
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2017 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

Summer 7-20-2017

Privacy-preserving Data clustering in Cloud
Computing based on Fully Homomorphic
Encryption
Abdulatif Alabdulatif
RMIT university, Abdulatif.alabdulatif@rmit.edu.au

Ibrahim Khalil
RMIT University, Melbourne, ibrahim.khalil@rmit.edu.au

Mark Reynolds
Bosten university, markreyn@bu.edu

Heshan Kumarage
RMIT university, heshandk@gmail.com

Xun Yi
RMIT University, Melbourne, xun.yi@rmit.edu.au

Follow this and additional works at: http://aisel.aisnet.org/pacis2017

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2017 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Alabdulatif, Abdulatif; Khalil, Ibrahim; Reynolds, Mark; Kumarage, Heshan; and Yi, Xun, "Privacy-preserving Data clustering in
Cloud Computing based on Fully Homomorphic Encryption" (2017). PACIS 2017 Proceedings. 289.
http://aisel.aisnet.org/pacis2017/289

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2017%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2017?utm_source=aisel.aisnet.org%2Fpacis2017%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2017%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2017%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2017?utm_source=aisel.aisnet.org%2Fpacis2017%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2017/289?utm_source=aisel.aisnet.org%2Fpacis2017%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

Privacy-preserving Data clustering in Cloud
Computing based on Fully Homomorphic

Encryption
 Completed Research Paper

Abdulatif Alabdulatif

Computer Science &
Software Engineering,

School of Science, RMIT university
Abdulatif.alabdulatif@rmit.edu.au

Ibrahim Khalil
Computer Science &

Software Engineering,
School of Science, RMIT university

Ibrahim.khalil@rmit.edu.au

Mark Reynolds
Computer Science Department

Bosten university
markreyn@bu.edu

Heshan Kumarage
Computer Science &

Software Engineering,
School of Science, RMIT university

heshandk@gmail.com

Xun Yi
Computer Science &

Software Engineering,
School of Science, RMIT university

xun.yi@rmit.edu.au

Abstract
Cloud infrastructure with its massive storage and computing power is an ideal
platform to perform large scale data analysis tasks to extract knowledge and
support decision-making. However, there are critical data privacy and security
issues associated with this platform, as the data is stored in a public infrastructure.
Recently, fully homomorphic data encryption has been proposed as a solution due to
its capabilities in performing computations over encrypted data. However, it is
demonstrably slow for practical data mining applications. To address this and
related concerns, we introduce a fully homomorphic and distributed data processing
framework that utilizes MapReduce to perform distributed computations for data
clustering tasks on a large number of cloud Virtual Machines (VMs). We illustrate
how a variety of fully homomorphic-based computations can be carried out to
accomplish data clustering tasks independently in the cloud and show that the
distributed execution of data clustering tasks based on MapReduce can significantly
reduce the execution time overhead caused by fully homomorphic computations. To
evaluate our framework, we performed experiments using electricity consumption
measurement data on the Google cloud platform with 100 VMs. We found the
proposed distributed data processing framework to be highly efficient when
compared to a centralized approach and as accurate as a plaintext implementation.

Keywords: Privacy-preserving data clustering, Fully homomorphic encryption, Cloud-based

framework

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

Introduction
Data analytics has proven its potential to extract knowledge and support decision-making. However,
the continuous increase in data generated by enterprises, as evidenced by the rise of social media and
the Internet of Things (IoT), has produced an overwhelming data flow that, in turn, raises critical
issues concerning the capabilities of traditional analytics tools (Labrinidis and Jagadish 2012),
(Cuzzocrea et al. 2011). The cloud platform has been introduced as a convenient platform with on
demand unlimited ‘on demand’ access to resources and location independence. Figure 1 illustrates the
applications domains that can benefit from delegating their services to cloud computing. Nevertheless,
perspective users (e.g. individuals or organizations) have major concerns about the privacy of data
because it is stored in public cloud infrastructure that is managed by the cloud service provider (CSP)
(Subashini and Kavitha 2011). Accordingly, several data privacy issue can arise if the CSP misuses data
or if outside malicious attackers gain unauthorized access to data stored on the cloud (Subashini and
Kavitha 2011).

