
26TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2017 CYPRUS) 

FABIOLA: Defining the Components for Constraint Optimization 
Problems in Big Data Environment 

Luisa Parody lparody@us.es 
Dto. Lenguajes y Sistemas Informáticos / Universidad de Sevilla 
Sevilla, Spain 

Ángel Jesús Varela Vaca ajvarela@us.es 
Dto. Lenguajes y Sistemas Informáticos / Universidad de Sevilla 
Sevilla, Spain 

María Teresa Gómez-López maytegomez@us.es 
Dto. Lenguajes y Sistemas Informáticos / Universidad de Sevilla 
Sevilla, Spain 

Rafael M. Gasca gasca@us.es 
Dto. Lenguajes y Sistemas Informáticos / Universidad de Sevilla 
Sevilla, Spain 

Abstract 
The optimization problems can be found in several examples within companies, such as the 
minimization of the production costs, the faults produced, or the maximization of customer 
loyalty. The resolution of them is a challenge that entails an extra effort. In addition, many of 
today’s enterprises are encountering the Big Data problems added to these optimization 
problems. Unfortunately, to tackle this challenge by medium and small companies is 
extremely difficult or even impossible. In this paper, we propose a framework that isolates 
companies from how the optimization problems are solved. More specifically, we solve 
optimization problems where the data is heterogeneous, distributed and of a huge volume. 
FABIOLA (FAst BIg cOstraint LAb) framework enables to describe the distributed and 
structured data used in optimization problems that can be parallelized (the variables are not 
shared between the various optimization problems), and obtains a solution using Constraint 
Programming Techniques. 
Keywords: Big Data, Optimization Problem, Constraint Programming, Data Structure. 

1. Introduction  
Nowadays, huge volumes of data are generated by running services for organization’s 
information systems. The concept of Big Data has been defined as data that exceeds the 
capability of commonly used hardware environments and software tools to capture, manage, 
and process it within a tolerable elapsed time for its user population [3]. This concept is being 
increasingly defined by the four Vs, which are: 1) Volume, which represents the size of the 
data; 2) Velocity, that represents the speed at which data is created, stored, analyzed, 
processed, and visualized in real-time; 3) Variety, which distinguishes the forms of data by 
considering two aspects: syntax and semantics; and 4) Value, that is especially linked to the 
commercial value that any new sources and forms of data can add to the business. 

Software technologies have been evolving to facilitate the management of the Big Data. 
Hadoop [2, 21] is a popular open-source map-reduce implementation which is being used as 
an alternative to store and process extremely large data sets on commodity hardware. 
However, the map-reduce programming model is very low level and requires developers to 
write custom programs which are hard to maintain and reuse. For this reason, more abstract 
solutions have been developed to elevate the abstract level, such as Spark. Spark [20] is 
nowadays the most active Big Data project in the open source community, and it is already 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301373087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


PARODY ET AL.  FABIOLA  

  

used by more than a thousand organizations. Spark is a cluster computing engine that is 
optimized for an in-memory processing, and it unifies support for a variety of workloads, 
including batch, interactive querying, streaming, and iterative computations.  

One of the challenge of the Big Data solution is the isolation of the users from the 
heterogeneous use and location of data. For this reason, several components have been 
developed in the ecosystem of Hadoop. Unfortunately, the optimization of problems using the 
Constraint Programming techniques is still a problem to be solved.   

In this paper, we present FABIOLA (FAst BIg cOstraint LAb) framework, an open-
source data problem optimization solution built on top of Hadoop. FABIOLA supports the 
distribution of the Constraint Optimization Problems in order to obtain the optimal solutions 
for independent subsets of distributed data. Constraint Optimization Problems are compiled 
into map-reduce jobs executed on Hadoop that can be combined with Hive [19] in order to 
infer more information after founding the optimized values.  

The rest of the paper is organized as follows. Section 2 introduces previous and related 
works. Section 3 describes FABIOLA data model, the Constraint Optimization problem, and 
the parameters that can be included to obtain the evaluation of the optimization. Section 4 
describes the architecture and an overview of the query life-cycle. Section 5 provides various 
real examples where and how FABIOLA is used. Finally, conclusions are drawn and future 
work is proposed in Section 6. 

2. Related Work  
Big Data faces up new challenges [12, 14] in how to carry out optimization problems with 
heterogeneous, incomplete, and uncertainty data in addition to immediately responses for 
some types of questions.  
 The Apache Hadoop project [2] actively supports multiple projects with the aim of 
extending Hadoop’s capabilities and make it easier to use. There are several top-level projects 
to helping in the creation of development tools as well as for managing Hadoop data flow and 
processing. Many commercial third-party solutions build on their developed technologies 
within the Apache Hadoop ecosystem.  
 Spark [20], Pig [15], and Hive [19] are three of the best-known Apache Hadoop projects. 
All of them are used to create applications to process Hadoop data. While there are a lot of 
articles and discussions about which is the best one, in practice, many organizations use 
various of them since each one is optimized for a specific functionality. Although FABIOLA 
is not a new Big Data solution, it aims to be part of the Hadoop ecosystem. FABIOLA 
provides the necessary components to drive the solution of constraint optimization problems 
with distributed data on a Hadoop-based architecture. 

