
26TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2017 CYPRUS)

End-to-End Automation in Cloud Infrastructure Provisioning

Julio Sandobalin julio.sandobalin@epn.edu.ec
Escuela Politécnica Nacional
Quito, Ecuador

Emilio Insfran einsfran@dsic.upv.es
Universitat Politècnica de València
Valencia, España

Silvia Abrahao sabrahao@dsic.upv.es
Universitat Politècnica de València
Valencia, España

Abstract
Infrastructure provisioning in the Cloud can be time-consuming and error-prone due to the
manual process of building scripts. Configuration Management Tools (CMT) such as Ansible,
Puppet or Chef use scripts to orchestrate the infrastructure provisioning and its configuration
in the Cloud. Although CMTs have a high level of automation in the infrastructure
provisioning, it still remains a challenge to automate an iterative development process based
on models for infrastructure provisioning in the Cloud. Infrastructure as Code (IaC) is a
process whereby the infrastructure is automatically built, managed, and provisioned by using
scripts. However, there are several infrastructure provisioning tools and scripting languages
that need to be used coherently. In previous work, we have introduced the ARGON modelling
tool with the purpose of abstracting the complexity of working with different DevOps tools
through a domain specific language. In this work, we present an end-to-end automation for a
toolchain for infrastructure provisioning in the Cloud based on DevOps community tools and
ARGON.
Keywords: Infrastructure as Code, cloud services, DevOps, Continuous Integration,
Continuous Deployment, Continuous Delivery, Model-Driven Development.

1. Introduction
To succeed in a world where technologies, requirements, ideas, tools and timelines are
constantly changing, information must be accurate, readily available, easily found and,
ideally, constantly delivered in real-time to all team members [1]. In order to face these
challenges, a new movement called DevOps [2] (Development & Operations) is promoting
continuous collaboration between developers and operation staff through a set of principles
and practices which optimize the delivery time of software, manage the Infrastructure as Code
(IaC) and improve the user experience by basing on their continuous feedback. Infrastructure
as Code [3] is an approach to infrastructure automation based on software development
practices which emphasizes the use of consistent and repeatable routines for hardware
provisioning. There exist a number of cloud-based DevOps processes which leverage services
offered by Cloud Computing such as computing, networking, storage and elasticity. There are
several DevOps community tools for infrastructure provisioning such as Ansible1, Chef2,
Puppet3 which use scripts for defining the final state of infrastructure provisioning in the

1 https://www.ansible.com
2 https://www.chef.io
3 https://puppet.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301373101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SANDOBALIN ET AL. END-TO-END AUTOMATION IN CLOUD INFRASTRUCTURE PROVISIONING

Cloud. However, practitioners are presently facing the challenge to manage different
infrastructure provisioning tools, each one of them with their own scripting language. To
mitigate this situation, in a previous work we introduced ARGON [4] (An infRastructure
modellinG tool for clOud provisioNing), which aims to abstract the complexity of working
with different DevOps provisioning tools through a Domain Specific Language (DSL).
ARGON allows modelling an infrastructure model with the final state of hardware and
software to be deployed in the Cloud. Furthermore, ARGON automatically generates scripts
for different DevOps provisioning tools using model-to-text transformations.

In many of today’s enterprises, one of the most important challenges is how to deliver a
new idea or software artefact to customers as quickly as possible. In many software projects,
releasing software applications is a manually intensive process and the environments that host
the development and operation software are often crafted individually, usually by operation
staff. Furthermore, there is a manual configuration management of production environments
and deploying to production environment takes place only once development has been
completed. Due to all these issues, infrastructure provisioning in the Cloud can be time-
consuming and error-prone. To address these issues, we present an automated end-to-end
toolchain for the development, version control, build, testing, and deployment of the
infrastructure in the Cloud. This toolchain is based on DevOps community tools and
ARGON. Our approach provides the necessary abstractions to deal with the complexity of
using different DevOps tools to automate continuous delivery practices in Cloud provisioning.
Fig. 1 presents an overview of the infrastructure provisioning pipeline.

Fig. 1. Overview of the infrastructure provisioning pipeline.

