
26TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2017 CYPRUS)

User-friendly and Extensible Web Data Extraction

Tomáš Novella tomasnovella@gmail.com
Department of Software Engineering – Charles University
Prague, Czech Republic

Irena Holubová holubova@ksi.mff.cuni.cz
Department of Software Engineering – Charles University
Prague, Czech Republic

Abstract

Creation of web wrappers is a subject of study in the field of web data extraction. Designing a
domain-specific language for a web wrapper is a challenging task, because it introduces trade-
offs between expressiveness of a wrapper’s language and safety. In addition, little attention has
been paid to execution of a wrapper in a restricted environment.
In this paper we present a new wrapping language – Serrano – that has three goals: (1) ability
to run in a restricted environment, such as a browser extension, (2) extensibility to balance the
tradeoffs between expressiveness of a command set and safety, and (3) processing capabilities
to eliminate the need for additional programs to clean the extracted data. Serrano has been
successfully deployed in a number of projects and provided competitive results.
Keywords: web data extraction, safe execution, restricted environment, web browser extension.

1. Introduction
Since the dawn of the Internet, the amount of available information has been steadily growing
every year. Email, social networks, knowledge bases, discussion forums – they all contribute to
the rapid growth of data. These data are targeted for human consumption, therefore, the structure
tends to be loose. Although humans can easily make sense of unstructured and semi-structured
data, machines fall short and have a much harder time doing so. Automation of data extraction
therefore gives companies a competitive edge: instead of time-consuming and tedious human-
driven extraction and processing, they become orders of magnitude more productive, which
leads to higher profits and more efficient resource usage.

With the advent of new web technologies, such as AJAX [4], and the rise of the Web 2.0 [9],
simple raw manipulation of HTML [3] proved no longer sufficient. As a result, extraction tools
have started being bundled with an HTML layout rendering engine, or have been built on top of
a web browser to be able to keep up with modern standards. Extraction tools have evolved to
be more user-friendly; many came with a wizard – an interactive user interface – that allowed
for convenient generation of wrappers. All this evolves in the direction to increase wrapper
maintainability, which helps to take on incrementally larger tasks. Major challenges facing the
tools available currently on the market are as follows:

• Data manipulation Tools, even the recent ones, provide only a restricted way of data
manipulation, such as data trimming and cleaning. These tasks are often delegated to sep-
arate tools and modules, which may be detrimental to wrapper maintenance, considering
it leads to unnecessary granularization of a single responsibility, since there have to be
additional programs that process the data that are pertinent to the given wrapper.

• Extensibility With the rapid evolution of web technologies, many tools soon become ob-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301373124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NOVELLA ET AL. USER-FRIENDLY AND EXTENSIBLE WEB DATA EXTRACTION

solete due to the inability to easily extend the tool to support modern technologies.

• Execution in restricted (browser) environment New execution environments have emerged,
which gives rise to novel applications of data extraction. Examples include web browser
extensions (in-browser application), which help to augment the user browsing experience.
These environments are restricted in terms of programming languages they execute and
system resources. Besides, script execution safety is another concern.

In this paper we propose a novel data extraction language, Serrano, which deals with all
the three mentioned problems. In Section 2 we overview the related work. In Section 3 we
introduce the Serrano language. Section 4 showcases the user stories, Section 5 discusses the
advantages of Serrano and Section 6 concludes.

2. Related Work
Inspired by [18] in this paper we define a web wrapper as a procedure for seeking and finding
data, extracting them from web sources, and transforming them into structured data. The exact
definition of a wrapper varies and it is often interchanged with the definition of the extraction
toolkit [7], a software extracting, automatically and repeatedly, data from websites with chang-
ing contents, and that delivers extracted data to a database or another application. Toolkits are
often equipped with a GUI that features an internal WebView that represents a tab in a browser
to facilitate wrapper generation. Typically, a user manipulates with the web inside the Web-
View in order to obtain the desired data. User actions are recorded as DOM [1] events, such as
form filling, clicking on elements, authentication, output data identification, and a web wrapper
is generated. This wrapper can run either in the toolkit environment, or separately packaged
with a wrapper execution environment. After the execution additional operations may be im-
plemented, such as data cleaning [20], especially when information is collected from multiple
sources. Finally, extracted data are saved in a structured form in a universal format, such as
XML [2], JSON [10], or into a database.

