
26TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2017 CYPRUS)

SWYSWYK: a Privacy-by-Design Paradigm for Personal
Information Management Systems

Paul Tran-Van Paul@cozycloud.cc
Cozy Cloud
Puteaux, France

Nicolas Anciaux Nicolas.Anciaux@inria.fr
Inria & University of Versailles
Palaiseau, France

Philippe Pucheral Philippe.Pucheral@uvsq.fr
University of Versailles & Inria
Palaiseau, France

Abstract
Pushed by recent legislation and smart disclosure initiatives, Personal Information
Management Systems (PIMS) emerge and hold the promise of giving the control back to the
individual on her data. However, this shift leaves the privacy and security issues in user's
hands, a role that few people can properly endorse. Indeed, existing sharing models are
difficult to administrate and securing their implementation in user's computing environment is
an unresolved challenge. This paper advocates the definition of a Privacy-by-Design sharing
paradigm, called SWYSWYK (Share What You See with Who You Know), dedicated to the
PIMS context. This paradigm allows each user to physically visualize the net effects of
sharing rules on her PIMS and automatically provides tangible guarantees about the
enforcement of the defined sharing policies. Finally, we demonstrate the practicality of the
approach through a performance evaluation conducted on a real PIMS platform.

Keywords: Personal Information Management Systems (PIMS), Privacy-by-Design, Access
control, data security

1. Introduction
We are witnessing an exponential accumulation of personal data on central servers, gathered
by administrations and companies, or created by individuals and replicated in the cloud for
convenience. Centralization exacerbates the risk of privacy leakage due to piracy1,
scrutinization and opaque business practices. Today, a rebalancing of personal data
management is occurring worldwide. Smart disclosure initiatives are pushed by legislators
(e.g., EU General Data Protection Regulation (GDPR) [18]) and industry-led consortiums
(e.g., blue button for medical records and green button for electricity in the US, Midata in the
UK, MesInfos in France). Smart disclosure enables individuals to get back their personal data
from companies or administrations that collected them. Concurrently, the Personal
Information Management System (PIMS) paradigm has been conceptualized [1], [4], and
emerges in the commercial sphere (e.g., Cozy Cloud, ownCloud, SeaFile). PIMS holds the
promise of a Privacy-by-Design storage and computing platform where each individual can
gather her complete digital environment in one place and share it with applications and users
under her control.

1 Yahoo recent hack attack is emblematic from this phenomenon, as mentioned in "Yahoo state hackers stole data
from 500 million users" - BBC News. www.bbc.co.uk/news/world-us-canada-37447016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301373106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TRAN-VAN ET AL. SWYSWYK: A PRIVACY-BY-DESIGN PARADIGM FOR ...

But this gravity shift of data management from organizations to individuals raises new
fundamental issues. Empowering citizens to leverage their personal data leaves the privacy
and security issues in user's hands, a paradox if we consider the weaknesses of individuals’
defenses in terms of computer security and ability to administer sharing policies. Existing
sharing models (e.g., DAC, RBAC, MAC [7]) are geared towards central authorities and their
secure enforcement requires a deep expertise, out of reach of individuals. Conversely,
decentralized tools (e.g., PGP, Web of Trust models [24] or Friend of a Friend (FOAF)
dissemination rules [8]) put on individuals the burden of defining manually each basic sharing
rule and leave them on their own to manage error-prone cryptographic protection against
piracy. Hence, without appropriate answers, the risk is high to see individuals delegate the
administration of their PIMS to centralized service providers. The circle would come back
around, with service providers now in possession of the complete individual's digital history.

The objective of this paper is precisely to address this issue. We do not suggest yet
another access control model. Rather, we propose a generic paradigm contributing to the call
for Privacy-by-Design principle when designing any PIMS platform. More precisely, this
paper makes the following contributions:

− It proposes a new paradigm called SWYSWYK (Share What You See with Who You
Know) helping the PIMS owner to visually check and sanitize the net effect of a sharing
policy over her data, whatever the access control model used to generate this policy.

− It defines a reference architecture supporting the SWYSWYK paradigm which
provides to the PIMS owner tangible guarantees about the enforcement of this policy.

− It conducts a thorough performance evaluation over an instance of this reference
architecture, combining an existing PIMS platform with a tamper resistant hardware
device to demonstrate the practicality of the approach.

The rest of the paper is organized as follows. Section 2 presents related works and derives
from them a precise problem statement. Sections 3, 4 and 5 are respectively devoted to the
three aforementioned contributions. Finally, Section 6 concludes.

2. Related work and problem formulation

2.1. Access Control and sharing models

To avoid any confusion between users, let us call owner, the owner of a PIMS and subjects,
the users the PIMS owner wants to interact and exchange data with. Access control models
like DAC, RBAC, MAC, ABAC or TBAC [7] are widely supported in the centralized
database context. They unfortunately share the following characteristics: (1) the access
control administration is a complex and critical task usually handled by security experts; (2)
the applicative logic, the users and their roles are identified at an early stage of the
information system design, so that the access control policy is part of the database schema
definition. This makes these models badly adapted to a personal usage in the PIMS context,
except if the PIMS comes with predefined policies that the PIMS owner simply accepts or
denies. In the latter case, this contradicts user's empowerment, a foundational principle of
Cavoukian's Privacy-by-Design principles [9] and of the new GDPR regulation [18].