Preservation of the privacy of data mining algorithms has been an area studied extensively

over the last decade. For example, Agarwal and Srikant (Agrawal and Srikant 2000) and Lindell and
Pinkas (Lindell and Pinkas 2000) introduced privacy preserving models to extract useful information
from private data. Since that time, several privacy-preserving data mining approaches have been
introduced, including (Vaidya and Clifton 2003), (Bunn and Ostrovsky 2007). The existing models are
either randomization-based models, as in (Agrawal and Srikant 2000), (Kargupta et al. 2003), or
cryptographic-based models, as in (Doganay et al. 2008), (Inan et al. 2007). Although randomization-
based models are efficient, they do not rely on a well-defined security mechanism and, because of this,
add a large amount of noise causing the data to no longer represent the original values (Pedersen et al.
2007). On the another hand, although the cryptographic-based models preserve a high level of
privacy, they suffer in terms of high computational cost and communication overheads (Pedersen et
al. 2007). Therefore, overhead reduction is a focal issue in cryptography-based research.

The state-of-the-art cryptographic privacy-preserving data mining approach is categorized

according to three main techniques: oblivious transfer, secret sharing and Homomorphic Encryption
(HE). HE techniques have the ability to carry out computations on encrypted domains, such as the
Pallier Homomorphic cryptosystem in (Paillier 1999) . However, Pillier and colleagues used a HE
cryptosystem that is classified under Partially Homomorphic Encryption (PHE), where a limited
number of computations are carried out and which lacks arithmetic operations variety. These
drawbacks limit the usability the PHE cryptosystems in data mining applications. In short, the critical issues
of current cryptography-based models can be summarized as follows: 1) The majority of the existing
models rely on Trusted Third Party (TTP), as in (Inan et al. 2007), which creates critical privacy and
security issues (Benjamin et al. 2010); 2) The secret sharing-based models have a limited scope for
improvement in terms of communication overhead reduction, which would reduce the scaling
capability of a number of parties in a distributed scenario (Doganay et al. 2008); and 3) The existing
HE-based models adapt traditional public key cryptography techniques. However, the PHE
cryptosystems are lacking in terms of computations capabilities and limited to certain number of
computations. These incur high computation and communication overheads because they require
many encryption/decryption operations for verification and computational processes(Jha et al. 2005).
To address these concerns, in this paper we propose a privacy-preserving data clustering framework
based on a fully homomorphic cryptographic technique with the following objectives: 1) Avoid using
TTP, as this can give rise to several critical privacy and security issues; 2) Avoid intensive
communication between various parties, as this can lead to information leakage during
communication; 3) Avoid computation overheads resulting from a large number of
encryption/decryption operations during data analysis, for encryption/decryption operations during
data analysis, for either verification or computations purposes. These objectives can be achieved by
adapting Fully Homomorphic Encryption (FHE), as described in (Gentry 2009).

With FHE, mathematical computations can be carried out in an encrypted domain. However,
although FHE such as the Gentry (Gentry 2009) and van Dijk (Van Dijk et al. 2010) schemes, are
considered to be impractical compared with PHE (Naehrig et al. 2011), they can perform an unlimited
number of both addition and multiplication operations. PHE has the ability to perform limited
additions or multiplications, but not both, such as the RSA (Rivest et al. 1978) and Paillier (Paillier
1999) approaches. FHE underwent several optimization stages intended to improve its performance
efficiency. In 2012, Gentry et al. (Gentry et al. 2012) implemented an efficient encryption procedure of

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

Figure 1. An overview of applications domains that can benefit
from our privacy-preserving data clustering framework in cloud
computing. Data owners can delegate their data analytic services

to the cloud computing securely.

the Advanced Encryption Standard (AES) cipher. After several further optimizations to improve the
evaluation time, the Brakerski-Gentry-Vaikuntanathan (BVG) scheme (Brakerski and Vaikuntanathan
2011) made it possible to perform an AES evaluation in less than three hours. Despite these
optimizations, it is still far from ready to be applied in practical, real world situations.