One of the first endeavors to classify Web Data Extraction toolkits [18] proposed a taxonomy
for grouping tools based on the main technique used by each tool to generate a wrapper. Tools
were divided into six categories: languages for wrapper development (e.g., TSIMMIS [15]),
HTML-aware tools (e.g., W4F [21]), NLP-based tools (e.g., RAPIER [8]), wrapper induction
tools (e.g., WIEN [17]), modeling-based Tools (e.g., NODoSE [5]) and ontology-based tools
(e.g., DIADEM [12]). Most wrappers combine two or three of underlying techniques for lo-
cating data in the documents to compensate for their deficiencies. We can distinguish regular
expression-based approaches (e.g., W4F), tree-based approaches (e.g., OXPath [13]), declar-
ative approaches (e.g., Elog [6]), spatial reasoning (e.g., SXPath [19]), and machine-learning
based approaches (e.g., RAPIER). In [11], the authors identify and provide a detailed analysis
of 14 enterprise applications of data extraction.

3. Serrano Language
This section examines and explains why Serrano was designed the way it was. For a complete
in-depth specification, the reader is referred to the official language specification1. The source
codes as well as playground projects can be found on Github2 and are written in Javascript.

Gottlob [14] presented four desiderata that would make an ideal extraction language:

1. Solid and well-understood theoretical foundation Serrano uses jQuery3 selectors, a su-

1https://github.com/salsita/Serrano/wiki/Language-Spec
2https://github.com/salsita/Serrano/tree/master/serrano-library
3https://jquery.com/

ISD2017 CYPRUS

perset of CSS selectors, for locating elements on the web page. These technologies have
been studied in depth along with their limitations and computational complexity. Serrano
wrapper is a valid JSON and every command corresponds to a Javascript command.

2. A good trade-off between complexity and the number of practical wrappers that can be
expressed One of Serrano’s cornerstones is extensibility. Currently, the language can only
locate elements by CSS selectors and simulate mouse events. Nevertheless, the command
set can be easily extended so that a larger range of wrappers can be expressed.

3. Gentle learning curve Many Serrano commands have the same name and arguments as
their Javascript counterparts.

4. Suitability for incorporation into visual tools Selector identification is a task already han-
dled by browsers in the Developer Tools extension. There is no obvious obstacle that
would prevent us from incorporating selected Serrano commands into a visual tool.

In order to make a language easy to integrate with Javascript, we leveraged JSON. In con-
trast to other data transmission formats, such as XML, JSON has been strongly integrated into
Javascript, which eliminates the need of additional helper libraries for processing. In Serrano,
both the wrapper and the result are valid JSON objects. This makes them convenient to trans-
form and manipulate: they can be passed around via AJAX, or altered via Javascript directly,
since they are represented by a built-in object type. Moreover, Javascript libraries such as Lo-
dash4 further extend object manipulation capabilities.

To deal with extensibility, Serrano has separated the command set and allows to create cus-
tom commands. Examples of such extension are commands for document editing which makes
Serrano, to the best of our knowledge, the first data extraction as well as data editing language
used in the browser. With a simple extension of a command set, we can allow Serrano to manip-
ulate the native Javascript window object, manage user credentials5 or change the page location.
This offers expressive power and control beyond the range of most extraction tools.

Wrapper maintainability is another design goal. Powerful commands, such as conditions
and type checks, make it possible to write verification inside the wrapper.

3.1. Type System

Serrano type system inherits from the Javascript type system. It supports all types that are
transferable via JSON natively; that is number, string, boolean, undefined, null and
object as well as some additional Javascript types, such as Date and Regexp.

3.2. Scraping Directive

The basic building block is called a scraping directive. It represents a piece of code that evaluates
to a single value. There are 3 types of scraping directives: command, selector and instruction.