Conversely, flexible sharing models have been designed to cope with the decentralized
nature of the Web. In this respect, they seem better adapted to the PIMS context. For instance,
Web of Trust-like models allow subjects to authenticate thanks to their public key and are
identified through public profiles [21], to which access rights are associated and defined by
the owner. However, it requires the owner to manually assign the authorizations, for each
subject and for each object, which can quickly become tedious and error-prone. To ease data
sharing administration, [16] implements a distributed tag-based file-system where an owner
can grant access to her tagged files using a logic-based access control. [12] defines an SQL-
based language to let applications create queryable views on the shared data and transmit
capabilities to granted subjects. In [8], subjects are granted access depending on their FOAF

ISD2017 CYPRUS

relationship properties, such as type, graph depth and a computed trust value. Despite all these
efforts, the cognitive load on the owner is such that it often leads to consider data sharing as
an intractable burden, letting desperate owners define far too permissive policies [15].

2.2. Data security and data sharing enforcement

A corollary of data sharing definition is the enforcement of the corresponding policies (i.e.,
data to be exchanged) as well as the protection of the PIMS itself (i.e., data at rest) against
confidentiality attacks. The way PIMS can be secured depends on the data hosting model.
Traditional solutions (e.g., Google Drive, Microsoft OneDrive, Apple iCloud) delegate all the
control to cloud providers, thereby definitely hurting user's empowerment. [2], [20], [22]
focus on data encryption in untrusted clouds, while [6] presents a decentralized alternative to
social networks using Attribute-Based Encryption (ABE). [13], [23] use obfuscation schemes,
where data is substituted for the former and scrambled for the latter. Sharing policies are
implemented here by means of encryption but, this requires the owner to manually define who
can access which data on a case-by-case basis. Finally, self-hosting solutions (e.g., ownCloud,
Lima, CloudLocker ...) let owners install their own PIMS at home, under their control. In all
approaches, either the owner must give up the control over her data or she inherits the task of
administering and protecting herself her PIMS, a task that she cannot properly assume.

2.3. Problem formulation

Hence, data sharing and data security can be tackled in many ways, but none of the previously
work won the battle for adoption. The difficulty comes from two contradictory facts. On one
hand, the owner is de facto the PIMS administrator while it is illusory to expect her gaining
expertise to secure her PIMS against all forms of attacks or to use tricky protocols to
exchange cryptographic secrets with partners. On the other hand, delegating these tasks to a
PIMS provider is in frontal opposition with the foundational user's empowerment principle.
We can derive from this statement two major properties to be met in the quest of a real
Privacy-by-Design PIMS:

− Enlighten empowerment: the effects of all owner’s decisions must be perceivable and
understandable by herself. In other words, whatever the sharing model used to express
a sharing policy, the owner may be in capacity to visualize the net effects of these rules
on her PIMS and to easily sanitize them if required.

− Tangible enforcement: the logic of the reference monitor enforcing the sharing policy
must itself be understandable by the owner and the platform implementing this logic
must be trusted by her. Making the reference monitor logic understandable leads to an
extreme simplicity, with the side effect to enable running it on a tamper-resistant
personal device kept in user's hand, thereby reinforcing the trust in the platform.

3. SWYSWYK paradigm

3.1. SWYSWYK baseline

As said above, our objective is not to introduce yet another access control model. Rather, we
do the assumption that the access control policy is defined by the genuine access control
model provided by the PIMS platform. Hence, it could be based on any of the model
mentioned in Section 2.1, with the few restrictions mentioned below.

First, we do the assumption that the sharing granularity is the document and that every
shareable document is made viewable by the PIMS owner. In other words, this means that
there exist a Viewer application trusted by the owner which delivers an interpretable view of
each type of document to be shared (e.g., potentially transforms a binary format into a text, an
image, or a graphic). Whether the result of a complex treatment over a set of documents needs
to be shared (e.g., an unintelligible computation over a set of smart meter measurements), this

TRAN-VAN ET AL. SWYSWYK: A PRIVACY-BY-DESIGN PARADIGM FOR ...

treatment must output a viewable shared document (e.g., a curve of consumption). Second,
each subject the owner wants to interact with should correspond to a PIMS viewable
document as well (e.g., a contact record, a resume, a picture). Third, the access control policy
is materialized by a set of Access Control List (ACL, also called permissions hereafter) of the
form < s, d, a >, where s and d respectively refer to a subject and a document stored in the
PIMS, and a is an action granted to s on d. The PIMS owner may have the ability to check
these ACLs and freely filter out whose which presumably hurt her privacy. The owner is not
expected to check all ACLs but simply to validate some suspicious ones detected as such by
administration tools detailed next.