We take advantage of the Infrastructure as Code concept in order to apply DevOps
practices by supporting the automatic generation of scripts for managing the tools that are
used for infrastructure provisioning in DevOps community. We use ARGON Modeling Tool
in order to model the infrastructure provisioning and to obtain an infrastructure model. We
model an infrastructure model from scratch or model an infrastructure architecture which is
running in the Cloud. Subsequently, we will take this infrastructure model and push it towards
a version control system. We use a version control system to retain and provide access to
every version of every infrastructure model that has ever been stored on it. Moreover, this
approach allows teams with infrastructure models across different places to work
collaboratively.

Every infrastructure model must be checked into a single version control repository to
begin the Continuous Integration stage. Continuous integration requires that every time some
developer commits a change, the entire application be built and a comprehensive set of
automated tests run against it [2]. We have developed a model-to-text transformation engine
based on Acceleo4 and Maven5 to automatically build scripts from the infrastructure model.
The model-to-text transformation engine is a JAR (Java ARchive) which is used as a plugin
for a continuous integration server. An artefact repository is used to provide software libraries
such as the text-to-model transformation engine and the ARGON’s Domain Specific
Language. We use an artefact repository in order to provide a unique provider of libraries or
software artefact in stages of development, build, and testing. After the build stage, the scripts

4 http://www.acceleo.org
5 https://maven.apache.org

ISD2017 CYPRUS

for infrastructure provisioning are ready to pass a set of automated tests. First, a syntax check
test is executed to verify the structure of the scripts. Then, a static code test is performed by
parsing code or definition files without executing them in the Cloud. Finally, an infrastructure
test is implemented to ensure the correct operation of the infrastructure and applications
deployed in the Cloud. Scripts that have been built and have overcome a set of automated
tests are ready to be used in infrastructure provisioning tools. A Continuous Deployment stage
takes these scripts built in the previous stage and automatically deploys them toward a Cloud
platform. The main advantages of using an end-to-end automation for an effective toolchain
for Cloud infrastructure provisioning are the following:

• The infrastructure can be easily created, destroyed, replaced, and resized
• Rebuilding any element of an infrastructure is possible with less effort in a reliable

way
• It is possible to build identical infrastructure elements in different environments. This

makes it possible to achieve the parity DevOps principle, which means having the
same infrastructure in staging and production environments.

• It is possible to achieve the reproducibility DevOps principle due to the fact that any
action that is carried out on the infrastructure should be repeatable

• It is possible to make frequent changes on the infrastructure model so the
infrastructure in the Cloud can be safely and quickly modified

The remainder of this paper is structured as follows: Section 2 discusses related works
and identifies the need of an end-to-end automation for an effective toolchain for cloud
infrastructure provisioning in the Cloud. Section 3 introduces an illustrative case study.
Section 4 presents the infrastructure provisioning pipeline. Finally, Section 5 presents our
conclusions and future work.

2. Related Work
In recent years, there has been much interest on cloud-based DevOps research. The DevOps
community has provided many Configuration Management Tools (CMT) for infrastructure
provisioning such as Ansible, Puppet, Chef, among others. Despite the fact that CMTs have
achieved the automation of the orchestration of infrastructure deployment and its
configuration in the Cloud there are still many challenges to face.

TOSCA [5] is a standard for Topology and Orchestration Specification for Cloud
Application which allows modelling nodes (virtual or physical machines) and orchestrates the
deployment of Cloud applications. TOSCA uses DevOps provisioning tools such as Chef to
infrastructure provisioning and Juju6 for the deployment of cloud based applications. In [6]
TOSCA has classified DevOps community tools into node-centric artefacts and environment-
centric artefacts. The former are scripts that run on a server, virtual machines, or containers
for infrastructure provisioning. The latter are scripts that run on multiple nodes and support
the deployment of Cloud applications.

MORE [7] is a model-driven operation service for cloud-based IT systems that focuses on
automating the initial deployment and the dynamic configuration of a system. MORE
provides an online modelling environment to define a topology model to specify system
structure and desired state. MORE transforms the topology model into executable code for the
Puppet tool in order to get virtual machines, physical machines and containers.

MODAClouds [8] is a European project undertaken to simplify the Cloud service usage
process. One of its goals is to deliver an Integrated Development Environment (IDE) to
support system developers in building and deploying applications and related data to multi-
Clouds spanning across the full Cloud stack. Energizer 4Clouds is an executable platform
from MODAClouds which includes automatic infrastructure provisioning using specially-
designed Puppet modules, the ability to use existing infrastructure and an API middleware for
job control.