Command

Commands are the core control structure of Serrano. As such, they appear similar to functions
in common programming languages; in that they have a name and arguments. However, their
use is much broader. Serrano has commands such as !if for conditions, logical commands
such as !and, !or, commands for manipulation with numbers and arrays of numbers, such as
!+, !-, !*, !/ etc. Elevating the strength of commands and making them the central control

4https://lodash.com/
5http://w3c.github.io/webappsec-credential-management/

NOVELLA ET AL. USER-FRIENDLY AND EXTENSIBLE WEB DATA EXTRACTION

structure is the cornerstone of flexibility and extensibility: all control structures are of the same
kind and adding/removing these structures is a part of an API. Although some languages, such
as Selenium IDE6, make it possible to write plugins and extensions of default command sets7,
we did not find any wrapping language that allows to add and remove any command control
structure arbitrarily.

Syntactically, a command is a JSON array, where the first element has a string type denoting
the command name followed by arguments (the rest of the array).

Below, we present an example of the !replace command with three string arguments.
[" ! r e p l a c e " , " h e l l o wor ld " , " h e l l o " , " goodbye "]

In this example, !replace is the command name, which has three arguments, namely
hello world, hello and goodbye. This command returns a new string based on an old
string (supplied as a first argument) with all matches of a pattern, be it a string or a regular ex-
pression (second argument) replaced by a replacement (third argument). Finally, the command
returns the string goodbye world.

Raw arguments

Command arguments, unless stated explicitly otherwise, have implicit evaluation. That means,
when an argument of a command is another scraping directive, it is first evaluated and only
then the return value supplied. However, this behavior is not always desired. Because of this,
the command specification determines which arguments should be raw (not processed). An
example of such a command is the !constant command, that takes one raw argument and
returns it. Had the argument not been specified as raw, the constant command would return a
string hello mars.
[" ! c o n s t a n t " , [" ! r e p l a c e " , " h e l l o wor ld " , " wor ld " , " mars "]]
⇒ [" ! r e p l a c e " , " h e l l o wor ld " , " wor ld " , " mars "]

Implicit foreach

By default, commands have a so-called implicit foreach. That means, when the first argument
of the command is an array, the interpreter engine automatically loops through the array, and
applies the command to each element, returning a list of results. It is also known as the map
behavior. Conversely, when a command does not have an implicit foreach, the first argument is
passed as-is, despite being an array.

An example illustrates two commands. Command !upper has the implicit foreach enabled.
Thus, it loops through the array of strings and returns a new array containing the strings in upper
case. The second command !at has the implicit foreach functionality disabled; therefore is
selects the third element in the array. (Had it been enabled for !at, the command would return
the third letter of each string, namely the following array ["e", "o", "r", "u"].)
/ / i m p l i c i t f o r e a c h e n a b l e d f o r ! upper
[" ! uppe r " , [" ! c o n s t a n t " , [" h e l l o " , " wor ld "]]] ⇒ ["HELLO" , "WORLD"]

/ / i m p l i c i t f o r e a c h d i s a b l e d f o r ! a t
[" ! a t " , [" ! c o n s t a n t " , [" one " , " two " , " t h r e e " , " f o u r "]] , 2] ⇒ " t h r e e "

Selector

A selector is used for extracting specific elements from the web page. It is denoted as a single-
item array, containing only one element (of type string) that is prefixed with one of the characters

6https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/
7http://www.seleniumhq.org/docs/08_user_extensions.jsp##chapter08-reference

ISD2017 CYPRUS

$, =, ∼ and followed by a string indicating the selector name. This selector name is treated as a
CSS selector (more precisely, a jQuery selector8).

From the low-level perspective, a selector is syntactic sugar for the !jQuery command
(which takes one or two arguments and evaluates them as a jQuery selector command9) and the
different kinds of selectors are syntactically “desugarized” as follows:

Dollar sign This is the basic type of selectors. ["$selector"] is treated as ["!jQuery",
"selector"] which internally invokes the $("selector") jQuery method.

Equal sign Selectors that start with this sign, i.e., ["=selector"] are treated as an instruc-
tion [["$selector"], [">!call", "text"]]. The important thing is, that
after selecting specific elements, the text value of the selector is returned, which internally
corresponds to invoking a jQuery text() method on the result.

Tilde sign This sign infers that type conversion of a selector result to a native Javascript ar-
ray is imposed. By definition, ["∼selector"] is treated as [["$selector"],
[">!arr"]].