Materializing all ACLs, making them viewable by the owner and letting her filter out
compromising ones give substance to the Share What You See with Who You Know
(SWYSWYK) principle. This is in frontal opposition with traditional approaches where
sharing policies are defined by a set of - potentially complex - rules, evaluated on the fly by
the reference monitor to grant or deny accesses to documents. Indeed, we do not believe that a
lambda individual can figure out the result of a powerful solver taking as input a set of
potentially conflicting positive/negative sharing rules. Traditional approaches may actually
contribute to the opacity of the PIMS access control management, hurt user's empowerment
and lead to an opposite effect of that expected, that is defining too permissive policies or
delegating the control to a third party. Conversely, the trust assumption made in SWYSWYK
can be summarized by the following motto: do not blindly trust sharing rules but trust your
reference monitor to let you examine and adjust the produced permissions and enforce data
dissemination accordingly. Hence, in contrast to rule-based reference monitors, the logic of a
SWYSWYK reference monitor can be trivially understood by anyone, that is to say operation
a on d is granted to s iff (s,d,a)∈ ACL. This logic contributes itself to the enlighten
empowerment property. Note that adding such user's validation and sanitization process does
not compromise the soundness of the genuine PIMS sharing model. Indeed, the model
remains consistent by construction (the decision is unique), complete (the decision always
exists) and can finally be evaluated in logarithmic time over the sanitized materialized set of
ACLs.

The tricky point of the SWYSWYK paradigm lies in the detection and validation of
suspicious ACLs. The global ACL validation process works as follows. First, the genuine
sharing policy is translated into a materialized set of candidate ACL named ACL*. Second,
suspicious ACLs are detected and put in quarantine, in a set named ACL?, waiting for the
decision of the PIMS owner. Non suspicious ACLs are directly integrated in the set ACL+, the
unique set to be considered by the reference monitor to grant or deny accesses to documents.
Third, the PIMS owner sanitizes the set of suspicious ACLs on a case-by-case basis. She
visualizes the net effect of suspicious ACLs in ACL? and decides either to store them in ACL+
if she considers them innocuous or in ACL− otherwise. The objective of materializing ACL− is
nothing but avoiding storing in ACL? ACLs for which a negative decision has already been
made in the past, hence avoiding unnecessary PIMS owner intervention.

We propose two mechanisms to automatically detect suspicious ACLs and feed ACL?

from the content of ACL*. The first mechanism is based on an Advisor process identifying
elements of ACL* which are contradictory to past decisions (i.e., similar to ACLs previously
classified in ACL−). This mechanism is based on the assumption that owners exhibit a rather
stable data disclosure behavior over time, as already demonstrated with the usage of emails
[19]. The second mechanism is user-defined triggers highlighting ACLs for which special
care should be taken, because of the sensitiveness attached to the documents and/or to the
subjects involved in these ACLs. These two complementary mechanisms are detailed below.

3.2. Suspicion based on past decisions

Given any candidate ACL (s,d,a) ∈ ACL*, the goal is to suggest a decision (i.e., accept or
suspect) to the owner. We denote by r(s,d,a) this decision. The decision being unique by
construction, (s,d,a) is discarded if it already exists in ACL+ or ACL−. Otherwise, the Advisor

ISD2017 CYPRUS

process computes a distance between the candidate ACL (s,d,a) and the ACLs resolved in the
past (i.e., elements of ACL+ or ACL−) and make a decision similar to the closest resolved ACL
if the corresponding distance is below a given threshold.

The way distances are computed is an interesting open issue, which can integrate a
comparison between attributes of documents and subjects as well as a comparison of histories
of past decisions. Finding the best metric to compute this distance is let for future work. We
simply validate the idea thanks to a basic metric, the benefit of which being to be computable
in any resource constrained secure execution environment (e.g., secure chips).

Let S be the set of all subjects identified in the owner's PIMS and S'⊆ S be the set of all
subjects s' different from s with a resolved decision concerning d and a, that is S'={s'∈S, s'≠s,
∃(s',d,a) ∈ ACL+ ∪ ACL−}. Let hs (resp. hs') denote the history of all resolved decisions
regarding s (resp. s'), that is hs={(s,d,a,r(s,d,a)), ∃(s,d,a) ∈ ACL+ ∪ ACL−}. The Resolve(s,d,a)
algorithm presented below returns a value for r(s,d,a) based on the computation of a distance
Dist(hs', hs) between hs and all hs' and a confidence level for that value which helps the owner
making her final decision. This algorithm is based on the assumption that, if s and s' share
strong similarities in their sharing history with the owner, a past decision taken on (d,a) for s'
is likely to apply for s as well. Hence, if Resolve suggests 'Accept', there is no reasonable
reason to doubt the genuine sharing decision and the related ACL is stored in ACL+.
Otherwise, it falls in quarantine in ACL?. A symmetric algorithm could be based on the
assumption that, if d and d' share strong similarities in their sharing history by the owner, a
past decision taken on (s,a) for d' is likely to apply for d. The adaptation of the algorithm
below to this new assumption is direct.