6 https://jujucharms.com

SANDOBALIN ET AL. END-TO-END AUTOMATION IN CLOUD INFRASTRUCTURE PROVISIONING

Soni et al. [9] proposes a proof of concept for designing an effective framework for
continuous integration, continuous testing, and continuous delivery to automate the source
code compilation, code analysis, test execution, packaging, infrastructure provisioning,
deployment and notifications using build pipeline concept. This approach focuses its efforts in
necessities of the insurance industry to better respond to dynamic market requirements, faster
time to market for new initiatives and services and support for innovative ways of customer
interaction.

Rathod et al. [10] propose a framework for automated testing and deployment to help
automated code analysis, test selection, test scheduling, environment provisioning, test
execution, results from analysis and deployment pipeline. In test orchestration frameworks, it
is typically very complicated to develop pipelines which make software reliable and bug-free.

An analysis of the works mentioned above shows that current approaches have focused
their efforts in reusing the tools proposed by the DevOps community to solve gaps related to
infrastructure provisioning and deployment of Cloud applications. However, as far as we
know, there is no other previous approach to end-to-end automation for an effective toolchain
of an infrastructure provisioning tool based on the Infrastructure as Code concept.
Furthermore, we are taking advantage of the ARGON Modelling Tool to start an
infrastructure delivery pipeline which is based on an infrastructure model.

3. Case Study Description
In order to illustrate the use of our approach, in this section we present an excerpt of a case
study (adapted and extended from [4]). The case study is based on MOOC (Massive Open
Online Courses). CEC University (CEC for short) offers massive and free courses which are
accessible through the Internet. Over the last years, the demand for online courses has
increased because MOOC have meant a revolution in the field of education, especially in
universities. The main problem is the high demand for some courses which causes work
overload in servers. In addition, students have difficulty in accessing video lessons and other
multimedia materials. CEC has decided to solve this problem by purchasing new servers in
order to create a cluster. However, new servers will not work when there is no demand for
courses. To solve this dilemma, CEC has decided to migrate their infrastructure towards cloud
computing and Amazon Web Services (AWS) has been selected as the Cloud platform.
Furthermore, Ansible has been selected as the infrastructure provisioning tool attending to the
fact that it does not require installing any agent like Chef or Puppet.

In order to resolve the problems mentioned above, the operation staff has decided to
design two solutions. First, a scalable architecture that works on Cloud platforms for
continuing enrolment courses. Second, an infrastructure provisioning of servers for courses
with eventual enrolment. The first solution has been explained in detail in [4]. In this paper,
we are focusing on the second solution due to the necessity to create specific infrastructure in
the Cloud for every eventual course. The scope of this proposal is to create new EC2
instances in AWS where all the middleware, libraries and binaries files for software
applications will be installed.

4. Infrastructure Provisioning Pipeline

4.1. ARGON Modelling Tool

ARGON is a modelling tool used for defining the final state of the infrastructure provisioning
of Cloud resources and generating the scripts for the management of the provisioning tools
used in the DevOps community. ARGON aims to abstract the complexity of working with
different DevOps tools through a Domain Specific Language. ARGON allows modelling an
infrastructure model and generate scripts for different DevOps provisioning tools. Fig. 2
shows an infrastructure model which depicts the final state of infrastructure provisioning in
AWS.

ISD2017 CYPRUS

Fig. 2. Infrastructure Model defined using the ARGON tool.

The infrastructure model shows a security group (sg-server) which is like a firewall which
enables connection of access ports to the EC2 instance (webserver). The security group has
two inbound rules to allow access through port 22 for OpenSHH7 connection (ssh) and port
80 for web applications connection (http). Moreover, an outbound rule (all traffic) is added to
allow outgoing connections from EC2 instance. Additionally, a role (web) is linked to the
EC2 instance in order to install an Apache web server (apache2) and their dependencies
(php5, libapache2-mod-php5).