Most wrapping languages (including Selenium IDE language and iMacros10) enable to tar-
get elements by CSS selectors. Those languages also support other forms of element addressing
such as XPath queries. SXPath language enables addressing elements by their visual position.
Serrano does not support those additional methods and in the first version we decided to im-
plement the support for CSS selectors, since they are more familiar to web stack developers
than other methods. Nevertheless, we consider adding further methods of element addressing a
valuable future prospect.

Instruction

An instruction is a sequence of commands (and selectors), that are stacked in an array one after
another. Similarly to the UNIX pipe (|), the output of the previous command can be supplied as
the first argument of the following. This functionality is enforced by the addition of an optional
greater than sign at the beginning of a command name or a selector. In that case, the supplied
argument is called the implicit argument. Otherwise, the result of the previous command is
discarded. The example below illustrates three examples of upper casing the hello string.
The first directive is an instruction that constructs a hello string and passes it to the !upper
command. The second directive is a direct command and the third one first constructs the
goodbye string, but because the !upper method is not prefixed with the greater than sign,
it is discarded and the command runs only with its explicitly stated hello argument. The
last directive throws an error, since the !upper command is expecting one argument and zero
arguments are supplied.
[[" ! c o n s t a n t " , " h e l l o "] , [" > ! uppe r "]]
[" ! uppe r " , " h e l l o "]
[[" ! c o n s t a n t " , " goodbye "] , [" ! uppe r " , " h e l l o "]] ⇒ "HELLO"
[[" ! c o n s t a n t " , " goodbye "] , [" ! uppe r "]] ⇒ E r r o r

3.3. Scraping Query and Scraping Result

Scraping directives are assembled into a higher logical unit that defines the overall structure of
data we want to extract. In other words, a scraping query is a finite-depth key-value dictionary

8https://api.jquery.com/category/selectors/
9http://api.jquery.com/jquery/

10http://imacros.net/

NOVELLA ET AL. USER-FRIENDLY AND EXTENSIBLE WEB DATA EXTRACTION

where for each key, the value is the scraping directive or another dictionary. The example below
showcases a scraping query.

{ t i t l e : [[" $h2 "] , [" > ! a t " , 2] , [" > ! lower "]] ,
t ime : {

s t a r t : [[" $. i n f o b a r [i t e m p r o p = ’ d a t e P u b l i s h e d ’] "] ,
[" > ! a t t r " , " c o n t e n t "] , [" > ! p a r s e T i m e S t a r t "]]

end : / / a n o t h e r s c r a p i n g d i r e c t i v e
}

}

Once the Serrano interpreter starts interpretation of a scraping query, it recursively loops
through all the keys in an object and replaces the scraping directive with respective evaluated
values. E.g., if the interpreter runs in context of a fictional movie database page, scraping query
above will evaluate to a scraping result that looks like this.

{ t i t l e : " The Hobbi t " ,
t ime : {

s t a r t : " 8 : 0 0pm"
end : " 1 0 : 4 1pm"

}
}

The structure provides two main advantages over wrappers in other languages: (1) The piv-
otal part of the Serrano wrapper are the data, and a quick glance at a scraping query reveals what
data are being extracted and what the instructions that acquire them are. Wrapping languages
such as internal Selenium IDE language or iMacros are instruction-centric, that is, the wrap-
per is described as a sequence of commands, where some commands happen to extract data.
Languages, such as Elog also do not reveal immediately the structure of the extracted data. (2)
A scraping query consists of scraping directives. If one directive throws an error, it can be re-
ported, and the processing continues with the following directive in the scraping query. In tools,
such as Selenium IDE, the data-to-be-extracted are not decoupled, so a failure at one point of
running the wrappers halts the procedure.

3.4. Scraping Unit

A scraping unit roughly corresponds to the notion of a web wrapper. It is a higher logical unit
that specifies when the scraping is to begin as well as what actions need to be executed prior to
data extraction. The reason is that often scraping cannot start immediately after the page loads.
When scraping from dynamic web pages, we might be awaiting certain AJAX content to load,
some elements to be clicked on etc. These waits are referred to as explicit waits.

Some languages, such as TSIMMIS, do not expect that some content is not ready immedi-
ately after the page has loaded. Other languages, such as iMacros, also consider the page ready
right after the load11 but also provide a command to wait for a given period of time12.