Algorithm 1. Resolve
Input: t = <s,d,a> ∈ ACL*
Output: (r, p) with r a binary decision (Accept or Suspect)

 and p ∈ [0,1] the confidence in that decision.
1. if t ∈ ACL+ return ('Accept', 1);
2. if t ∈ ACL− return ('Suspect', 1);
3. /* build hs the history of decisions for subject s*/

hs = { (acl, 'Accept'), acl.s=t.s, acl ∈ ACL+ }
 ∪ { (acl, 'Except'), acl.s=t.s, acl ∈ ACL− };

4. /* build H, the set of histories of other subjects than s with
decision a for document d */

5. H={hs', s'≠s, ∃ acl∈ hs', acl.d = t.d, acl.a = t.a };
6. hclose ← the history with smallest Dist(hs, hs'), ∀ hs'∈H ;
7. r ← the decision for (d,a) in hclose;
8. p ← 1- Dist(h, hclose) ;
9. return (r, p);

The algorithm accuracy improves over time and helps the owner with no required action from
her. However, it is not efficient at the system initialization. Furthermore, the owner might
want a more declarative and tunable tool. This is detailed in the next section.

3.3. Suspicion based on sensitiveness

An ACL can be considered suspicious either because it involves a sensitive subject (e.g., my
manager), a sensitive document (e.g., a compromising picture or a part of my medical folder)
or because the association between a particular subject and document may itself be
compromising (e.g., I'm not ready to share all my holiday pictures with my colleagues, even if
I trust them and if most of these pictures are not sensitive). The sensitiveness of subjects,
documents and associations is left to the PIMS owner appreciation. We provide watchdog
triggers, which can be specified by the owner, to easily identify ACLs targeting sensitive
subjects, sensitive objects or sensitive associations between them. To this end, we make the

TRAN-VAN ET AL. SWYSWYK: A PRIVACY-BY-DESIGN PARADIGM FOR ...

usual assumption that PIMS documents are linked to metadata (e.g., doctype, date, author,
owner-defined tags, etc) and that metadata can be queried by a predicate-based language. Let
QE(S) denote the queries expressed over - metadata linked to - documents describing subjects
and QE(D) denote queries over - metadata linked to - shared documents, with E the predicate
expression of the query. We propose three types of predefined watchdog triggers:

− What'sNewforS(E,A) → {(s,{(d,a)}) / (s,d,a)∈ACL* ∧ s∈QE(S) ∧ a=A}: identifies, for
each selected (sensitive) subject, the new set of action a they are granted to perform on
which documents d (e.g., "which new documents can be seen by my manager?").

− Who'sNewforD(E,A) → {(d,{(s,a)}) / (s,d,a)∈ACL? ∧ d∈QE(D) ∧ a=A}: identifies, for
each selected (sensitive) document d, the new set of subjects s that are granted to
perform action a on them (e.g., "which new subjects have a read access to my medical
records?").

− WhichNewSD(E,E',A) → {(s,d,a) / (s,d,a)∈ACL* ∧ s∈QE(S) ∧ d∈QE'(D) ∧ a=A}:
identifies new ACLs combining a selection of (sensitive) subjects and documents (e.g.,
"which new authorizations my colleagues have on my family photos?").

4. SWYSWYK reference architecture
This section introduces a reference architecture implementing the SWYSWYK paradigm
while providing the tangible enforcement property, thereby making the contribution complete.
The objective of this architecture is to protect the owner's data by construction, without
requiring any action from the owner, apart from the validation of suspicious ACLs. Back to
Cavoukian's Privacy-by-Design principles [9], this means contributing to the Privacy-by-
Default and End-to-End security principles. This architecture, presented in Figure 1,
distinguishes three main parts with different assumptions in terms of trustworthiness: (i) an
untrusted environment (UE) on which no security assumption is made for the code nor for the
data, (ii) an isolated environment (IE) on which general purpose code can be run with the
guarantee that it cannot leak any information but with no guarantee about the soundness and
honesty of its output (i.e., code can be corrupted) and (iii) a Secure Execution Environment
(SEE) which runs only certified core programs and protects data and code against snooping
and tampering. We postpone to Section 5 concrete illustrations of UE, IE and SEE
environments, considering here these security assumptions as given. That said, the
components of the architecture are as follows.

PIMS data system. Our objective is to adapt to any existing PIMS platform. Thus, no
assumption can be made on the intrinsic security of such platform. It is then part of the
untrusted environment UE. All documents of the PIMS need then be stored encrypted in this
area to protect them against confidentiality attacks.

Fig. 1. SWYSWYK Reference Architecture

Viewers

Allowed (s,d,a)

Secure Execution Env. (SEE)

Isolated Env. (IE)

PIMS owner

User

PIMS
database

ACL+

Admin GUI

Policy
Translator

ACL−

ACL?

