due to a lack of appropriate methodology and data. In the absence of a relevant measure,
previous studies rely on a logical inference or subjective judgements for the degree of automation. For
example, Autor et al. (2003) suggest that routine tasks are vulnerable to automation, whereas non-
routine tasks are complementary to technologies. However, they fail to elucidate the impacts of
automation on tasks, and thus it is ambiguous whether non-routine analytical or interpersonal tasks are
more complementary to automation. This study develops a systematic methodology to quantitatively
measure the degree of automation, helping to track the impacts of technological advance in terms of task
automation.

Of most relevance to our study is the work of MacCrory et al. (2014), which attempts to derive
orthogonal skill sets using a data-driven approach. By performing principal component analysis (PCA),
MacCrory et al. identify 5 orthogonal dimensions using dataset on occupational skills in 2014: cognitive,
manual, supervision, interpersonal, and initiative. Our work differs from MacCrory et al. (2014) in
several important ways. First and most importantly, while they examine the change in task compositions
over time, MacCrory et al. do not provide a relevant answer to the question of which tasks are subject to
be automated. Second, contrary to the PCA approach, our network-based approach allows to uncover and
visualize the underlying task structures and relationships between tasks, as discussed in Methodology
session.

Conceptual Framework

One challenge to identify task types is that they are not directly observed from labor statistics. In this
section, we discuss a conceptual framework of skill, task, and job to lay the groundwork to reveal task
types using data about jobs and skills. While the terms of job, task, and skill are usually used
interchangeably in SBTC literature, we conceptualize the hierarchical relationship between them (See
Figure 1). A job is required to perform a set of task types. Tasks are broadly defined as the actions carried
out by individuals in turning inputs into outputs (Goodhue et al. 1995). Goodhue et al. (1995) define
technologies as tools in carrying out individuals’ tasks. In that sense, technologies could automate and
substitute for task types, rather than jobs per se.

Each task type can be accomplished with a set of relevant skills. Skills are defined as abilities and
capacities to carry out complex tasks or job functions. While we cannot directly observe task types
performed by occupations, this framework allows us to identify task types. According to this framework, a
task type can be redefined as a cluster of highly correlated skills across jobs. If two skills tend to be highly
required for same jobs, these skills will be classified into a same task type.

In addition, prior literature has largely neglected how tasks are interrelated with each other.
However, not only task characteristics, but also these relationships between tasks might play an important
role in shaping the job structures. For instance, Hasan et al. (2015) suggest that task interdependencies
influence the dynamics of job structures. In our framework, two tasks which require similar skill sets will
be closely related with each other. In Figure 1, for example, task type 1 tends to have something in
common with task type 2, whereas it may have quite different characteristics from task type 3.
Understanding the structure of task relationships, as well as identifying task types, can provide deeper
understanding of the nature of tasks, and help to categorize the identified task types.
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Figure 1. Conceptual Framework of Skill, Task, and Job

Methodology

Data

We use O*NET database, which is one of the most comprehensive data on occupational skill requirements,
developed by the National Center for O*NET Development and sponsored by the U.S. Department of
Labor.: Many previous studies in SBTC use this dataset (e.g., Acemoglu and Autor 2011; Deming 2015;
MacCrory et al. 2014; Park and Lee 2016). This database provides job characteristics and skill
requirements, for 974 representative occupations in the economy. We exclude some occupations, whose
codes are not comparable with Standard Occupational Classification (SOC) system, leaving 651
occupations.2

In this study, we broadly define skills as job descriptors in the category of Abilities, Work Activities,
Skills, and Work Contexts, as compiled by O*NET, to maintain comparability with prior literature (e.g.,
Acemoglu and Autor 2011; MacCrory et al. 2014).3 As a result, 182 skills are included in the analysis.4
Each skill is rated by trained occupational analysts and by job incumbents. The importance scale is used
to be consistent with prior literature, which indicates how important a particular skill is to the occupation
which ranges from one ("Not important") to five ("Extremely important"). We normalize skills’ degree of
importance with mean zero and standard deviation one.