We have separated the waiting prescription into the scraping unit instead of mixing it with
the wrapper itself to make the wrapper more clear and separate the tasks. A certain disadvan-
tage of our approach might be the fact, that for more complex wait instructions (e.g., scraping
intertwined with waiting) we also have to mix them, which creates a disorderly wrapper.

Because the execution can be delayed or ceased (if the element we are waiting for will not
appear), interpretation of the scraping unit returns a Javascript Promise. A Promise is an object
that acts as a proxy for a result that is initially unknown, usually because the computation of its
value is yet incomplete.

11http://wiki.imacros.net/FAQ##Q:_Does_the_macro_script_wait_for_the_page_
to_fully_finish_loading.3F

12http://wiki.imacros.net/WAIT

ISD2017 CYPRUS

3.5. Page Rules

Sometimes we want to execute different wrappers and run actions on a single web page. Page
rules is an object, that associates scraping units and scraping actions with a web page. To
our best knowledge, no wrapping language has this functionality and users have to manage
the wrappers and actions manually. Thus Serrano also has the role of a “web data extraction
manager”, where it manages which wrapper should be executed on a given page.

The page rules object has two properties, scraping and actions, that serve for specification of
scraping units and actions, respectively. A valid rules object must have at least one of these prop-
erties non-empty. The scraping property contains either a single scraping unit, or a key-value
pair of scraping units and their names. Serrano then enables the user to execute the scraping unit
by the name. Similarly, an action can either be a scraping action (which is a special type of a
scraping directive) or a key-value pair of named actions.

3.6. Document Item and Global Document

Each page rules object needs to be associated with the respective URL or a set of URLs so that,
at the visit of a web page in the browser, Serrano is able to find the most suitable rules object.
The associating object is called a document item and it has the following four properties: the
domain, then either a regexp (a regular expression) that matches the URI, or a path which is the
URN, and finally the rules object. Multiple document items may match the given URL. In that
case, we select the match with the highest priority.

The priority is given to every document. The most important criterion is the “length” of a
domain. This is determined by the number of dots in the URL. E.g., scholar.google.com
has a higher level of specification than google.com and thus it has higher priority. The next
criterion for priority is determined by other fields. The regexp field has higher priority than
the path field. Both fields are optional and they cannot be used in a single document item
simultaneously. The lowest priority has a document item with the domain attribute set to *.
This domain item is also referred to as the default domain item and matches all URLs.

Finally, an array of document items forms a global document and it is the top-level structure
that encapsulates all the data in Serrano. With the Serrano API, we usually supply this global
document and the engine chooses the matching page rules.

3.7. Command Set

One of the leading ideas behind Serrano is to create an extensible language that extracts and
processes the extracted data. The aim is to completely eliminate the need for middleware pro-
cessing that is dependent on a given wrapper. Therefore, we consider extraction and subsequent
data processing as one responsibility and find valuable to couple these tasks together. As a con-
sequence, Serrano wrapper creators are capable of extracting and cleaning the data, all in one
script. To accomplish this, the resulting command set must be rich – the extracted data often
undergo complex transformations in order to be unified. These commands constitute the core
library of Serrano.

The rest of this section provides an overview of most important commands and illustrates
useful use cases. The full list can be found in the Language Specification13.

Conditions and Logical Predicates

Ability to change the control flow is one of the distinguishing features of Serrano. Using condi-
tions, Serrano can decide which information to scrape and how to transform it during runtime.

13https://github.com/salsita/Serrano/wiki/Language-Spec

NOVELLA ET AL. USER-FRIENDLY AND EXTENSIBLE WEB DATA EXTRACTION

Commands that contribute to this category are divided into:

• Branching commands. The main representative is the !if command with optional else
branch. The first argument is a predicate, which is a scraping directive that returns a
Boolean result.

• Existence tests Commands, such as !exists or !empty and their logical negations
!nexists, !nempty enable us to test if a given structure exists (is not undefined
or null) and whether the array contains any elements, respectively.

• Comparison tests serve for comparing two integers. Commands in this category are:
!lt, !gt, !le, !ge, !eq, !neq and are directly translated to <, >, <=, >=, ==, !==,
respectively.

• Compound conditions include !and and !or commands and their !all and !any
aliases. They help to group multiple single predicates into compound predicates.