In the Attributes tab of Role, we can set up: Main Package with a web server, application
server, database, etc. Name of Role. Package Dependencies which are all necessary software
that the Main Package needs. Port is the port number that responds to user requests. OS stands
for the operating system where the packages will be installed. Testing enables the execution
of a set of automating tests. It is worth highlighting that every element in the infrastructure
model has its own attributes. For example, Diagram attributes are: File name is script name,
Key name is the name of the key pair file which is necessary to access AWS, Region is the
region code where infrastructure will be deployed and User is the username which is
necessary to install packages.

On the other hand, we are using Maven to develop the infrastructure project
(edu.issi.cloud.testing) as it is a software project manager based on the concept of a project
object model (POM). POM is the fundamental unit of work in Maven. It is an XML file that
contains information about the project and configuration details used by Maven to build the
project. Furthermore, POM is very helpful in the case of collaborative development because it
provides configuration details in a unique file for all team members.

Fig. 3. Excerpt code of POM file of the infrastructure project.

7 https://www.openssh.com

SANDOBALIN ET AL. END-TO-END AUTOMATION IN CLOUD INFRASTRUCTURE PROVISIONING

Fig. 3 shows an excerpt of the POM used in the infrastructure project. This excerpt
presents the configuration of artefact repository (line 13-16) where id attribute is a unique
identifier of the repository and url attribute is the reference to resources or dependencies. In
the dependency section, we define the model-to-text transformation engine (line 22) and its
version (line 23). Moreover, we define the Domain Specific Language DSL (line 27) and the
version (line 28) used for the ARGON Modelling Tool.

4.2. Configuration Management

Configuration management refers to the process by which all artefacts relevant to a project,
and the relationships between them, are stored, retrieved, uniquely identified and modified
[2]. In order to get an effective toolchain for infrastructure provisioning, it is necessary to
provide a configuration management strategy that determines how to manage all the changes
that happen within the infrastructure project. It will also govern how team collaborates in a
configuration management strategy.

Control Version System

A Control Version System is a mechanism for keeping multiple versions of files so that when
a file is modified we can still access the previous revisions. Once the infrastructure model is
ready, we can push it toward the Control Version System (see Fig. 1). We are using GitHub
as a distributed Control Version System. GitHub has a local repository and a remote
repository (see Fig. 3). The former gives each developer a local copy of the full development
history. The latter imports all developed infrastructure projects and merges them into a unique
infrastructure project. The basic workflow of GitHub (see Fig. 3) starts when a developer
makes a commit of an infrastructure project towards the local repository. It is possible to
make numerous commits towards the local repository and maintain a local history of the
changes made to the infrastructure model. Therefore, when all team members decide to merge
their models, it is necessary to make a pull of the infrastructure projects towards the remote
repository. On the other hand, whenever a developer wishes to make changes to the
infrastructure model stored in the remote repository it becomes necessary to make a push of
the model towards the local repository. Therefore, to work with infrastructure project in
ARGON becomes mandatory in order to make a checkout of the project from the local
repository. Finally, the infrastructure project developed by ARGON is stored in GitHub (see
Fig.4) and it is ready to move on to the Continuous Integration stage.

Fig. 3. Overview of Version Control with GitHub.

Fig. 4. Infrastructure project in GitHub.

ISD2017 CYPRUS

Artifact Repository

Software libraries and files are managed differently due to the fact that libraries are typically
deployed in the form of binary files or JAR (Java ARchive), they are never changed by the
development team, and also because they are very rarely updated. Therefore, it becomes
necessary to use an Artefact Repository for the management of a collection of JARs and their
metadata. The artefacts or JARs will be used by clients such as Maven. We are using
Sonatype Nexus8 (Nexus for short) to manage the JARs used in the infrastructure project (see
Fig. 6). ARGON requests artefacts to Nexus through a POM file (see Fig. 3) in order to
resolve JAR dependencies and model the infrastructure project. However, ARGON also needs
to resolve dependencies so as to compile with Maven and to bring forth the model-to-text
transformation with Acceleo. In this case, Nexus works like a proxy providing artefacts from
remote repositories such as Maven Central or Acceleo repository. As a result, Nexus provides
artefacts for ARGON and Continuous Integration Server (see Fig. 5).

Fig. 5. Overview of Artifact Repository.

Fig. 6. Artifacts of the infrastructure project in Nexus.