In this paper, we investigate the possibilities of adapting FHE for privacy-preserving data
analytics in cloud computing. Distributed FHE computations offer a viable approach to overcome the
huge overhead incurred by FHE computation and allows us to build scalable and efficient data
analytics models (Hayward and Chiang 2015). To build this privacy-preserving data analysis model,
we used the HElib library (Halevi and Shoup 2014), which is written using C++ and based on the
Number Theory Library (NTL). However, the HElib scheme has shortcomings in its ability to perform
data analysis tasks, such as the ability to perform computations on floating-point numbers, which is
essential in most data mining applications. Moreover, it also does not provide functionality for
performing fundamental data analysis operations, such as division and comparison. In this paper, we
provide a convenient solution to solve these shortcomings. The IEEE standard for floating-point
arithmetic (IEEE 754) is utilized to convert floating-point numbers in their integer representation,
which makes it suitable for processing in the HElib. Moreover, we built secure division and
comparison functions on top of the HElib library to enable automation of the entire data analysis
process. The MapReduce functionality was adapted to distribute the analysis computations to
significantly reduce the FHE computation time overhead. For the sake of simplicity, we used Fixed-
Width Clustering (FWC) as a possible data clustering method, as it can be deployed in various existing
applications.

Contribution
The major contributions of this paper are as follows:

• The design and implementation of a distributed data clustering approach using fully
homomorphic encryption.

• The distribution of encrypted computations amongst a large number of virtual machines
(VMs) to perform data analysis tasks in a matter of minutes, significantly reducing the
computation time overhead of a fully homomorphic approach as in BGV scheme .It is
demonstrated that the proposed framework can perform analysis tasks on encrypted data
completely in cloud, without the need to interact with other entities (e.g. data owners or TTP).

• The development and introduction of functions to perform comparison and division
operations into the BGV scheme, with capability to perform operations on both integer and
floating-point representations. We show that fully homomorphic floating- point arithmetic
computations can be carried out using the IEEE standard for floating-point arithmetic (IEEE
754).

• Comprehensive experimental evaluations that compare the efficiency of the proposed

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

approach to that of a centralized data processing. We show that the proposed models work to
significantly improve the computational performance efficiency for clustering tasks.

Related work

Privacy-preserving data mining approaches are classified into two main categories: randomization
and cryptographic techniques. The latter includes secret sharing, oblivious transfer and HE. In the
randomization approach, Agarwal and Srikant (Agrawal and Srikant 2000) proposed a randomization
scheme which added a random number only to the sensitive value of an attribute. They claim that it is
possible to reconstruct the distribution of the original data for a given distribution of random noise.
Moreover, Kargupta et al. (Kargupta et al. 2003) introduced a random matrix based on a spectral
filtering technique that has the ability to recover the original data from the perturbed data. Other
randomization techniques have been proposed in (Oliveira and Zaiane 2010) and (Gurevich and
Gudes 2006). Although compared to the cryptographic techniques the randomization approach is an
efficient and simple technique that can be easily implemented, a great amount of information is lost
during the transformation processes (Shanthi and Karthikeyan 2012). Moreover, the randomization
approach does not provide a formal way of indicating how much security and privacy is guaranteed.
Therefore, it is not a convenient approach for applications that require high security, privacy and
accurate results (Pedersen et al. 2007).

Cryptographic approaches are classified as either Secure Multi-party Computation (SMC) or
HE. SMC was originally introduced by Yao (Yao 1982) and allows different parties to jointly
collaborate to compute a specific function on their private data, while preserving the data privacy of
each party. Secret sharing (Doganay et al. 2008) and oblivious transfer (Inan et al. 2007), (Vaidya and
Clifton 2003) are two of the main protocols of SMC and most SMC applications are based on semi-
honest models (Panackal and Pillai 2013). The SMC applications based on malicious adversary models
are too complex to be suitable for data mining application in their current form (Panackal and Pillai
2013). HE has the ability to carry out computations on encrypted domains and has two main
categories: PHE, as in (Rivest et al. 1978), (Paillier 1999), and FHE schemes, as in (Gentry 2009),
(Brakerski and Vaikuntanathan 2011). Despite that fact that PHE schemes are efficient, they are
impractical because they lack the arithmetic operations capabilities required for data analysis
applications (Aguilar-Melchor et al. 2013). They also cause a huge communication overhead as both
the sender and the receiver are required to transmit data several times to each other to perform even
simple addition and multiplication operations. On the other hand, FHE schemes require the
encrypted data to be transmitted only once. However, due to the large computational overhead, most
of them are still far from being ready to use in practical applications.