• Result filtering is a means for reducing an array of results to only those items that pass
a filtering criterion. For this purpose we define the !filter command that takes an
argument in the form of an array and on each array item it evaluates the partial condition
that is the second argument to !filter command. By partial condition we mean that
the condition which is the argument of the !filter command should use argument
chaining, i.e. should be evaluated on each tested item of the filtered array.

Arithmetics

Arithmetics is especially useful when we need to add offsets to dates, or do other minor calcula-
tions. There are four commands !+, !-, !*, !/ that cover the basic operations with numbers.
The commands have two operands and work on both numbers and arrays of numbers. If both
operands are arrays of the same length, the operation is executed “per partes”. Otherwise, NaN
is returned.

Text Manipulation

Among the myriad of commands, we list the most important ones: !lower, !upper, !split,
!trim, !replace, !join, !concat, !splice, and !substr. The behavior is identical
to their Javascript counterparts; details are provided by the official specification.

DOM Manipulation

Serrano has been recently enriched with DOM manipulation capabilities on top of data ex-
traction. To manipulate the DOM we can use !insert, !remove and !replaceWith
commands, which are identical to their jQuery counterparts.

The !insert command takes three arguments: first one has to be a selector, followed by
the string "before" or "after" to denote where the insertion is to be done, and the final
argument is the text to be inserted.

[" ! i n s e r t " , ["$p : f i r s t "] , " b e f o r e " , "<h2> H e l l o John ! < / h2 >"]

The third variable may also be a template string enclosed by {{ and }}. Names of inter-
preted variables are either plain names, or refer to nested properties using standard Javascript
dot notation. The object with template values is supplied when the scraping is initiated.

[" ! i n s e r t " , ["$p : f i r s t "] , " b e f o r e " , "<h2> H e l l o {{ p e r s o n . name }} ! < / h2 >"]

ISD2017 CYPRUS

The !remove command takes one argument – the selector that is to be removed from the
DOM. Finally, !replaceWith is used for replacing selected elements with a new content. It
takes two arguments, the selector and the HTML definition of a new content.

4. User Stories
Serrano has proven its applicability in a number of real-world projects. Below, we pick three
and discuss how Serrano has benefited them.

4.1. Magneto Calendar

Magneto14 is a cloud-based calendar system that enables creation of meetings and to-dos from
any web page and adding them to Google or Microsoft Exchange calendar. It also extracts key
information for the corresponding events and stores it with the items. If the user visits a website
that contains information suitable for a calendar event and clicks on the Magneto button (see
Figure 1), a browser action window appears with extracted information of the event. To achieve
this goal, Magneto uses custom-page wrappers, along with the default wrapper.

There were two main reasons for rewriting the rules in Serrano: (1) As the project expanded,
the number of web sites and their respective wrappers became harder to maintain and manage.
(2) Updating the whole extension every time a single wrapper is updated is stultifying to the
user and bandwidth-consuming.

Separation and outsourcing the rules into Javascript would run into several problems, most
important of which is safety. Javascript is a general-purpose language and allowing to execute
arbitrary Javascript code in the extension would create a potential security hole. Furthermore,
downloading and executing remote Javascript violates the conditions of the most application
stores, for the same reason. Hence, the application could not be placed there. Usage of an-
other wrapping language would also be problematic. Wrappers that were already written in
Javascript involved processing of the scraped information, such as cleaning of the selected data
from HTML tags, date processing etc.

When rewriting wrappers into Serrano, we identified common functionality across the wrap-
pers and created new commands, including !convert12hTo24h which was used to convert
the time of an event into a 24-hour clock, since some web sites use a 12-hour format. Further
helper commands include !textLB (LB stands for line break) that appends a new line symbol
after specific tags, such as <div>, <p>,
, <hr>. Another command was !cleanupSel
for removing the tags and the superfluous white spaces from the selected text.

Next, we identified parts of the wrappers that required higher expressive power than Serrano
had. We created commands that encapsulate this functionality and they work as black boxes.
That is, the functionality that requires higher expressive power is encapsulated within the com-
mands without granting the language higher expressive power. These constructs include while
loops, exceptions etc.

Another challenge for Serrano was understanding of the date of an event on Facebook.
Facebook, for user convenience, describes dates in various formats depending on when it is
going to occur. Valid descriptions of a date include: May 24, next Thursday, tomorrow etc. Our
workaround involved creating a !parseFacebookDate command, which was a raw copy
and paste of the complex function featuring in the former Javascript wrapper. After some time,
Facebook coupled additional microdata [16] with the event, so this command was removed.