We use the version 20.0 of O*NET database published in August, 2015. The database is regularly
updated for approximately 10%-15% of the occupation information (MacCrory et al. 2014). All
occupations were updated at least once since its initial version in 1998. Thus, our findings in this study
would reflect the most recent relationship between jobs, tasks, and technologies.

Two-mode network analysis

Network (or graph) theory has been employed to uncover and visualize the underlying structure in the
data, in broad areas of biology, physics, mathematics and social science (Bonanno et al. 2003; Dusser et
al. 1987; Mantegna 1999; Mizuno et al. 2006; Naylor et al. 2007; Onnela et al. 2002; Tumminello et al.
2007). Specifically, the minimum spanning tree (MST), which connects all the nodes together with the
minimal total weighting for its edges, has been used for that purpose. Especially noteworthy is that
Mantegna (1999) reveals the unobserved hierarchical structures of financial markets by applying MST to

1 O*NET Database, http://www.onetcenter.org/db releases.html

2 The SOC system is used by Federal statistical agencies to classify workers into occupational categories for the purpose of collecting,
calculating, or disseminating data. All workers are classified into one of 840 SOC occupations according to their occupational
definition. O*NET devises the O*NET-SOC code by including 270 new sub-codes to account for new and emerging occupations. For
example, while all chief executives are included in the SOC code 11-1011, O*NET supplements a new job, chief sustainability officers
as a code 11-1011.03. Of 840 SOC occupations, O*NET maintains data on 704 major occupations in 2015 excluding most “All Other”
categories. Some occupations also drop for comparability because of the change in occupational classification systems. Finally, we
have 651 occupations in our dataset which account for 80.0 percent of total U.S. employment in 2015.

3 We exclude other categories in O*NET database, such as Work Values and Work Style, because they represent personal
characteristics, rather than skill requirements in which technology can play a critical role.

4To be consistent with Acemoglu and Autor (2011), the scale of Structured versus Unstructured Work is reversed.
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the stock price correlations. Naylor et al. (2007) investigate the dynamic topology of foreign exchange
market based on MST. Thus, we build on a network theory to identify task types in the overall economy
and to quantitatively measure the degree of automation for each task type.

A two-mode network (also known as affiliation or bipartite network), which is a particular type of
networks with two classes of nodes and ties are only established between nodes belonging to different
classes, provides an appropriate way to represent our research setting. In this study, jobs and skills are
two classes of nodes, and we define the two-mode network as “job-skill network.” The weight of edges
between job and skill indicates how important a particular skill is to the job.

One approach to handling two-mode network is to project it into an one-mode network because most
network measures are solely defined for one-mode networks, and only a few of them have been redefined
for two-mode networks (Borgatti 2009; Borgatti and Everett 1997; Latapy et al. 2008). We refer to the
one-mode network as “skill network,” and the projection process is depicted in Figure 2. For a goal of
projection, we define a skill correlation as the average product of a pair of edges linked to the same job.

More formally, for Skill A and B, we calculate the skill correlation p,z as Ziz1 WiaWip

the importance of Skill A and B to Job i, respectively. The skill correlation becomes an edge between two
skills in the skill network. Note that our definition of skill correlation corresponds to the definition of
Pearson correlation which ranges from -1 to 1, because we normalize the degree of importance with mean
zero and standard deviation one. Thus, positive skill correlation between two skills means that these skills
are closely correlated with each other across jobs. Conversely, if they have negative value, then two skills
are unlikely to be required in same jobs, that is, they are negatively correlated. If the skill correlation is
close to zero, they have erratic relationships across jobs, implying that they are uncorrelated.