Data mining applications require a very large number of arithmetic operations, but FHE
schemes can be made suitable if the required operations are executed in parallel or in a distributed
environment to achieve near real-time performance. MapReduce on a cloud platform is considered to
be the most viable option to achieve this objective. However, the absence of cryptographic security
would be seen as a serious weakness in such applications. Since data analysis is already
computationally heavy and HE adds an enormous computational burden to the existing woes, we took
advantage of both to build secure, but scalable, distributed data mining algorithms.

Preliminaries

The Brakerski-Gentry-Vaikuntanathan (BGV) fully homomorphic encryption
scheme

The BGV (Brakerski et al. 2014)is an asymmetric encryption scheme, the security of which is linked to
the difficulty of ring-learning with errors (RLWE) problem. The BGV scheme is a leveled fully
homomorphic scheme that eliminates the expensive re-encryption operation. Therefore, it can
evaluate all circuits homomorphically up to a predefined depth without bootstrapping. The BGV
operates over a polynomial ring where is a cyclotomic polynomial. The ciphertext
space is polynomials over where is an integer modulus, the plaintext space is a ring

 some integers and . The basic BGV operations can be distributed as
follows:

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

• The key generation algorithm has three inputs: a prime
number (that defines the plaintext space, a security parameter (), and the depth level of
the evaluated arithmetic circuit). The outputs are a secret key () and a corresponding
public key ().

• (c) The encryption algorithm has two inputs: the public key ()
and the plaintext message . The output is a ciphtertext that is homomorphically
encrypted.

• The decryption algorithm has two inputs: the secret key
and the ciphertext message . The output is a plaintext .

HElib library
We built our privacy-preserving data clustering framework on the HElib library that is an open source
implementation of the BGV HE scheme and includes many optimizations to speed up homomorphic
evaluation. The focus is on the effective use of the Smart-Vercauteren ciphertext packing techniques
and the Gentry-Halevi-Smart optimizations. The HElib library does not support arithmetic
computations on float-point numbers, which is an obstacle because most applications in data mining
domain require computations on floating-point numbers. Therefore, we contributed to improving the
HElib library by providing a practical solution to perform arithmetic computations on floating-point
numbers by utilizing an IEEE standard for floating-point arithmetic (IEEE 754). IEEE 754 has the
ability to transform a floating-point number to a set of integer values that can, in turn, be used in the
HElib library. The process can reverse a set of encrypted integer values to determine: the floating-
point value. We expand on the IEEE 754 representation and arithmetic operations below.

IEEE standard for floating-point arithmetic (IEEE 754)

IEEE 754 is a representation for floating-point computation. In this paper, IEEE 754 is used to
perform floating-point arithmetic by converting floating-point numbers to a set of integers that in
turn become compatible with the HElib library. The IEEE 754 representation of a floating point
number F which in Figure 2 has 32 bits (and can be extended to 64 bits) is arranged as follows:

• is the sign bit (a 1-bit field).
• is the exponent field (an 8-bit field).
• is the mantissa field (a 23-bit field).

Figure 2. The IEEE 754 (32 bits) representation for a
floating-point number.

Some implementations store a hidden 24th mantissa bit to help with rounding calculations. The sign
bit is for a positive number and for a negative number. The exponent field is the actual
exponent , so should be treated as an unsigned value in the range The mantissa field
represents a number in the range [1.0,2.0) except that the leading 1 is not encoded in . Therefore,
can be mathematically expressed as follows:

 (1)

The integer values and can be used to perform arithmetic operations with other floating-point
numbers that have the same representation in the HElib library.