Constraint Programming (CP) presents a challenge in the scalability by solving some type 
of hard problems. However, CP has been successfully applied in different domains for solving 
optimization problems, such as scheduling and planning. Although there exist several CP 
tools, such as IBM-ILOG CPLEX Optimization [7] and Choco Solver [4], none of them 
provides a Big Data solution. Big Data provides to CP a new perspective with regard to the 
size and volume of data, and it is a great opportunity to exploit its possibilities to gain 
efficiency and optimization in operational processes [16]. Additionally, Big Data tackles new 
challenges [6] dealing with automation of decision-making that involves several (millions) 
decision variables in optimization of resource consumption, sustainability services, and 
finance. Nevertheless, the optimization problems in CP need more flexibility and adaptability 
since the exploration of heterogeneous, enormous and dynamic generation of data requires a 
quick adaptation of optimization problem in order to provide more holistic solutions.  

Although there is an initiative to create a new language to adapt CP languages for Big 
Data applications [18], it is currently a very immature approach with no continued 
development. 



ISD2017 CYPRUS 

  

3. Formalization of the problem  
The elements that conform FABIOLA framework are: The Constraint Optimization Problem, 
Data Model (Input data, Output data, Other data), and a set of parameters to delimit the 
search. The search consists on to find the optimal solution described in the Constraint 
Optimization Problem for each set of input data and in different nodes. Then, several 
optimizations are executed in parallel.  

3.1. Constraint Optimization Problem  

FABIOLA enables to find the optimal solution for several data input. In other words, 
FABIOLA solves the same type of problem but with different input data, thereby founding its 
corresponding and different optimal solutions. A Constraint Optimization Problem (COP) is 
created in order to find these solutions. To introduce COPs, it is firstly necessary to explain 
what is a Constraint Satisfaction Problem (CSP). 
 A CSP [17] represents a reasoning framework consisting of variables, domains and 
constraints ≺ 𝑉𝑉,𝐷𝐷,𝐶𝐶 ≻, where 𝑉𝑉 is a set of 𝑛𝑛 variables 𝑣𝑣1, 𝑣𝑣2 … 𝑣𝑣𝑛𝑛 whose values are taken 
from finite domains 𝐷𝐷𝑣𝑣1 ,𝐷𝐷𝑣𝑣2 …𝐷𝐷𝑣𝑣𝑛𝑛 respectively, and 𝐶𝐶 is a set of constraints on their values. 
The constraint 𝑐𝑐𝑘𝑘 �𝑥𝑥𝑘𝑘1 , 𝑥𝑥𝑘𝑘2 , … , 𝑥𝑥𝑘𝑘𝑛𝑛� is a predicate that is defined on the Cartesian product 
𝐷𝐷𝑘𝑘1 × … × 𝐷𝐷𝑘𝑘𝑗𝑗 . This predicate is true iff the value assignment of these variables satisfies the 
constraint 𝑐𝑐𝑘𝑘. If only the solution that optimize (minimize or maximize) a function 𝑓𝑓 wants to 
be obtained, it is called a Constraint Optimization Problem (COP).   
 Some of the variables 𝑉𝑉 can be matched with the input and output variables defined in the 
Data Model (defined in next subsection). As a consequence, some input variables fix their 
values to a subdomain and modify the possible optimal solutions found for each tuple. It 
seems a meta-COP which is partially instantiated for each tuple. In order to understand it 
better, the following subsection sells out an example. 

3.2. Data Model: Input, Output and Other Data  

FABIOLA works with tables, analogous to tables in relational databases. It does not mean 
that the information is stored in a relational database, but there exists a view where the data is 
structured in tuples and with the same set of attributes. This data might be stored in HDFS, 
NFS or local directories in different nodes. Each table can have one or more partitions which 
determine the distribution of data in the various nodes. 
Being {𝐴𝐴1,𝐴𝐴2 …𝐴𝐴𝑛𝑛} attributes for the domains {𝐷𝐷1,𝐷𝐷2 …𝐷𝐷𝑛𝑛}, where the set 
{𝐴𝐴1:𝐷𝐷1,𝐴𝐴2:𝐷𝐷2 …𝐴𝐴𝑛𝑛:𝐷𝐷𝑛𝑛} is a relational-schema. Each tuple is {𝐴𝐴1:𝑑𝑑1,𝐴𝐴2:𝑑𝑑2 …𝐴𝐴𝑛𝑛:𝑑𝑑𝑛𝑛} where 
{𝑑𝑑1 ∈ 𝐷𝐷1,𝑑𝑑2 ∈ 𝐷𝐷2, … ,𝑑𝑑𝑛𝑛 ∈ 𝐷𝐷𝑛𝑛}. FABIOLA supports primitive column types (Integers, 
Floating point numbers, Strings, Dates and Booleans). 
This set of attributes is divided into three disjoined groups: Input (𝐼𝐼𝐼𝐼), Output (𝑂𝑂𝑂𝑂𝑂𝑂) and 
Others (𝑂𝑂𝑂𝑂), where 𝐼𝐼𝐼𝐼 ∩ 𝑂𝑂𝑂𝑂𝑂𝑂 =  ∅, 𝐼𝐼𝐼𝐼 ∩ 𝑂𝑂𝑂𝑂 =  ∅ and 𝑂𝑂𝑂𝑂 ∩ 𝑂𝑂𝑂𝑂𝑂𝑂 =  ∅. The descriptions 
are: 