PIMS
data system

Untrusted Environment (UE)

ACL*

Doc metadata

Keys

Advisor

Triggers

Admin console

ISD2017 CYPRUS

Reference monitor. The reference monitor is part of the secure core of the architecture. It
must be embedded into the SEE to guarantee that it cannot be bypassed, observed nor
corrupted by any external application. Roughly speaking, the reference monitor evaluates
Allowed(s,d,a) requests and delivers true iff (< s, d, a > ∈ ACL+) and false otherwise. It acts
as an incorruptible doorkeeper for the whole PIMS data system. Whenever Allowed(s,d,a) is
evaluated to true, document d is decrypted in the SEE before being delivered to subject s.
Given the simplicity of the allowed function, it can be hosted in many kinds of (tamper-
resistant) SEE kept in user's hand (e.g., SIM cards in users' smartphones, or secure personal
tokens [5]).

Policy translator. The policy translator is in charge of running the rules of the genuine
sharing policy over the PIMS documents and of materializing candidate ACLs in ACL*. The
policy translator must run in the isolated environment IE. Indeed, it cannot be part of the UE
because some sharing rules may depend on the documents content and then require to decrypt
these documents. It cannot be part of SEE either without hurting the genericity requirement.
Indeed, the complexity of the policy translator is linked to the expressive power of the
genuine sharing model and running complex code in a SEE can be highly challenging. Note
that running the policy translator in IE does not compromise security since no data can leak
from IE by construction. This property is guaranteed by running each code in IE in an isolated
container2 with restricted permissions. Typically, the policy translator runs inside a container
with read access to the PIMS documents, write access to ACL* in SEE and no additional
privilege (typically, no network access). Hence, the policy translator cannot leak anything and
cannot be observed by concurrent processes (by definition of an isolated container).

 Administration console. The administration console is used to help the PIMS owner to
perform the ACL validation task. As detailed in Section 3, this console runs the Advisor
process and watchdog triggers over ACL* and puts suspicious ACLs in quarantine in ACL?.
The administration console must be trusted, but cannot be entirely executed inside the SEE.
Indeed, it involves interactions with the owner through a GUI and requires displaying the
content of documents and subjects. Thus, the Administration GUI and document and subject
viewers must run in isolated containers in IE to prevent any information leakage.

Internal data structures. The ACL*, ACL?, ACL+ and ACL− sets and the document
metadata must all be stored inside SEE for obvious security reasons. Storing them in UE
would incur prohibitive decryption and integrity checking costs during the evaluation of
Allowed, Advisor and watchdog triggers. However, the counterpart of the reference monitor
simplicity is the potential cost of evaluating Allowed(s,d,a) in the case of extremely large
ACL+. This situation may happen whenever a rule of the genuine sharing policy associates a
large set of subjects with a large set of documents. If storing millions of ACLs and indexing
them on both s and d is not a challenge in a standard setting, it may become intractable in
more constrained secure hardware environments (e.g., smartcards, TPM, quantified-self
devices, smart watches). Such combinatorial explosion can be easily avoided thanks to a
compact representation. Each ACL set actually materializes a bipartite graph G = (S, D, A)
where the sets of vertices S and D respectively represent the set of subjects and documents
and the edges A represent the authorizations linking them. Each sharing rule R defines a
complete bipartite subgraph GR of G. As such, each GR can be stored in a compressed form as
a set SR⊆S of subject vertices and a set DR⊆D of document vertices, AR being implicit.

5. SWYSWYK validation
We validate the proposed solution on a concrete instance of the reference architecture
introduced in Section 4, generic enough to draw conclusions for other potential targeted
instances. We show its efficiency both qualitatively and quantitatively on real and synthetic
datasets.

2 In practice, isolated containers can be implemented using a dedicated hardware platform, an hypervisor, or a
microkernel.

TRAN-VAN ET AL. SWYSWYK: A PRIVACY-BY-DESIGN PARADIGM FOR ...

5.1. Experimental Platform

The experimental platform used to validate our proposal is based on a combination of the
Cozy system3 and PlugDB4. Cozy is a representative open-source PIMS suite, gathering
personal data from multiple sources and organizing it in a document style database (using
CouchDB5). Our solution is actually independent of the PIMS platform and other PIMS could
have been used as well (e.g., ownCloud, Sandstorm, Databox [17], etc). PlugDB is a secure
and open hardware/software platform. It combines a smartcard to store cryptographic secrets,
a microcontroller (MCU) running a relational database engine queried in SQL which can
efficiently manage a large database, and a microSD flash card storing the database with
crypto-protection against snooping and tampering. We used a simple genuine sharing model,
able to share a selection of documents with a selection of subjects (e.g., “share the Holidays
photo album with my family group”), where rules are produced by Cozy apps and evaluated
in the policy translator.

This experimental platform, presented in Figure 2, is an instance of the reference
architecture: (i) Cozy runs on a personal computer linked to the network (Internet access) and
5.2.represents the untrusted environment (UE); (ii) the policy translator, the administration
GUI and the viewers are installed on a Raspberry Pi without any network connection which
represents the isolated environment (IE); and (iii) the reference monitor, the Advisor and the
watchdog triggers are installed within PlugDB, which represents the SEE and communicates
with both the personal computer (in WiFi IEEE 802.11n) and the Raspberry Pi (in High Speed
USB 2.0). Validating the approach in such highly constrained environment is a proof of its
simplicity and of the possibility to formally prove its code. It also demonstrates the ability to
embed a SWYSWYK engine in any kind of constrained SEE, including IoT objects.