Privacy-preserving distributed data clustering framework
In this section, we describe the privacy-preserving distributed data clustering framework. We
illustrate how clustering computations can be carried out based on FHE. We also show FHE

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

computations based on a distributed approach. We used a Fixed-width clustering (FWC) algorithm as
a case study to demonstrate how our framework can be adapted to preserve the privacy of data
clustering in cloud computing. Therefor, we design a mathematical model based on IEEE 754
standard to be able carry out FHE computations for both integer and floating-point numbers.

FHE floating-point operations
Most of data clustering applications require to carry out computations based on floating-point
representation which make exists FHE schemes are inefficient in this case because it lacks the ability
to represent floating-point numbers. . The IEEE standard representation for a floating-point number

 occupies 32 bits. These bits are arranged as follows: is an
integer in the range , is an integer in the range and is a binary fraction that represents
a floating point number in the range . Henceforth, we will use to denote the fractional part of
the mantissa, so the actual mantissa is . The basic operations involved in data clustering
are addition, subtraction, multiplication, division, and comparison. We show how these operations
can be carried based on BGV scheme as follows:

• Addition and subtraction operations
In the case of addition and subtraction operations involving two floating-point numbers,
simple arithmetic shows that any expression of the form or can be written in
the form , where and are sign bits. The first step in FHE addition and
subtraction is to rewrite it in its canonical form.

 (2)

The second step is to find canonical shared components and carry out the computations of
these components based on a default integer representation of the BGV scheme.

• Multiplication operation
A multiplication operation of two floating-point numbers and requires determining
canonical shared components as follows:

=

 (3)

We can compute the product of in an encrypted fashion through three quantities:

 , , and , which can be carried out
in the BGV scheme.

• Division operation
The division operation can be expressed as in Equation 4, where .

 =

 (4)

Where and . We already know how to
compute in encrypted form and therefore only need to develop a method to compute .
Because , we can use the Taylor expansion to evaluate and then take
the product of that result with to get the division result.

• Comparison operation
The comparison operation can be carried by take the advantage of shift function in the HElib
library. The library has the ability to test if an encrypted context Ctxt is zero, so we only need
the and operators. Observe that if then (is negative, and if then

 is negative, so we only need to be able to compute the sign function of
an encrypted context. In unencrypted -bit arithmetic , so if (
represents arithmetic shift right, then we have that . Any unencrypted
negative number will always have the sign bit set, so will always be of the form

, where is positive in the range . However, for a floating
point number there are at most bits of precision. Observe that for a negative number
there must be some , such that , with nonzero. For a

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

positive number this is not the case. Thus we can compute , where is an
encrypted quantity, by producing all the shifted values and testing for the equality of any two
adjacent terms. If equality is found then is negative; otherwise it is zero or positive.

FHE data clustering based on MapReduce
The FHE computations time overhead is an obstacle to practical implementation of large-scale data
processing based on fully homomorphic encryption. Therefor, distributed fully homomorphic-based
computations based on MapReduce can overcome this issue by parallelize processing tasks amongst a
large number of virtual machines. Figure 3 illustrates the overview of the privacy-preserving
distributed data clustering framework. The MapReduce is a programming model for processing large-
scale data. Users can distribute computations by specify them in terms of a map and a reduce
functions and the computations are automatically parallelized across large number of virtual
machines. In this paper, we show how iterative distance-based computations can be parallelize based
on MapReduce. We use FWC algorithm as a case study of how its computations can accomplished
independently in cloud without interaction with any external parties such as data owner or TTP.

Hadoop Distributed File Systems (HDFS)

Data sensors Encrypteddata

Secureend user
Reduce task

sort ()reduce ()
Input

Output

Map task
map()fully homomorphiccomputations ()combine ()
Input

Regain 1Regain 2
Regain M

Input data1 - {ctxt(x.xxx) , ctxt(xx.xxx)}2 - {ctxt(x.xxx) , ctxt(xx.xxx)}..N-1 - {ctxt(x.xxx) , ctxt(xx.xxx)}N - {ctxt(x.xxx) , ctxt(xx.xxx)}
Output dataResult 1 { ctxt () }Result 2 { ctxt () }..Result M-1 { ctxt () }Result M { ctxt () }

Split 1Sub-computationsSplit 2Sub-computations
Split M-1Sub-computationsSplit MSub-computations

Figure 3. An overview of privacy-preserving distributed data
clustering framework.