• 𝐼𝐼𝐼𝐼 describes the input variables used in the optimization problem. 
• 𝑂𝑂𝑂𝑂𝑂𝑂 describes the variables of the optimization problem obtained after the search. 
• 𝑂𝑂𝑂𝑂 describes other variables of the table that can be used to make further queries 

combining the outputs and these variables. They are not related to the optimization 
problem since they do not influence in its resolution.  

 Example of a COP evaluated with multiple tuples  

A clear example to understand how the input affects the obtained outputs is a model-based 
diagnosis problem [5]. The example represents a component composed of 5 elements (two 
summations and three multipliers). The component obtains two outputs (f and g) according to 
the inputs (a, b, c, and d). Each element is associated to a Boolean variable (𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4,𝐶𝐶5 ) 



PARODY ET AL.  FABIOLA  

  

that describes if its behavior is correct or incorrect (a true or false value). To know if the 
component i is working correctly, it is necessary to know if every 𝐶𝐶𝑖𝑖   can take the value true, 
thereby the value of the variable sum is 5. The Constraint Optimization Problem is shown in 
Table 1.  

Table 1: Constraint Satisfaction Problem example. 

//Variables and Domains 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑓𝑓,𝑔𝑔, 𝑥𝑥,𝑦𝑦, 𝑥𝑥: FLOAT; 
𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4,𝐶𝐶5: Boolean; 
𝑠𝑠𝑠𝑠𝑠𝑠: Integer; 
 
// Constraints 
 𝐶𝐶1 = (𝑎𝑎 ∗ 𝑐𝑐 = 𝑥𝑥) ∧ 𝐶𝐶2 = (𝑏𝑏 ∗ 𝑑𝑑 = 𝑦𝑦) ∧ 𝐶𝐶3 = (𝑐𝑐 ∗ 𝑒𝑒 = 𝑧𝑧) ∧ 𝐶𝐶4 = (𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓) ∧              
 𝐶𝐶5 = (𝑦𝑦 + 𝑧𝑧 = 𝑔𝑔) 
 
// Optimization Function 

 𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3 + 𝐶𝐶4 + 𝐶𝐶5 
 

Table 2 shows some possible scenarios, where the output data is obtained according to each 
input data (per tuple). Every input data can be instantiated (tuples #1 and #2), and the output 
is obtained describing that every element is working correctly (sum is equal to 5), or not (sum 
is equal to 4). Also, it is possible that some input values are unknown, and the COP tries to 
find values for them to optimize the variable sum (tuples #3, #4 and #5). 

Table 2: Example of tuples in Model-Based Diagnosis. 

 Inputs Outputs Others 

#TupleID a b c d e f g sum Test 
ID Manufacturer 

#1 2 3 3 2 2 10 12 4 Test1 Telco 
#2 1 3 5 7 2 26 31 5 Test2 IBM 
#3 2 3 3 2 2 12 12 5 Test3 Telco 
#4 null 3 null null 2 10 12 5 Test4 IBM 
#5 5 null 2 2 1 9 18 3 Test5 Sony 

Other attributes, such as Manufacturer, are not part of and do not influence over the 
resolution of the optimization problem. However, they can be of help to answer queries, such 
as: Which is the manufacturer with more failed components? 

3.3. Configuration of Outputs  

Since the data is evaluated in different nodes, and the values of this data are also different 
according to each tuple, the optimization time and the obtained outputs can be extremely 
different. For this reason, FABIOLA enables to indicate some parameters to adequate the 
search to each case: 

• Maximum Time (t): In order to avoid the delay of evaluating a set of tuples, it is 
possible to delimit the maximum time to solve each COP. If t is reached, it can obtain 
a solution since a local optimal solution can be found during the search. But if the 
search has not finished, we cannot ensure that the solution found is the global 
optimal.  

• Optimal found? (optimal): If the solution obtained cannot be ensured as the optimal, it 
would be possible to determine whether the best solution found in t is included in the 
outputs or not. If the parameter takes the value true, a new column is automatically 
added to the output variables (called optimal) and it describes the nature of the 
optimal: global or partial. The column optimal can take true or false value. 



ISD2017 CYPRUS 

  

• Output Type (any or range). The output that is optimized can be achieved with fixed 
values in other variables, or with a set of different values (range). To determine if any 
value might be obtained or the possible range wants to be known, the output data can 
be attributed with the parameter any or range, being any by default. 

4. FABIOLA's Architecture and Methodology 

4.1. Architecture 

Figure 1 shows the main components of FABIOLA architecture and its integration with a Big 
Data infrastructure based on Hadoop.  

 
Fig. 1: Architecture of FABIOLA. 