After the replacement15 of Javascript wrappers with Serrano scraping units, both maintain-
ability and maintenance were increased.

14https://magneto.me/welcome/about-us.html
15https://github.com/salsita/Serrano/tree/master/magneto/scraping-units

NOVELLA ET AL. USER-FRIENDLY AND EXTENSIBLE WEB DATA EXTRACTION

Figure 1. Magneto interface, when user clicked
on the Magneto browser action button

Figure 2. Excerpt of the search results for “Ef-
fective Java" augmented by MyPoints ex-
tension

4.2. MyPoints

MyPoints16 is a shopping rewards program that runs affiliate programs with 1900+ stores. It
motivates people to make a purchase at associated stores to earn points, which can be then
transformed into discount coupons and subsequently redeemed. Serrano was used in beta ver-
sion of the extension. On websites with search results of a search engine, MyPoints extension
injects a text informing the potential shopper about the amount of points they can earn, as shown
in Figure 2. Moreover, when the user proceeds to a checkout in the store, it automatically fills
in the input field with an available coupon. To serve this purpose, the commands for DOM
manipulation17 were added.

4.3. Video Downloader

In this case, an extension was built into a modified version of Opera browser.18 The purpose of
Video Downloader (VD) is to facilitate download of a currently played video and to enable one
to eventually watch it offline. To accomplish this, VD identifies videos on the websites – either
by recognizing the domain, or the player if the video is embedded – and attaches a small button
that is displayed when user hovers over the video. VD applies Serrano rules for both player
element and player content identification. Specifically, an instruction for player identification
returns a player element, which is then supplied to the second Serrano instruction for download
address identification.

During the implementation of the extraction rules we encountered two challenges. The first
was that the video player element only needed to be extracted when it had a class attribute with
off-screen value. This was achieved by extending the command set with !if. The second
challenge was caused by the fact that some players use different forms of video embeddings.
For example, Youtube uses both <object> and <embed> tags for embedding a video in an
external source. However, Serrano was able to deal with this by conflating these elements in one
selector.

5. Discussion
In this part we explain the motivation behind choosing Serrano in the above-mentioned projects.
In all the projects we were limited to extraction within a browser extension which had to be
safe and able to extract the required data. Along with Serrano we considered two alternatives:
pure Javascript and in-browser wrappers such as iMacros/Selenium. These tools were primarily
designed for writing UI tests, hence we refer to them as testing tools.

16http://mypoints.com/
17https://github.com/salsita/Serrano/wiki/Language-Spec##dom-manipulation
18The browser vendor wishes to remain undisclosed.

ISD2017 CYPRUS

Technology Safety Learning Curve Extensibility
Serrano Volatile Gentle Good
Javascript Low None Not Needed
Testing Tools Fixed Steep None

Table 1. Key attributes of the technology

Technology Easy tasks Medium tasks Complex tasks
Serrano Easy Medium Very Hard
Javascript Medium Medium Hard
Testing Tools Easy Medium/Hard Impossible

Table 2. Suitability of the technology for a given project scope

In Table 1 we compare the technologies in terms safety, learning curve and extensibility.
Regarding safety, executing arbitrary Javascript code poses a serious security risk. Testing tools
are safe depending on the capabilities of their default command set. In terms of a learning curve
for web developers, Javascript is the best option followed by Serrano, which uses CSS selectors
and has very similar functions to Javascript. Testing tools have a very specific API suited for
the scope they were designed for. Extensibility-wise, Javascript is a Turing-complete language
with no need for extension of capabilities. Serrano has an expressive power determined by the
command set. The basic set only supports CSS selectors but it can be theoretically extended
to support everything Javascript does (by e.g. addition of an !eval command which would
evaluate pure Javascript). Wrapping languages of testing tools are not extensible to the best of
our knowledge.

In Table 2, we discuss the feasibility of the technology with regard to the scope of the task.
For easy tasks with minimum scraping logic, both Serrano and testing tools score well, thanks
to a built-in library of functions that make scraping easy, as opposed to native Javascript which
requires a lot of code and libraries. In medium complexity tasks, Javascript is closing in due to
its expressiveness. And very complex tasks are impossible to manage with testing tools since
their command sets are impossible to extend. Writing very complex wrappers is admittedly
more difficult in Serrano than in Javascript, but it is not impossible, since the command set can
be extended to arbitrary expressive power.