Fixed-width clustering (FWC) algorithm
Fixed-width clustering is an unsupervised clustering algorithm that works based on a distance
measure. We show how the FWC algorithm works in the following steps:

• Choose a random set of clusters where from a given dataset with a
predetermined cluster width .

• For each data point where , calculate the Euclidean distance between and
each cluster , as in Equation 5.

 (5)

• If to the closest cluster centroid from the current data point is , then is added to

 and the centroid of cluster is adjusted to be the mean of the data points it now contains.
For example, for points in a cluster, the centroid is calculated as follows:

 (6)

• If to the closest cluster centroid from the current data point is , then is considered
as a centroid of a new cluster .

• Repeat steps 2, 3, and 4 until the end of the dataset.

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

Distributed FWC using MapReduce
The FWC algorithm based MapReduce works by distributing arithmetic computations that can be
parallelizes though a large number of VMs. The MapReduce framework that is implemented in
Hadoop can handle the FWC algorithm through its map and reduce functions, as follows:

• Inputs: The MapReduce framework receives two inputs that are a dataset and initial
clusters , ,…, .

• Data partitioning: The dataset is partitioned among a set of mappers as follows. We
allocate the data points equally among the VMs available to perform MapReduce
operations. If the result (i.e.) is not an integer value, we add the remaining data points to the

last VM. Expressed mathematically, the number of data points per VM equals for all VMs

, and the one would receive) data points. We illustrate a
generic example of how data is partitioned among a distributed set of Mappers in Figure 4.

Dataset{Global_active_power, Voltage}1 - {ctxt(x.xxx) , ctxt(xx.xxx)}2 - {ctxt(x.xxx) , ctxt(xx.xxx)}3 - {ctxt(x.xxx) , ctxt(xx.xxx)}..N-1 - {ctxt(x.xxx) , ctxt(xx.xxx)}N - {ctxt(x.xxx) , ctxt(xx.xxx)}

The squared euclidean distancebetween a set of data points anda set of clusters
....

---- ---- ----

Mapper 1

Mapper 2

Mapper M-1
Mapper M

Each mapper receives a set of data pointsand a set of clusters (c1,c2,...,cm)

Figure 4. Data partitioning for a number of data points () among

a distributed set of mappers (virtual machines).

• Map function: The input encrypted dataset is stored on the Hadoop Distributed File System

(HDFS) as a sequence of pairs. The is the index that refers to the
position of a data point in a data file and the is the actual encrypted numerical value of
the data point. The data file is globally shared and broadcast to all mappers. In our
framework, the mappers calculate the encrypted Euclidean distances between each data
point and a set of clusters where each mapper handles computations for Euclidean distances

 through the (function between a set of data points and a set of clusters.
We use squared Euclidean distance rather than the standard Euclidean distance to avoid a
square root operation as shown in Equation 7.

 (7)

The outputs of the map function are where the is an index and the

 is a distance between a data point and a cluster . Algorithm 1 shows
the pseudo-code of map function.

• Reduce function: The input data for a reducer is a set of that is the
output of the mappers. The reducer has two main tasks:

1. Find a minimum distance between each data point and a set of the centroids of a set of
clusters , ,…, through the () function.

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

2. Assign each data point to a specific cluster $ through the () function.

In a case where a data point is assigned to a cluster , we update the cluster centroid

 through the () function by calculating the mean of the data points it now
contains, otherwise, we create a new cluster for the data point through the
() function. We illustrate the basic pseudo-code of reduce function in
Algorithm 2.