4.3. Continuous Integration

Continuous integration requires that every time someone commits a change in the
infrastructure model, the entire infrastructure project be built and a comprehensive set of
automated tests run against the resulting scripts. For this reason, in the case of infrastructure
provisioning, the goal of continuous integration is that the scripts stay in a deploying state all
the time.

Continuous integration relies on certain prerequisites such as: 1) models in the
infrastructure project must be checked into version control system and 2) the build process
must be run in an automated way from a continuous integration environment. Therefore, the
infrastructure project checked in GitHub is used as an input to the continuous integration
stage and Jenkins9 is accordingly used to run the build process in an automated way.
Additionally, a comprehensive set of automated tests is run against resulting scripts. Finally,

8 http://www.sonatype.org/nexus/
9 https://jenkins.io

SANDOBALIN ET AL. END-TO-END AUTOMATION IN CLOUD INFRASTRUCTURE PROVISIONING

the result of the continuous integration pipeline (see Fig. 7) is a playbook or script for Ansible
which is in a release state and it is input to the next continuous deployment stage.

Fig. 7. Overview of Continuous Integration pipeline.

An Automated Build

We have developed a model-to-text transformation engine based on Maven that works in
Jenkins and which is able to run a build process in an automated way. We have opted to use
Jenkins as it is an application for continuous integration and continuous delivery of software
projects. It is important to highlight that Jenkins can be run via the command line and this
makes it possible to perform configuration based on Maven for the construction of scripts and
run a set of automated tests over scripts and infrastructure deployed in the Cloud. In the POM
file (see Fig. 9) of model-to-text transformation engine, we set up the java class (line 98) that
should be used to register the package on which the model-to-text transformation is launched.
Acceleo libraries (line 104-106) are configured to launch the transformation engine in the
process-resources phase (line 109). In addition, the generator class must be specified (line
113) along with transformation rules, infrastructure model (line 114) as well as the folder
where scripts are created (line 115). Finally, the infrastructure provisioning pipeline is created
in Jenkins (see Fig. 8) where it shows that the last success pipeline created is number 72 with
a time of 9 minutes 16 seconds. As it can be seen, the last pipeline failure is number 60 and
this was 8 days ago.

Fig. 8. Dashboard of Jenkins.

Fig. 9. Excerpt code of POM file of model-to-text transformation engine.

ISD2017 CYPRUS

Automated Test Suite

The goal of automated testing is to help testing teams to keep the high quality of their systems
by identifying errors as soon as they are produced so they can immediately be fixed [3].
During the software development process, there are three kinds of tests that must be in the
running mode during the continuous integration stage: unit tests, component tests and
acceptance tests. However, these tests cannot be applied to the infrastructure provisioning due
to the fact that they belong to a different context. For this reason, we are following a set of
automated testing for the infrastructure provisioning proposed in [3]. First, Syntax Check
Tests are executed for the verification of the structure of the scripts: a) yamllint10 is used for
checking syntax validity of the scripts written in YAML11 and cosmetic problems such as line
length, trailing spaces, indentation, etc. b) Ansible is used to check the syntax of a playbook
(scripts for Ansible). It uses ansible-playbook with the --syntax-check flag (see Fig. 10). This
will run the playbook file through the parser to ensure its included files, the roles and other
parameters have no syntax problems. Second, Static Code Tests are performed by parsing
code or definition files without executing them in the Cloud. Ansible is later used to simulate
the execution of a playbook: it uses ansible-playbook with the --check flag (see Fig.11). Ansible
uses check mode to execute the static code tests. Check mode is just a simulation and will not
make any changes to remote systems. Instead, any module instrumented to support check
mode will report what changes would have taken place, rather than actually enabling them.
However, in the case of the variables included in the playbook which have no value, they will
be ignored. Finally, once the infrastructure provision is done, the Infrastructure Tests are
executed towards ensuring the correct functioning of the infrastructure and the applications
deployed in the Cloud. The infrastructure test will be tackled at the continuous deployment
stage.

Fig. 10. Syntax Check test for playbook.

Fig. 11. Static Check test for playbook.