, where w;, and w;; is

(Two-Mode) Job-Skill Network (One-Mode) Skill Network

Figure 2. Projection from Two-Mode to One-Mode Network

Since the skill network are a kind of complete graph, we construct the MST of the skill network to
uncover the underlying structure with only important edges being connected. Firstly, we transform the
skill correlation between skill nodes into a distance measure by converting the matrix of skill correlation

into the inverse. More formally, we define the skill distance as d 5 = — 1 Where min(p; ]-) is the
paB+|min(pj)|+e

minimum of skill correlation for every skill i,j € [1,n] and i # j. To avoid indivisible cases, we add very
small constant number to every numerator, denoted as €. By defining the distance in this manner, we
place a more importance on edges which have high skill correlations. Then, we use Kruskal’s algorithm to
construct the MST of the skill network.

After constructing the MST, to identify task types in the skill network, we employ a non-parametric
clustering algorithm, the Louvain method, developed by Blondel et al. (2008). The Louvain method has
been used to identify communities, or clusters, in networks, with success for networks of many different
types and for sizes up to 100 million nodes and billions of links. For instance, Greene et al. (2010) apply
this method to mobile phone networks to suggest the strategy for tracking communities which persist over
time with 4 million nodes and 100 million links.
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Measurement of automation

It is worth noting that O*NET provides a measure of “degree of automation” for each job. It allows us to
measure the degree of automation for each skill, thereby for each task, which is main focus of this study.
The measure of job automation indicates how automated the job is, which ranges from one ("Not at all
automated") to five ("Completely automated").

In this study, we define the degree of automation for each skill as the correlation between the node of
“degree of automation” and the skill node, as defined in the same way discussed above. This measure
provides the degree of how much the focal skill is correlated with the degree of job automation. If a skill is
required proportionally to the degree of job automation across occupations, this skill can be considered to
be highly automated. For each task type, which is a cluster of interdependent and relevant skills, we
measure the degree of automation by averaging the measures of skill nodes which belong to the task.
Tasks with positive (negative) value correspond to those which are (not) susceptible to automation.

Results of Network Analysis

Figure 3 illustrates the MST of skill network grouped by task types, a cluster of relevant skills. Using a
clustering algorithm, we identify 13 task types, and designate the names of task types, based on their skill
components (See Table 2 for details).
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5 Task types, which are skill clusters, are illustrated in different colors, and the size of node represents the degree of automation.
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In a tree structure, relevant skills and its clusters tend to be sibling nodes which share the same
parent node. In Figure 3, for example, dynamic physical task is more correlated with static physical task,
than information processing. Communication, negotiation, and interpersonal task are closely related
with each other. Reasonably, the skill network can be divided into cognitive and manual tasks by their tree
structure. Manual tasks include dynamic physical task, static physical task, dirty, dangerous, and
demeaning, vehicle operation, and equipment maintenance. Cognitive tasks include supervision, routine
cognitive task, flexible thinking, coordination and guidance, information processing, communication,
negotiation, and interpersonal task.

Table 2 presents the degree of automation for each task type. Our findings suggest that routine
cognitive task and information processing are most automated tasks, and that flexible thinking and
dynamic physical task are least susceptible to automation in 2015.

Table 2. Task Types and Degree of Automation

Task Types

Representative Skills

Degree of
automation (%)

Routine Cognitive
Task

Importance of Repeating Same Tasks
Information Ordering
Number Facility

16.42

Information
Processing

Analyzing Data or Information
Processing Information
Interacting With Computer

8.57

Dirty, Dangerous and
Demeaning

Wear Common Protective or Safety Equipment
Exposed to Hazardous Equipment
Pace Determined by Speed of Equipment

6.41

Supervision

Operation Monitoring
Auditory Attention
Frequency of Decision Making

4.50

Static Physical Task

Static Strength

Controlling Machines and Processes

Spend Time Using Your Hands to Handle, Control, or
Feel Objects, Tools, or Controls

0.68

Equipment
Maintenance

Equipment Maintenance
Repairing and Maintaining Electronic Equipment
Troubleshooting

-0.73

Negotiation

Negotiation
Frequency of Conflict Situations
Resolving Conflicts and Negotiating with Others