Security Assumptions
The security assumptions of our framework are based on the security specifications of the BVG
scheme for overall security. If the BGV scheme is semantically secure (Coron et al. 2011), then the
arithmetic computations with HElib performed for our data clustering framework are also secure. The
secure client is the only application that has access to the raw data. It generates a public and private
key pair and makes the public key available to the non-secure server threads/nodes. When the
secure client transfers data to the server, it transfers it in the form of (, followed by the names
of files containing encrypted data. Thus, for example, an operation to compute the distance between a
centroid and a point would be transmitted as . If we
assume that the security guarantees of the BGV scheme hold, then it is computationally intractable to
decrypt the contents of any of the files and gain access to the plaintext data. Furthermore, even if the
results of a computation are exposed there is no way to recover the original values. It is obvious that a
computation such as , given , cannot be inverted to recover either or . The most that an
attacker can learn by observing the traffic between the client and the server is the number of values
that are being processed. This information has no practical value in terms of learning anything about
the data points themselves. Therefore, if we assume that the BGV and its implemented HElib are
secure, and then our implementation of floating point operations using the HElib library is also
secure.

Experiments and results

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

We used the Google cloud platform to build and evaluate our framework. The secure data clustering
framework based on MapReduce is designed to use up to 100 VMs in various experimental setups.
Each VM has a standard 4 CPU, each with 2.6 GHz Intel Xeon E5 with 3.75 GB. To understand how
performance varies in a distributed environment, the experiments deployed different settings by
varying dataset sizes and the number of VMs used to run the MapReduce tasks.

Dataset
To evaluate the adapted FWC algorithm with MapReduce on the cloud platform, we used a dataset
from the UC Irvine Machine Learning repository of individual household electricity consumption
measurements with 10,080 data points. It represents measurements of electric power consumption in
a household with one minute sampling rate over a period of almost four years. The preservation of
privacy of such data is essential because electricity usage patterns can reveal sensitive behavioral
information. Service providers or malicious intruders can take advantage of the data for business
purposes or to monitor people's movements and behavior. The electricity consumption measurements
dataset has nine attributes (date, time, global active power, global reactive power, voltage, global
intensity, sub-metering 1, sub-metering 2 and sub-metering 3). We selected two attributes, global
active power (averaged active power in kilowatts per minute) and voltage, to perform data analysis to
classify the electricity usage rates for different lengths of time (day, two days, four days and one week).
Different clusters represent different utilization patterns.

Baseline
We evaluated our cloud-based framework by running experiments with datasets of varying sizes in
different MapReduce settings (number of VMs) to explore how the number of VMs affects execution
time. We built both plaintext and ciphertext versions to identify discrepancies in results that may
occur due to the conversion of plaintext to the encrypted format. Moreover, we compared the
efficiency of our distributed based framework with a centralized model (on a single machine).

Performance evaluation
We implemented our fixed-with clustering model with MapReduce on the Google cloud platform. We
ran four datasets sizes of electricity measurements containing and data
points that represent the electricity measurements for one, two and four days and one week
respectively. Figure 5 shows detected clusters of electricity utilization patterns for different lengths of
time. We achieved an equally accurate result for both plaintext and encrypted versions. Furthermore,
Table 1 shows the execution time of data analysis for different datasets of varying sizes and numbers
of VMs. We found that in most cases, increasing the numbers of VMs by decreased the execution
time by to . We performed another experiment to demonstrate the efficiency of our
framework compared with a centralized-based model. Table 2 shows the performance in terms of
execution time using the same setting as that of the previous experiment and the centralized-based
model. Tables 1 and 2 show a significant gap in performance between our distributed-based model
and the centralized-based model. In the centralized model, a single giant block of memory was used to
hold intermediary results which slowed down computational processes. In the distributed model, each
VM had its own memory block which was much smaller. Thus, the computational processes in the
VMs run much faster than a simple linear scaling would indicate. For example, the distributed-based
model within 20 VMs can analyze 1440 data points in just 94 seconds. On the other hand, the
centralized-based model using a single VM takes 13,750 seconds, which is impractical in real world
applications. It is clear that our distributed model outperforms the centralized model while ensuring
the same level of accuracy of in results.