FABIOLA is composed of four components: 
 

1. FABIOLA UI is a client side (web application) which enables to upload and load 
data from heterogeneous external resources. Currently, the supported data sources are: 
(1) structured data from databases; (2) semistructured data, such as XML or JSON 
files; and (3) unstructured data from text files or similar. FABIOLA UI also enables 
users to point out attributes from imported data as input data of the COP (cf. IN in 
Figure 1), the establishment of output data (cf. OUT), other types of attributes 
necessary for the problem (cf. OT), and finally the specific values for the 
configuration variables, such as t (cf. t at Figure 1). 

2. FABIOLA Metastore is provided as a system catalog where data is organized in the 
form of tables and schemes, such as in Hive [19]. These tables and schemes are only a 
virtual representation or view of the data since it is internally organized in the original 
format of a distributed file system, for example, HDFS, NFS or AFS. 

3. FABIOLA Nodes are solver nodes on top of Hadoop that enables to compute COPs. 
Thus, each row (tuple) instantiates a COP which is uniformly allotted among the 
available nodes in order to be solved. The possible solutions of those COPs feed the 
OUT column of each tuple in the Metastore.  

4. FABIOLA Dashboard is a reporting and querying component that enables users an 
easy-querying and visualization of data and results. 

With the aim of a better understanding of the application of the architecture to any problem, a 
systematic list of steps is given as a methodology in the next section. 

4.2. Methodology 

The necessary steps to fully execute and take all the advantages of FABIOLA framework are: 
1. Data Load and pre-processing. The user is in charge of identifying the data to be 

processed by FABIOLA. More specifically, he must:  
a. Create table/schemes in FABIOLA Metastore. 
b. Load data from external resources through FABIOLA UI. 



PARODY ET AL.  FABIOLA  

  

c. Establish which attributes from loaded data are IN and point out them in 
FABIOLA Metastore. 

d. Establish which attributes are OUT and point out them in FABIOLA 
Metastore1. 

e. Specify the values of the configuration parameters if they are necessary. Such 
as, the values of maximum time (t), optimal and output type (any|range). 

2. Data Processing. FABIOLA components are the responsible of automatically 
processing the data: 

a. FABIOLA takes a meta-COP (explained in Subsection 3.1) and instantiates a 
COP model for each row of data in FABIOLA Metastore. To do that, IN and 
OUT values of each row are aligned with the variables of the COP.  

b. The instantiated COPs are sent in parallel to FABIOLA Nodes in order to be 
computed. 

c. Each FABIOLA Node is executed to solve each COP.  
d. Afterwards, the process finishes and OUT attributes are fulfilled (if a solution 

has been found in t and according to the configuration parameters explained 
in Subsection 3.3). 

3. Results are visualized in a configurable dashboard, where the user can even submit 
queries by combining every attribute of the FABIOLA Metastore. 

Figure 2 shows two snapshots of FABIOLA tool: (a) the form to load and pre-processing the 
data, and (b) the presentation of results in FABIOLA Dashboard. As it is shown, the interface 
is user-friendly, and supports user throughout the application of the methodology, either 
explaining each step or suggesting specific configurations. Furthermore, although the 
description of the set of constraints can be a hard task, it is done once and applied to every set 
of data. FABIOLA also provides an easy language to define the constraints based on the 
query language of Constraint Databases [9, 10, 11]. 

5. Example of Application Scenarios 
FABIOLA can be applied to different types of contexts and we have used it in several real 
scenarios, as explained in the following subsections.  

5.1. Contract and Use of Supply Services 

In order to success in their operations, customers and companies must contract third 
companies’ services for some basic supplies, such as communications, light and water, 
services on the cloud, etc. Most of the time, customers hire more resources than they need in 
order to avoid shortcoming problems. However, it turns into paying more than it is required. 
On the contrary, contracting services below requirements might imply non-availability of the 
services or even an extra cost for overused resources. The study of resources consumption for 
each individual requirements and the imposed market constraints might result in an elastic 
and customized plan with considerable cost savings for customers and high benefits for 
companies.  
A clear example is Amazon Web Services (AWS) [1], one of the most leading product for 
hosting services on the cloud. AWS offers multiple pricing plans depending on several 
characteristics, such as the number of instances, region of location, operative system, etc. A 
wrong foresight on resource or data consumption could range in an unexpected high cost. 
AWS's cost is determined by four main categories: 

• Region, fourteen available regions where computational instances and storage are 
located. 

 

                                                      
1 All the attributes that are not categorized as IN or OUT are grouped in OT in FABIOLA Metastore 



ISD2017 CYPRUS 

  

 
Fig. 2: (a) FABIOLA User Interface, and (b) FABIOLA Dashboard. 

• Compute: defined by: the number of instances of a specific type i (NInstances); the 
expected percentage of usage of instances of type i (%Usage); the cost per hour 
(𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶 − 𝑅𝑅𝑒𝑒𝑔𝑔𝑅𝑅𝐶𝐶𝑛𝑛(𝑅𝑅, 𝑟𝑟)) of performing instances of type i in region r.  