10 http://www.yamllint.com
11 http://yaml.org

SANDOBALIN ET AL. END-TO-END AUTOMATION IN CLOUD INFRASTRUCTURE PROVISIONING

4.4. Continuous Deployment

Infrastructure deployment requires a series of steps such as configuring of tools, initializing
data, configuring the infrastructure, the operating systems and the middleware. As projects get
more complex, these steps become more numerous, longer, and more error-prone. Therefore,
it is necessary to use tools which will perform infrastructure deployments in the Cloud.
Configuration management tools such as Ansible or Puppet are typically used for automating
the orchestration of infrastructure provisioning in the Cloud.

Continuous integration stage (see Fig. 12) starts once a playbook or script has overcome a
set of automated tests and is ready to be used by Ansible. All commands to execute the
playbook are set up in Jenkins. Firstly, the script for Ansible, called playbook.yml (see Fig. 2),
is executed so as to get a virtual machine or EC2 instance (see Fig. 13) in Amazon Web
Services. Once the EC2 instance named webserver is ready, the script called site.yml is
executed in order to install all packages described in Role element (see Fig. 2).

Fig. 12. Overview of Continuous Deployment stage.

Fig. 13. An EC2 instance (webserver) in Amazon Web Server.

Automated Test Suite

Once the scripts have successfully passed the automated tests suite at the continuous
integration stage and each of them has done the infrastructure provisioning in the Cloud, the
next step is to run Infrastructure Tests so as to verify that EC2 instance is running and
packages installed. There are many tools for infrastructure testing: for example, Serverspec12,
RSpec13 or Ansiblespec14. Serverspec is a tool that allows writing simple tests aimed at
validating that a server is correctly configured. It can be used to remotely test the server state
through an SSH connection. The development of Ansiblespec is based on Serverspec and
contains some features of Ansible like dynamic inventory and roles. Ansiblespec is set up
over Jenkins to validate that the EC2 instance is correctly configured and that the main
package with its dependencies are correctly installed. ARGON allows specifying in every
Role element (see Fig. 2) of the infrastructure diagram the creation of a set of tests. The
model-to-text transformation engine creates the files needed for Ansiblespec. Given that the
set of tests are created and executed automatically in Jenkins, we have defined four
infrastructure tests: 1) Testing that the package is installed, 2) Testing that the package is

12 http://serverspec.org
13 http://rspec.info
14 https://github.com/volanja/ansible_spec

ISD2017 CYPRUS

enabled, 3) Testing that the package is running, and 4) The port of the package is listening.
Fig. 14 shows the console output of Jenkins with the executed infrastructure tests on the
apache2 package. Finally, the result of testing is that apache2 is installed, enabled, running
and port 80 is listening.

Fig. 14. Infrastructure Tests on EC2 instance.

4.5. Discussion

We have introduced a proposal for an end-to-end automation of infrastructure provisioning in
the Cloud through a toolchain using DevOps community tools. There are several DevOps
community tools15 with which we can achieve other toolchains for infrastructure provisioning.
However, we are using GitHub as it is a distributed control version system unlike Subversion
or Mercurial. Moreover, GitHub provides a seamless connection with Jenkins and other
integration servers. There exist several artefact repositories such as Nexus, Artifactory or
Archiva among others. However, since we are using Maven in the creation of the
infrastructure project and Maven works well with all the repositories mentioned above, we are
using Nexus given the experience we have from previous projects. Similarly, there are
alternatives to Maven like Gradle, Grunt or Rake, but we are using Maven as it is compatible
with Acceleo and the Eclipse Modeling Framework [11], which is part of our model-to-text
generation environment.

Jenkins is one of the most popular integration servers, although there are other tools like
Bamboo, Travis CI, or Hudson. We could use Hudson or Travis CI to achieve the continuous
integration stage, but we are using Jenkins due to our positive experience from previous
projects. Ansible is a configuration management tool aimed at the orchestration of
infrastructure provisioning which does not use any agent installed on the remote host, unlike
Puppet or Chef. This is the main reason why we are using Ansible and also because it
provides better control in an unattended installation.

Finally, we have showed an end-to-end automation for infrastructure provisioning in the
Cloud. It is worth to mention that the we used ARGON [4] as a collaborative modelling tool
in the infrastructure project. This approach may be useful for providing an automated
infrastructure provisioning in research projects such as DIARy [12][13].