6. Conclusion
The aim of our research was to create a web data extraction tool that could work in a restricted
environment. We implemented a novel language, Serrano, which championed extensibility of
the command set and separation of concerns. That helped to eliminate the need for any ac-
companying software further transformating and processing of the extracted data. Extensibility
also works the other way – the command set can be reasonably restricted so that the wrappers
will only be able to extract and process data to the extent they are allowed to. Deployment in
real-world projects has proven the durability of the language as well as significance of the goals.
Each project we faced contributed to broadening of the command set confirming its extensibility.

Despite the advantages, there still remain a few steps that can be taken to further improve
the language. E.g., creation of a toolkit with a GUI, outsourcing wrapper creation and then
dynamically downloading and updating them, or building a database of command sets so that
the users of Serrano could find appropriate commands to personalize the language functionality.

NOVELLA ET AL. USER-FRIENDLY AND EXTENSIBLE WEB DATA EXTRACTION

Acknowledgements
This work was supported by project SVV 260451.

Bibliography
1. Document Object Model (DOM). W3C, 2005. http://www.w3.org/TR/REC-DOM-

Level-1/cover.html.
2. Extensible Markup Language (XML) 1.0 (Fourth Edition), 2006.

http://www.w3.org/XML/.
3. A vocabulary and associated APIs for HTML and XHTML, 2016.

https://www.w3.org/TR/html5/.
4. AJAX. Mozilla Developer Network, 2017. https://developer.mozilla.org/en/ajax.
5. B. Adelberg. NoDoSE – a tool for semi-automatically extracting structured and

semistructured data from text documents. ACM Sigmod Record, 27(2):283–294, 1998.
6. R. Baumgartner, S. Flesca, and G. Gottlob. The Elog web extraction language. In LPAR,

pages 548–560. Springer, 2001.
7. R. Baumgartner, W. Gatterbauer, and G. Gottlob. Web data extraction system. In Ency-

clopedia of Database Systems, pages 3465–3471. Springer, 2009.
8. M. E. Califf and R. J. Mooney. Bottom-up relational learning of pattern matching rules

for information extraction. JMLR, 4:177–210, 2003.
9. G. Cormode and B. Krishnamurthy. Key differences between Web 1.0 and Web 2.0.

First Monday, 13(6), 2008.
10. D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON).

JSON.org, 2006.
11. E. Ferrara, P. De Meo, G. Fiumara, and R. Baumgartner. Web data extraction, applica-

tions and techniques: A survey. Knowledge-based systems, 70:301–323, 2014.
12. T. Furche, G. Gottlob, G. Grasso, O. Gunes, X. Guo, A. Kravchenko, G. Orsi, C. Schall-

hart, A. Sellers, and C. Wang. DIADEM: domain-centric, intelligent, automated data
extraction methodology. In WWW ’12, pages 267–270. ACM, 2012.

13. T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and A. Sellers. OXPath: A language for
scalable data extraction, automation, and crawling on the deep web. The VLDB Journal,
22(1):47–72, 2013.

14. G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages for
web information extraction. JACM, 51(1):74–113, 2004.

15. J. Hammer, J. McHugh, and H. Garcia-Molina. Semistructured Data: The TSIMMIS
Experience. In ADBIS ’97, pages 22–22, 1997.

16. I. Hickson. HTML microdata, 2011. http://www.w3.org/TR/microdata/.
17. N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intelli-

gence, 118(1):15–68, 2000.
18. A. H. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief survey of

web data extraction tools. ACM Sigmod Record, 31(2):84–93, 2002.
19. E. Oro, M. Ruffolo, and S. Staab. SXPath: extending XPath towards spatial querying

on web documents. Proceedings of the VLDB Endowment, 4(2):129–140, 2010.
20. E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE Data

Eng. Bull., 23(4):3–13, 2000.
21. A. Sahuguet and F. Azavant. Building intelligent web applications using lightweight

wrappers. Data & Knowledge Engineering, 36(3):283–316, 2001.