Fig. 2. Experiment platform: soft (left) & hard (right).

In this platform, the isolation property is "physically" guaranteed by the Raspberry Pi,
such that its enforcement cannot be questioned. Others target architectures can be envisioned.
For example, a certified hypervisor running on top of Intel SGX on the personal computer
itself can provide a logical implementation of IE (Figure 3, left part). Smart devices equipped
with a SIM card, a flash memory card and an ARM Trustzone processor - as many
smartphones and tablets today - are other options (Figure 3, right part). The major difference
between these alternatives is on the way UE, IE and SEE communicate. In this section, we
measure and isolate the communication cost to allow drawing general conclusions.

3 https://cozy.io/en/
4 https://project.inria.fr/plugdb/en/
5 http://couchdb.apache.org/

Policy
Translator

Admin GUI
Viewers

Cozy
system

Allowed

Admin console
Advisor,

Watchdog triggers

Secrets
 Keys

…

Raspberry Pi

PlugDB

Personal device

PIMS
database

CouchDB

ACLs,
meta-
data

Is
ol

at
ed

E

nv
ir

on
m

en
t

U
nt

ru
st

ed

E
nv

ir
on

m
en

t
Se

cu
re

 E
xe

c.

E
nv

ir
on

m
en

t

 µSD card
 (database)

Wifi

Fingerprint

Secure chip
 (secrets)

MCU

USB

(MiloDB, SSF)

ISD2017 CYPRUS

In our experimentations, the personal device implementing UE has a 3GHz Intel Xeon
E5-1660 CPU, 8 GB of RAM and a 500 GB 10.000 RPM hard drive. The SEE uses a
STM32F417GH6 MCU, which embeds a 168 MHz ARM Cortex M4 CPU, 192 KB of RAM
and 1 MB of NOR storage. The IE is a Raspberry Pi 3 with a 1.2GHz ARMv8 CPU and 1 GB
of RAM. We use an external UHS-I microSD card of 16 GB for both SEE and IE.

Fig. 3. Other examples of targeted architectures.

5.3. Environmental Costs

We first measure the environmental cost when inserting a new document in the PIMS. Figure
4 pictures the four components of this cost: (1) transfer costs (WiFi) of the document between
UE and SEE (in cleartext from UE to SEE and in encrypted form back), (2) document
encryption cost by SEE, (3) insertion of the encrypted document into the Cozy system and (4)
transfer cost (USB) of the cleartext document from SEE to IE (where the policy translator
checks whether this document matches some sharing rules and sends back ACLs in the
positive case). Note that step 4 can be performed in parallel with the first three steps,
explaining why we isolate its cost (USB transfer) in the figure.

Fig. 4. Environmental costs for one document. Fig. 5. Execution time of Allowed in SEE.

The environmental costs are negligible for small size documents, whereas the WiFi
transfer dominates for large documents. Note that the communication costs could be
significantly improved by using newer WiFi and USB norms (WiFi 802.11ac and USB 3.1
offer data rates theoretically 2.9 and 20.8 times faster than 802.11n and USB 2.0,
respectively). Note also that these costs are mainly linked to the way the PIMS security is

Smart device
-Hyper.&Trustzone-

Personal device
-Hyperv&SGX-

SGX
isolated

container

PlugDB

Trustzone
isolated

area

Is
ol

at
ed

E

nv
ir

on
m

en
t

U
nt

ru
st

ed

E
nv

ir
on

m
en

t
Se

cu
re

 E
xe

c.

E
nv

ir
on

m
en

t
Cozy

system

Allowed

Admin console
Advisor,

Watchdog triggers

Secrets
 Keys

PIMS
database

CouchDB

ACLs,
meta-
data

Policy
Translator

Admin GUI
Viewers

0
100
200
300
400
500
600
700
800
900

1 KB 100 KB 1 MB

Ti
m

e
(m

s)

USB transfer
PCloud access
WiFi transfer
Encryption

1

10

100

1000

0 500000 1000000

E
xe

cu
tio

n
tim

e
(m

s)

Number of ACLs

Allowed

TRAN-VAN ET AL. SWYSWYK: A PRIVACY-BY-DESIGN PARADIGM FOR ...

implemented rather than being linked to the SWYSWYK model on its own. Hence,
alternative architectures such as those pictured in Figure 3 would greatly reduce these costs.

5.4. Reference Monitor cost

The Allowed function takes as input a triple (s, d, a) and returns true if subject s is granted
authorization a on document d and false otherwise. As explained in Section 4, executing this
function sums up to check the existence of the triplet (s, d, a) in ACL+ which is represented in
a compact way by a complete bipartite graph for each rule. This leads to store the ACLs in
relational tables of the form Rule(RuleId, A), NodeS(RuleId, SubjectId), NodeD(RuleId,
DocId), so that Allowed is a simple SQL query on these tables. Selection indexes have been
built in PlugDB to speed up this query.