• Storage: defined by various parameters: capacity of storage (StorageCapacity), type 
of storage (StorageType), and cost of the capacity c for the type of storage st (𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶 −
𝑆𝑆𝐶𝐶𝐶𝐶𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒(𝑐𝑐, 𝑠𝑠𝐶𝐶))).  

• Data Transfer: gigabyte of input data per month (DataInput), gigabyte of output data 
per month (DataOutput), and the cost of transfer data into/outside the services in a 
region r (CostDataTransfer(r)). 

There are several optional parameters that can be used to customize the services but they do 
not increase the final price of the service, such as monitoring options. The objective is to 
determine the minimum cost in any region when the percentage of usage in computational 
instances is greater than 0%. For example, which is the minimum cost for an expected 
hardware whose requirements are n instances of type t1, a pool of storage of at least 1000 GB, 
20GB/Month of input/output data, and a maximum workload of 50% for each t1. 

• Data Model: 
o IN: Region, InstanceType, NumberOfIntances, %Usage, StorageCapacity, 

StorageT ype, DataInput, DataOutput. 
o OUT: Region, EstimatedCost 
o OT: Description, DedicatedMonitoring, ELB, OperativeSystem. 

• Constraint Optimization Problem: 
o {Region, InstanceType, …, DataOutput} Integer; 



PARODY ET AL.  FABIOLA  

  

o ∀i ∈ {0 … NumberIfInstances}%𝑂𝑂𝑠𝑠𝑎𝑎𝑔𝑔𝑒𝑒𝑖𝑖 ≥ 1&%𝑂𝑂𝑠𝑠𝑎𝑎𝑔𝑔𝑒𝑒𝑖𝑖 ≤ 50 →
𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑠𝑠𝐶𝐶𝑒𝑒 = %𝑂𝑂𝑠𝑠𝑎𝑎𝑔𝑔𝑒𝑒𝑖𝑖 ∗ 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑅𝑅𝑒𝑒𝑔𝑔𝑅𝑅𝐶𝐶𝑛𝑛(𝐼𝐼𝑛𝑛𝑠𝑠𝐶𝐶𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒𝑂𝑂𝑦𝑦𝐶𝐶𝑒𝑒,𝑅𝑅𝑒𝑒𝑔𝑔𝑅𝑅𝐶𝐶𝑛𝑛); 

o 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒 = 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒(𝑆𝑆𝐶𝐶𝐶𝐶𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑂𝑂𝑦𝑦𝐶𝐶𝑒𝑒,𝑅𝑅𝑒𝑒𝑔𝑔𝑅𝑅𝐶𝐶𝑛𝑛) ∗
𝑆𝑆𝐶𝐶𝐶𝐶𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝐶𝐶𝑎𝑎𝐶𝐶𝑎𝑎𝑐𝑐𝑅𝑅𝐶𝐶𝑦𝑦; 

o 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎 = 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝑂𝑂𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑓𝑓𝑒𝑒𝑟𝑟(𝑅𝑅𝑒𝑒𝑔𝑔𝑅𝑅𝐶𝐶𝑛𝑛) ∗ 𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎𝑂𝑂𝑠𝑠𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶; 
o 𝑀𝑀𝑅𝑅𝑛𝑛𝑅𝑅𝑠𝑠𝑅𝑅𝑧𝑧𝑒𝑒 (𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑠𝑠𝐶𝐶𝑒𝑒 +  𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒 + 𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶𝐷𝐷𝑎𝑎𝐶𝐶𝑎𝑎); 

• Example of Queries: Which is the region where the estimated cost is minimum, or 
less than 100 per month, with a specific configuration? Which are the instances with 
more than one hundred of extra elastic IPs? 

5.2. Diagnosis Problem for Heat Exchangers 

The diagnosis problem in a set of reading sensors is an important challenge that manages a 
huge number of systems that can be diagnosed in parallel. Model-based diagnosis can be 
described as an optimization problem, where the minimal explanation of a malfunction can be 
found [13]. A set of constraints describes the relation that each part of the system must follow. 
The objective is to describe the relations between them and to detect and diagnose the 
possible errors that occur in the system.  

 
Fig. 3: (a) Heat Exchanger  (b) Automobile Supply Chain Model. 

Each system, shown in Figure 3.(a), is composed by: six heat exchangers, called 
𝐸𝐸1,𝐸𝐸2,𝐸𝐸3,𝐸𝐸4,𝐸𝐸5,𝐸𝐸6, and eight nodes, called 𝐼𝐼11,𝐼𝐼12,𝐼𝐼13,𝐼𝐼14,𝐼𝐼21,𝐼𝐼22,𝐼𝐼23,𝐼𝐼24. Each 
connection (tube) between an exchanger and a node is defined by two parameters: a flow (𝑓𝑓𝑖𝑖) 
and a temperature (𝐶𝐶𝑖𝑖) (where i is the enumerated name of the connection). For example, the 
three input arrows of the system in Figure 3.(a), enumerated as 11, 21, and 31, defines three 
input flows, called 𝑓𝑓11, 𝑓𝑓21, and 𝑓𝑓31, and three temperatures, called 𝐶𝐶11, 𝐶𝐶21, and 𝐶𝐶31. This 
nomenclature is applied to the rest of connections between exchangers and nodes. The 
correctness of a system is defined by a set of constraints that relates the flow and temperature 
of each connection that the exchangers and nodes manage [9]. More specifically, there are a 
set of polynomial constraints that defines three different kinds of balances that the exchangers 
and nodes must satisfy: 