5. Conclusion and Future Work
In this paper, we have presented an end-to-end automation for an effective toolchain towards
the development, version control, build, testing and deployment of infrastructure in the Cloud

15 https://xebialabs.com/periodic-table-of-devops-tools/

SANDOBALIN ET AL. END-TO-END AUTOMATION IN CLOUD INFRASTRUCTURE PROVISIONING

by basing on DevOps community tools and ARGON. We have showed an effective
automation of the Infrastructure as Code concept and how it can be implemented with the
DevOps community tools. Although more validation is needed, we consider these results
encouraging.

As future work, we want to extend the concept of Infrastructure as Code to the use of
metrics for the monitoring of the toolchain of the infrastructure provisioning process and to
get feedback which should lead to further improvement of the process. Primarily, we want to
provide an automated infrastructure provisioning to software development projects towards a
holistic DevOps solution. We also plan to run experiments with practitioners and students
with experience in cloud computing development and, in particular, with knowledge in
provisioning resources in the Cloud. This will help us to validate the effectiveness of the
proposed solution for provisioning infrastructure on different platforms in the Cloud.

Acknowledgements: This research is supported by the Value@Cloud project (TIN2013-
46300-R).

References
[1] C. A. Cois, J. Yankel, and A. Connell, “Modern DevOps: Optimizing software
development through effective system interactions,” in IEEE International Professional
Communication Conference, 2015.
[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation, 1 edition. Addison-Wesley Professional, 2010.
[3] K. Morris, Infrastructure As Code: Managing Servers in the Cloud, 1st ed. O’Reilly
Media, Inc., 2016.
[4] J. Sandobalin, E. Insfran, and S. Abrahao, “An Infrastructure Modelling Tool for
Cloud Provisioning,” in Proceedings - 14th IEEE International Conference on Services
Computing (SCC), 2017.
[5] J. Wettinger, U. Breitenbücher, O. Kopp, and F. Leymann, “Streamlining DevOps
automation for Cloud applications using TOSCA as standardized metamodel,” Future
Generation Computer Systems, vol. 56, pp. 317–332, 2015.
[6] J. Wettinger, U. Breitenbucher, and F. Leymann, “Standards-based DevOps
automation and integration using TOSCA,” in 7th International Conference on Utility and
Cloud Computing (UCC), pp. 59–68, 2014.
[7] W. Chen et al., “MORE: A model-driven operation service for cloud-based IT
systems,” in Proceedings - 13th IEEE International Conference on Services Computing, SCC,
pp. 633–640, 2016.
[8] E. Di Nitto, P. Matthews, D. Petcu, and A. Solberg, Model-Driven Development and
Operation of Multi-Cloud Applications. Cham: Springer International Publishing, 2017.
[9] M. Soni, “End to End Automation on Cloud with Build Pipeline: The Case for
DevOps in Insurance Industry, Continuous Integration, Continuous Testing, and Continuous
Delivery,” in Proceedings - IEEE International Conference on Cloud Computing in Emerging
Markets (CCEM), pp. 85–89, 2016.
[10] N. Rathod and A. Surve, “Test orchestration a framework for Continuous Integration
and Continuous deployment,” in International Conference on Pervasive Computing: Advance
Communication Technology and Application for Society (ICPC), 2015.
[11] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse modeling
framework. 2008.
[12] M. Zuñiga-Prieto, S. Abrahao, and E. Insfran, “An Incremental and Model Driven
Approach for the Dynamic Reconfiguration of Cloud Application Architectures,” 24th
International Conference on Information Systems Development (ISD). Harbin, China, 2015.
[13] M. Zúñiga-Prieto, E. Insfran, S. Abrahão, and C. Cano-Genoves, “Incremental
Integration of Microservices in Cloud Applications,” in 25th International Conference on
Information Systems Development (ISD), 2016.

	End-to-End Automation in Cloud Infrastructure Provisioning
	1. Introduction
	2. Related Work
	3. Case Study Description
	4. Infrastructure Provisioning Pipeline
	4.1. ARGON Modelling Tool
	4.2. Configuration Management
	Control Version System
	Artifact Repository

	4.3. Continuous Integration
	An Automated Build
	Automated Test Suite

	4.4. Continuous Deployment
	Automated Test Suite

	4.5. Discussion

	5. Conclusion and Future Work
	Acknowledgements: This research is supported by the Value@Cloud project (TIN2013-46300-R).

	References