Figure 5 gives the execution time of Allowed, increasing the number of ACLs up to 1
million. The figure shows that the performance of Allowed remains acceptable (i.e., below
one second) in all cases up to 1 million of ACLs, while such a case is very unlikely. This
demonstrates the effectiveness of the approach.

5.5. Qualitative analysis of ACL validation

We evaluate here the quality of the Resolve function by applying it on a real dataset. As we
are not aware of any public ACL dataset, we chose personal emails datasets for this
qualitative analysis. Indeed, famous email datasets have been made available to the
community and emails reflect in some respect the policy of a user in terms of personal
documents dissemination (and of other types of data sharing scenarios [19]). For the sake of
representativeness, we use four different real datasets: the ENRON dataset [11], the Hillary
Clinton’s emails revealed by Wikileaks [14] and the emails of one author of this paper (called
people1) and of one of his family member (called people2).

In this experiment, we consider the email body as a personal document di granted by the
sender to the set of recipients {sj}. ACL+ is then given by the set {(sj, di, 'read')}. To generate
ACL*, we randomly choose some 'legitimate' (i.e., existing) elements in ACL+ and some
'illegitimate' elements built by combining existing emails d in {di} with existing recipients s in
{sj} which are not recipients of d. We expect the Resolve function to accept the legitimate
elements of ACL* and identify the others as suspicious and store them in ACL?.

Fig. 6. Resolve function success rate for ACL+ and ACL?

10
0

0,2

0,4

0,6

0,8

1

Distance threshold

C
or

re
ct

 d
ec

is
io

ns
 ra

tio

Accept
Suspect

People1

10
0

0,2

0,4

0,6

0,8

1

Distance threshold

C
or

re
ct

 d
ec

is
io

ns
 ra

tio

Accept
Suspect

People2

10
0

0,2

0,4

0,6

0,8

1

Distance threshold

Co
rre

ct
 d

ec
isi

on
s r

at
io

Accept
Suspect

Clinton

10
0

0,2

0,4

0,6

0,8

1

Distance threshold

C
or

re
ct

 d
ec

is
io

ns
 ra

tio

Accept
Suspect

Enron

ISD2017 CYPRUS

The function that we use to evaluate the distance between the histories of two subjects
sums up to count the number of emails where the two subjects appear as recipients, and apply
the reciprocal function. Such a simple Dist function can be easily implemented in SQL on top
of PlugDB by using a count query. The evaluation shows that such a simple function makes
sense and allows to get a Resolve implementation close to Algorithm 1. For each element (di,
sj) of ACL*, we compute the distance between sj and all the others recipients of this email (i.e.,
the subjects who are granted access to di in ACL+) and keep the subject with the smallest
distance. If the distance is below a minimum threshold t, Resolve accepts the ACL and puts it
in ACL+ , or puts it in quarantine in ACL? otherwise.

In Figures 6, we generate 50 elements in ACL* half of which being legitimate. The
process was repeated 1.000 times and the figures plot the mean of all the runs. The results are
provided for each dataset, varying the distance threshold t. The lower t, the closer an element
of ACL* needs to be from an element of ACL+ to be suggested by Resolve as Accept. This
explains the respective shapes of the curves Accept and Suspect which plot the success rate of
an ACL? to be correctly categorized into ACL+ or ACL?. The optimal value for t corresponds
to the crossing point of both curves, where the success rate is around 80% for both Accept and
Suspect classification. Optimal t depends on each user behavior, calling for a training process.
Typically, optimal t for Clinton is high because Clinton address book is extremely large,
resulting in a wide dispersion in the recipient distribution. Conversely, People1 is more
intimate in his behavior leading to a high concentration of the recipients. To further improve
the success rate, others variables could be integrated in the decision process, such as the
recency of the history entries [19] or their semantic proximity. Anyway, this evaluation shows
that even a simple decision process makes sense and is compatible with a highly constrained
secure execution environment.

6. Conclusion
This paper introduces a Privacy-by-Design sharing paradigm, called SWYSWYK (Share
What You See with Who You Know), dedicated to the PIMS context. This paradigm allows
each owner to visualize the net effects of sharing rules on her PIMS and to easily sanitize the
sharing policy. Moreover, it provides tangible guarantees about the enforcement of the
sanitized sharing policies without user intervention. Finally, we have shown the effectiveness
of the approach through a performance evaluation performed on a secure DB engine
(PlugDB) linked to an existing PIMS platform (Cozy).

Many exciting open issues remains to be investigated. A first perspective is linked to the
security analysis of SWYSWYK which should be conducted for other architectures, e.g.,
based on processors like [3], [10] offering new forms of secure and isolated execution
environments. A second important issue is the definition of more powerful tools helping the
owner to detect suspicious ACLs. While the PIMS paradigm is pushed by recent legislation
and smart disclosure initiatives, finding new ways to intuitively and securely share personal
data is paramount. Otherwise, the risk is high to see desperate individuals delegate the
administration of their PIMS to centralized service providers, a heresy in a period where
stronger user's empowerment is called for. We hope that this work actively contributes to this
challenge.