• ∑ 𝑓𝑓𝑖𝑖 = 0𝑖𝑖 : mass balance at each node. 
• ∑ 𝑓𝑓𝑖𝑖 … 𝐶𝐶𝑖𝑖 = 0𝑖𝑖 : thermal balance at each node. 
• ∑ 𝑓𝑓𝑖𝑖 … 𝐶𝐶𝑖𝑖𝐼𝐼𝐼𝐼 − ∑ 𝑓𝑓𝑖𝑖 … 𝐶𝐶𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂 = 0: enthalpy balance for each heat exchanger. 

A component works correctly if it satisfies its corresponding balances constraints. Thus, in 
order to diagnoses the minimum malfunction components, the objective is to maximize the 
number of correct components. Following the defined parts of FABIOLA, the components 
are: 

• Data Model: 
o IN: 𝐶𝐶11, 𝐶𝐶12, 𝐶𝐶13, 𝐶𝐶16, 𝐶𝐶17, 𝐶𝐶18, 𝐶𝐶19, 𝐶𝐶112, 𝐶𝐶21, 𝐶𝐶26, 𝐶𝐶27, 𝐶𝐶212, 𝐶𝐶31, 𝐶𝐶33, 

𝑓𝑓11, 𝑓𝑓12, 𝑓𝑓13, 𝑓𝑓16, 𝑓𝑓17, 𝑓𝑓18, 𝑓𝑓19, 𝑓𝑓112, 𝑓𝑓21, 𝑓𝑓26, 𝑓𝑓27, 𝑓𝑓212, 𝑓𝑓31, 𝑓𝑓33 
o OUT: 𝐼𝐼11,𝐼𝐼12,𝐼𝐼13,𝐼𝐼14,𝐼𝐼21,𝐼𝐼22,𝐼𝐼23,𝐼𝐼24,𝐸𝐸1,𝐸𝐸2,𝐸𝐸3,𝐸𝐸4,𝐸𝐸5,𝐸𝐸6 
o OT: Name, Location 



ISD2017 CYPRUS 

  

• Constraint Optimization Problem: 
o {𝐶𝐶11, 𝐶𝐶12, … , 𝐶𝐶31, 𝐶𝐶33, 𝑓𝑓11, 𝑓𝑓12, … , 𝑓𝑓33} Integer; 
o 𝐼𝐼12𝑎𝑎 ,𝐼𝐼12𝑏𝑏 ,𝐼𝐼21𝑎𝑎 ,𝐼𝐼22𝑏𝑏 ,𝐸𝐸1𝑎𝑎 ,𝐸𝐸1𝑏𝑏 ,𝐸𝐸1𝑐𝑐 ,𝐸𝐸2𝑎𝑎 ,𝐸𝐸2𝑏𝑏 ,𝐸𝐸2𝑐𝑐 Boolean; 
o 𝐼𝐼12𝑎𝑎 =  𝑓𝑓14 + 𝑓𝑓15 − 𝑓𝑓16 = 0 
o 𝐼𝐼12𝑏𝑏 =  𝑓𝑓14 ∗ 𝐶𝐶14 + 𝑓𝑓15 ∗ 𝐶𝐶15 − 𝑓𝑓16 ∗ 𝐶𝐶16 = 0 
o 𝐼𝐼21𝑎𝑎 =  𝑓𝑓21 − 𝑓𝑓22 − 𝑓𝑓23 = 0 
o 𝐼𝐼21𝑏𝑏 =  𝑓𝑓21 ∗ 𝐶𝐶21 − 𝑓𝑓22 ∗ 𝐶𝐶22 − 𝑓𝑓23 ∗ 𝐶𝐶23 = 0 
o 𝐼𝐼22𝑎𝑎 =  𝑓𝑓24 − 𝑓𝑓25 − 𝑓𝑓26 = 0 
o 𝐼𝐼22𝑏𝑏 =  𝑓𝑓24 ∗ 𝐶𝐶24 − 𝑓𝑓25 ∗ 𝐶𝐶25 − 𝑓𝑓26 ∗ 𝐶𝐶26 = 0 
o 𝐸𝐸1𝑎𝑎 =  𝑓𝑓12 − 𝑓𝑓14 = 0 
o 𝐸𝐸1𝑏𝑏 =  𝑓𝑓22 − 𝑓𝑓24 = 0 
o 𝐸𝐸1𝑐𝑐 =  𝑓𝑓12 ∗ 𝐶𝐶12 − 𝑓𝑓14 ∗ 𝐶𝐶14 + 𝑓𝑓22 ∗ 𝐶𝐶22 − 𝑓𝑓24 ∗ 𝐶𝐶24 = 0 
o 𝐸𝐸2𝑎𝑎 =  𝑓𝑓13 − 𝑓𝑓15 = 0 
o 𝐸𝐸2𝑏𝑏 =  𝑓𝑓23 − 𝑓𝑓25 = 0 
o 𝐸𝐸2𝑐𝑐 =  𝑓𝑓13 ∗ 𝐶𝐶13 − 𝑓𝑓15 ∗ 𝐶𝐶15 + 𝑓𝑓23 ∗ 𝐶𝐶23 − 𝑓𝑓25 ∗ 𝐶𝐶25 = 0 
o 𝑀𝑀𝑎𝑎𝑥𝑥𝑅𝑅𝑠𝑠𝑅𝑅𝑧𝑧𝑒𝑒(𝐼𝐼12𝑎𝑎 + 𝐼𝐼12𝑏𝑏 + 𝐼𝐼21𝑎𝑎 + 𝐼𝐼22𝑏𝑏 + 𝐸𝐸1𝑎𝑎 + 𝐸𝐸1𝑏𝑏 + 𝐸𝐸1𝑐𝑐 + 𝐸𝐸2𝑎𝑎 + 𝐸𝐸2𝑏𝑏 + 𝐸𝐸2𝑐𝑐) 