-1.24

Communication

Social Perceptiveness
Speech Recognition
Oral Comprehension

-2.99

Vehicle Operation

Operating Vehicles, Mechanized Devices, or
Equipment

Spatial Orientation

Sound Localization

-5.23

Coordination and
Guidance

Coordinating the Work and Activities of Others
Developing and Building Teams
Guiding, Directing, and Motivating Subordinates

-7.01

Interpersonal Task

Performing for or Working Directly with the Public
Deal with External Customers
Contact With Others

-10.91

Flexible Thinking

Thinking Creatively
Developing Objectives and Strategies
Freedom to Make Decisions

-12.00

Dynamic Physical Task

Dynamic Strength
Dynamic Flexibility
Gross Body Equilibrium

-14.60
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Discussion and Future Work

Our task types are largely corresponding to those in the extant literature, though previous task
classifications account for only part of ours. For instance, non-routine interpersonal task in Autor et al.
(2003) corresponds to coordination and guidance, based on its skill components. Supervision task is
largely similar to that identified by MacCrory et al. (2014). Interpersonal task and negotiation are
corresponding to social intelligence, proposed by Frey and Osborne (2013). Hence, our task classification
provides more comprehensive picture of task types performed by occupations in the overall economy.

Our methodology can complement the extant literature on impacts of technological change. For
instance, the task model of Autor et al. (2003) is one of the most cited classifications to investigate how
SBTC has influences on employment and wages (e.g., Acemoglu and Autor 2011; Michaels et al. 2014).
Based on our results, we calculate the degree of automation for task types proposed by Autor et al. (2003).
In Table 3, the results show that despite a priori reasoning, the task classification of routine versus non-
routine has successfully explained the degree of automation across occupations. As suggested in the task
model, non-routine cognitive tasks are substantial complementary to automation, and technologies are
largely not affected the non-routine manual tasks. In contrast, technologies have substantially substituted
for routine tasks, both manual and cognitive. Of non-routine cognitive tasks, non-routine interpersonal
tasks are a little more complementary to automation than non-routine analytical ones.

It is worth noting that non-routine analytical tasks, treated as a homogeneous task in Autor et al.
(2003), are split into flexible thinking and information processing in our classification.® Since they are
not homogeneous in terms of degree of automation, they are required to be considered separately in
assessing the impacts of automation on jobs. Thus, these results suggest that there is a need to elaborate
task classification to properly consider heterogeneous degree of automation.

Table 3. Degree of Automation in Autor et al. (2003) !
Degree of automation (%)
Non-routine cognitive (interpersonal) -11.58
Non-routine cognitive (analytical) -9.08
Routine cognitive 31.85
Routine manual 24.09
Non-routine manual -3.17

This paper aims to make a few key contributions to the literature. First, to the best of our knowledge,
this is the first study to quantitatively measure the degree of automation for task types. An old
management adage, “if you can’t measure it, you can’t manage it,” explains why the measurement of
automation is so important in the digital economy. Given that the degree of automation ultimately affects
the employment and wage structures, our measure of automation for each task type can be applied to
investigate the impacts of SBTC on wage inequality and job polarization, which have been a remarkable
pattern in the labor market since the 1990s (Van Reenen 2011). We believe that this study would provide a
solid foundation for future empirical research and practice, as long as the source dataset continues to be
updated.

Second, Elliott (2014) argues that “systematic reviews need to be carried out once or twice each
decade to make it possible to track the development of the capabilities and anticipate the full range of
their consequences.” This study is expected to provide a systematic methodology for researchers and
policy makers to investigate the impacts of technological change over time. In particular, O*NET database
is regularly updated since 1998, allowing us to examine structural changes in the skill network during the
last decade. In future work, we expect to answer several research questions: 1) Which task types have
become substitution or complementarity to technologies in the last decade? 2) Are there any systematic
directions of technological advance in terms of automation?

6 According to Acemoglu and Autor (2011), non-routine analytical tasks are composite of “Analyzing data/information,”
“Interpreting information for others,” and “Thinking creatively.” However, the first two skills are included in information
processing, and the last one is included in flexible thinking.

7 See Acemoglu and Autor (2011) for the task measures, based on O*NET scales.
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