References

1. Abiteboul, S., André, B., Kaplan, D., Managing your digital life. CACM, 58(5), 2015.
2. Ali, M., Dhamotharan, R., Khan, E., Khan, S. U., Vasilakos, A. V., Li, K., and

Zomaya, A. Y. (2015). SeDaSC: secure data sharing in clouds. IEEE Systems
Journal.

3. Alves, T., and Felton, D. Trustzone: Integrated hardware and software security. ARM
white paper, 3(4), 2004

TRAN-VAN ET AL. SWYSWYK: A PRIVACY-BY-DESIGN PARADIGM FOR ...

4. Anciaux, N., Bonnet, P., Bouganim, L., Nguyen, B., Popa, I.S., Pucheral, P., Trusted
Cells: A Sea Change for Personnal Data Services. CIDR, 2013.

5. Anciaux, N., Bouganim, L., Pucheral, P., Guo, Y., Le Folgoc, L., and Yin, S. MILo-
DB: a personal, secure and portable database machine. In DAPD, 32(1), 2014.

6. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., and Starin, D. Persona: an
online social network with user-defined privacy. In ACM SIGCOMM Computer
Communication Review, 39(4), 2009.

7. Bertino, E., Ghinita, G., and Kamra, A. (2011). Access control for databases:
Concepts and systems. Foundations and Trends in Databases, 3(1-2).

8. Carminati, B., Ferrari, E., and Perego, A. Rule-Based Access Control for Social
Networks. In On the Move to Meaningful Internet Systems, 2006.

9. Cavoukian, « Privacy by design - The 7 foundational Principles »
https://www.ipc.on.ca/images/Resources/7foundationalprinciples.pdf

10. Costan, V., and Devadas, S. Intel SGX Explained. IACR Cryptology ePrint Archive,
2016.

11. Enron dataset, available at https://www.cs.cmu.edu/~enron/
12. Geambasu, R., Balazinska, M., Gribble, S.D., and Levy, H.M. Homeviews: peer-to-

peer middleware for personal data sharing applications. In ACM SIGMOD, 2007.
13. Guha, S., Tang, K., and Francis, P. NOYB: Privacy in online social networks. ACM

workshop on Online Social Net., 2008.
14. H. Clinton email dataset revealed by Wikileaks, available at

https://www.kaggle.com/kaggle/hillary-clinton-emails
15. Liu, Y., Gummadi, K. P., Krishnamurthy, B., and Mislove, A. Analyzing facebook

privacy settings: user expectations vs. reality. In ACM SIGCOMM, 2011.
16. Mazurek, M.L., Liang, Y., Melicher, W., Sleeper, M., Bauer, L., Ganger, G.R.,

Gupta, N., and Reiter, M.K. Toward strong, usable access control for shared
distributed data. In USENIX conference on File and Storage Technologies (FAST),
2014.

17. Mortier, R., Zhao, J., Crowcroft, J., Wang, L., Li, Q., Haddadi, H., Amar, Y.,
Crabtree, A., Colley J., Lodge, T., Brown, T., McAuley, D., and Greenhalgh, C.
Personal Data Management with the Databox: What’s Inside the Box? In ACM
Workshop on Cloud-Assisted Networking, 2016.

18. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data.

19. Roth, M., Ben-David, A., Deutscher, D., Flysher, G., Horn, I., Leichtberg, A., Leiser,
N., Matias, Y., and Merom, R. Suggesting friends using the implicit social graph. In
ACM SIGKDD, 2010, 233-242.

20. Thilakanathan, D., Chen, S., Nepal, S., and Calvo, R.A. Secure Data Sharing in the
Cloud. In Security, Privacy and Trust in Cloud Systems, 2014.

21. Van Kleek, M., Smith, D.A., Shadbolt, N., and schraefel, m.c. A decentralized
architecture for consolidating personal information ecosystems: The WebBox. In
PIM, 2012.

22. Wang, F., Mickens, J., Zeldovich, N., and Vaikuntanathan, V. Sieve:
Cryptographically Enforced Access Control for User Data in Untrusted Clouds. In
USENIX Symposium on Networked Syst. Design and Implem. (NSDI), 2016.

23. Yuan, L., Korshunov, P., and Ebrahimi T. Privacy-preserving photo sharing based on
a secure JPEG. In IEEE Conference on Computer Communications Workshops,
2015.

24. Zimmerman, P. PGP user’s guide (1994).

	SWYSWYK: a Privacy-by-Design Paradigm for Personal Information Management Systems
	1. Introduction
	2. Related work and problem formulation
	2.1. Access Control and sharing models
	2.2. Data security and data sharing enforcement
	2.3. Problem formulation

	3. SWYSWYK paradigm
	3.1. SWYSWYK baseline
	3.2. Suspicion based on past decisions
	3.3. Suspicion based on sensitiveness

	4. SWYSWYK reference architecture
	5. SWYSWYK validation
	5.1. Experimental Platform
	5.3. Environmental Costs
	5.4. Reference Monitor cost
	5.5. Qualitative analysis of ACL validation

	6. Conclusion
	References