• Example of Queries: Which are the locations where 𝐼𝐼12𝑎𝑎  is failing (𝐼𝐼12𝑎𝑎  or 𝐼𝐼12𝑏𝑏  is 
false)? Which is the Name of the systems that are working correctly? 

5.3. Automotive Supply Chain Problem for a Demand-Driven Distribution 

In the area of automotive industry, and any other kind of industry where production and 
delivery are necessary, it is necessary to transport the products from production centres (n 
Plants) to distribution centres (m Dist), where 𝑛𝑛 ≪ 𝑠𝑠 (see Figure 3.(b)). Different demands 
on these last centres determine the different solutions, that are represented in a bidimensional 
array, called Assign[n,m]. The objective is to obtain the minimal transport cost in order to 
maintain a competitive advantage. The constraints of this problem are defined according to 
the characteristics of the different logistic enterprises of the market. Following the defined 
parts of FABIOLA, where each tuple represents the distribution per day, the components are: 

• Data Model: 
o IN: Capacity: Array[NFact] of Integer, Demand: Array[MDist] of Integer, 

Cost: Array[NFact,MDist] of Integer. 
o OUT: TotCost: Integer, Assign: Array[NFact,MDist] of Integer 
o OT: Name of the Logistic Enterprise. 

• Constraint Optimization Problem: 
o Assign[NFact, MDist]: Integer; TotalCost: Integer; 
o ∀p ∈ {0, … , n} ∑ 𝐴𝐴𝑠𝑠𝑠𝑠𝑅𝑅𝑔𝑔𝑛𝑛[𝐶𝐶, 𝑐𝑐]𝑚𝑚

𝑐𝑐=1 ≤ 𝑐𝑐𝑎𝑎𝐶𝐶𝑎𝑎𝑐𝑐𝑅𝑅𝐶𝐶𝑦𝑦[𝐶𝐶]; 
o ∀c ∈ {0, … , m} ∑ 𝐴𝐴𝑠𝑠𝑠𝑠𝑅𝑅𝑔𝑔𝑛𝑛[𝐶𝐶, 𝑐𝑐]𝑚𝑚

𝑝𝑝=1 ≤ 𝑑𝑑𝑒𝑒𝑠𝑠𝑎𝑎𝑛𝑛𝑑𝑑[𝑐𝑐]; 
o TotalCost = ∑ ∑ 𝐴𝐴𝑠𝑠𝑠𝑠𝑅𝑅𝑔𝑔𝑛𝑛[𝐶𝐶, 𝑐𝑐] ∗ 𝑐𝑐𝐶𝐶𝑠𝑠𝐶𝐶[𝐶𝐶, 𝑐𝑐]𝑚𝑚

𝑐𝑐=1
𝑛𝑛
𝑝𝑝=1   

o 𝑀𝑀𝑅𝑅𝑛𝑛𝑅𝑅𝑠𝑠𝑅𝑅𝑧𝑧𝑒𝑒 (𝑂𝑂𝐶𝐶𝐶𝐶𝑎𝑎𝑇𝑇𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶); 
• Example of Queries: Which are the Assign and 𝑂𝑂𝐶𝐶𝐶𝐶𝑎𝑎𝑇𝑇𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶 for the DHL logistic 

enterprise? Which are the logistic enterprises whose 𝑂𝑂𝐶𝐶𝐶𝐶𝑎𝑎𝑇𝑇𝐶𝐶𝐶𝐶𝑠𝑠𝐶𝐶 is less than 50.000? 

6. Conclusions and Future work 
Optimization problems are found in several real examples. It becomes a higher problem when 
the data involved is in a Big Data environment, which implies huge quantity of information, 
distributed and heterogeneous. FABIOLA framework has been formalized to support the 
definition and resolution of distributed Constraint Optimization Problems, isolating from 
where the data is, and how the optimal outputs are found. Three different examples have been 
introduced to show the flexibility of the proposal. An interface has also been developed to 
approach the solution to final users.  



PARODY ET AL.  FABIOLA  

  

As future work, it would be interesting to extend the type of elements included in the input 
and output variables, such as nestable collection types-array and map. These types imply the 
management of semi-structure and non-structured information. The possibility of giving users 
the opportunity to define their own types programmatically could be also helpful. 

Acknowledgements  

This work has been partially funded by the Ministry of Science and Technology of Spain 
(TIN2015-63502-C3-2-R) and the European Regional Development Fund (ERDF/FEDER).  

References 
1. Amazon-Web Services, http://aws.amazon.com/whitepapers/. Accessed April 15, 

2017.  
2. Apache Hadoop, http://wiki.apache.org/hadoop. Accessed April 15, 2017. 
3. Chattopadhyay, B., Lin, L., Liu, W., Mittal, S., Aragonda, P., Lychagina, V., Kwon, 

Y., and Wong, M. Tenzing a sql implementation on the mapreduce framework. In 
Proceedings of VLDB, pp. 1318--1327, (2011) 

4. Choco Solver, http://www.choco-solver.org/. Accessed April 15, 2017. 
5. Ceballos, R., Gómez-López, M. T., M. Gasca, R., Del Valle Sevillano, C. A compiled 

model for faults diagnosis based on different techniques. AI Commun. 20(1), 7-16 
(2007) 

6. Freuder, E.F., and O'Sullivan, B. Grand challenges for constraint programming. 
Constraints, 19(2), 150-162 (2014) 

7. IBM-ILOG CPLEX Studio, http://www-
03.ibm.com/software/products/es/ibmilogcpleoptistud. Accessed April 15, 2017.  

8. Gómez-López, M. T., Ceballos, R., M. Gasca, R., Del Valle, C. Applying Constraint 
Databases in the Determination of Potential Minimal Conflicts to Polynomial Model-
based Diagnosis. CDB 2004: pp- 75-89 (2004) 

9. Gómez-López, M.T., Ceballos, R., M. Gasca, R., del Valle Sevillano, C. Developing 
a labelled object-relational constraint database architecture for the projection 
operator. Data Knowl Eng 68(1), 146–172 (2009) 

10. Gómez-López MT, M. Gasca, R. Using constraint programming in selection 
operators for constraint databases. Expert System Applications 41(15), 6773–6785 
(2014) 

11. Gómez-López MT, M. Gasca, R. Object Relational Constraint Databases for GIS. 
Encyclopedia of GIS 2017, 1449-1457 (2017) 

12. Labrinidis, A. and Jagadish, H.V. Challenges and opportunities with big data. Proc. 
VLDB Endow., 5(12), 2032-2033 (2012) 

13. M. Gasca, R. , Del Valle Sevillano, C., Gómez-López, M. T., Ceballos, R. NMUS: 
Structural Analysis for Improving the Derivation of All MUSes in Overconstrained 
Numeric CSPs. CAEPIA 2007,  pp.160-169 (2007) 

14. Nasser T and Tariq RS. Big data challenges. Computer Engineering \& Information 
Technology, 4(3), 1-10 (2015) 

15. Olston, C., Reed, B., Silberstein, A., and Srivastava, U. Automatic optimization of 
parallel dataflow programs. In USENIX 2008 Annual Technical Conference, ATC'08, 
pp. 267--273, Berkeley, CA, USA (2008) 

16. O'Sullivan, B. Opportunities and challenges for constraint programming. In 
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 
AAAI'12, 2148--2152. AAAI Press (2012) 

17. Rossi, F., van Beek, P., and Walsh, T. Handbook of Constraint Programming. 
Elsevier (2006) 

18. Rossi, F. and Saraswat, V. Constraint programming languages for big data 
applications. 

http://aws.amazon.com/whitepapers/
http://wiki.apache.org/hadoop
http://www.choco-solver.org/
http://www-03.ibm.com/software/products/es/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/es/ibmilogcpleoptistud


ISD2017 CYPRUS 

  

19. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., 
Wyckoff, P., and Murthy, R. Hive: A warehousing solution over a map-reduce 
framework. Proc. VLDB Endow., 2(2), 1626-1629 (2009) 

20. Zaharia, M., Xin, RS., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., 
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., 
and  Stoica, I. Apache spark: a unified engine for big data processing. Commun. 
ACM, 59(11), 56-65 (2016) 

21. White, T. Hadoop: The Definitive Guide. O'Reilly Media, Inc., 1st edition (2009) 


	1. Introduction
	2. Related Work
	3. Formalization of the problem
	3.1. Constraint Optimization Problem
	3.2. Data Model: Input, Output and Other Data
	Example of a COP evaluated with multiple tuples

	3.3. Configuration of Outputs

	4. FABIOLA's Architecture and Methodology
	4.1. Architecture
	4.2. Methodology

	5. Example of Application Scenarios
	5.1. Contract and Use of Supply Services
	5.2. Diagnosis Problem for Heat Exchangers
	5.3. Automotive Supply Chain Problem for a Demand-Driven Distribution

	6. Conclusions and Future work
	Acknowledgements

	References