Conclusion
In this paper, we built an innovative cloud-based framework for privacy-preserving data clustering
that has the ability to perform scalable and distributed data analyses in a secure manner. We
implemented a distributed FWC algorithm using MapReduce to perform data analysis tasks
completely on the cloud platform without the need for any TTP. This is unlike the existing approaches
that require interaction between two or more parties during data analysis which leads to critical
privacy and security issues. The experimental results show that our framework can ensure secure
analysis of the encrypted data as accurately as plaintext data with a highly efficient performance. The
distributed FWC algorithm is built based on MapReduce, which plays an important role in
overcoming the computational overhead of the HElib library. This in turn leads to a significant
improvement in the data analysis process. The privacy of data is protected based on the security

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

assumption of the BGV Fully Homomorphic scheme. The proposed framework can be adapted
efficiently to several data mining applications that desire to take advantage of public cloud computing
without compromising data security and privacy.

Table 1. The execution time of data clustering based on different dataset sizes and number of VMs
(unit: second).

 Dataset size

No.VMs data points data points data points data points

Table 2. The execution time of data analysis based on different dataset sizes in a centralized-based
model (unit: second).

 Dataset size

 data points data points data points data points

Execution time

Figure 5. Detected clusters of electricity utilization patterns for different lengths of time for both
plaintext ((a), (c), (e), (g)) and ciphertext ((b), (d), (f), (g)) versions and different datasets of varying
sizes, 1440 data points represent a day of electricity usage (top, left) and 2880 represent two days of

electricity usage (top, right), 5760 represent four days of electricity usage and 10080 data points
represent one week of electricity usage (below, left) and (below, right) respectively.

References
Agrawal, R., and Srikant, R. 2000. "Privacy-Preserving Data Mining," ACM Sigmod Record: ACM, pp. 439-

450.
Aguilar-Melchor, C., Fau, S., Fontaine, C., Gogniat, G., and Sirdey, R. 2013. "Recent Advances in

Homomorphic Encryption: A Possible Future for Signal Processing in the Encrypted Domain," IEEE
Signal Processing Magazine (30:2), pp. 108-117.

Benjamin, C., Fung, M., Wang, K., Chen, R., and Yu, P. 2010. "Privacy-Preserving Data Publishing: A Survey
of Recent Developments," ACM Computing Surveys (42:4), pp. 141-153.

 Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption

 Twenty First Pacific Asia Conference on Information Systems, Langkawi 2017

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. 2014. "(Leveled) Fully Homomorphic Encryption without
Bootstrapping," ACM Transactions on Computation Theory (TOCT) (6:3), p. 13.

Brakerski, Z., and Vaikuntanathan, V. 2011. "Fully Homomorphic Encryption from Ring-Lwe and Security for
Key Dependent Messages," Annual cryptology conference: Springer, pp. 505-524.

Bunn, P., and Ostrovsky, R. 2007. "Secure Two-Party K-Means Clustering," Proceedings of the 14th ACM
conference on Computer and communications security: ACM, pp. 486-497.

Coron, J.-S., Naccache, D., and Tibouchi, M. 2011. "Optimization of Fully Homomorphic Encryption," IACR
Cryptology ePrint Archive (2011), p. 440.

Cuzzocrea, A., Song, I.-Y., and Davis, K. C. 2011. "Analytics over Large-Scale Multidimensional Data: The
Big Data Revolution!," Proceedings of the ACM 14th international workshop on Data Warehousing
and OLAP: ACM, pp. 101-104.

Doganay, M. C., Pedersen, T. B., Saygin, Y., Savaş, E., and Levi, A. 2008. "Distributed Privacy Preserving K-
Means Clustering with Additive Secret Sharing," Proceedings of the 2008 international workshop on
Privacy and anonymity in information society: ACM, pp. 3-11.

Du, W., and Zhan, Z. 2003. "Using Randomized Response Techniques for Privacy-Preserving Data Mining,"
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining: ACM, pp. 505-510.

Gentry, C. 2009. "Fully Homomorphic Encryption Using Ideal Lattices," STOC, pp. 169-178.
Gentry, C., Halevi, S., and Smart, N. P. 2012. "Homomorphic Evaluation of the Aes Circuit," in Advances in

Cryptology–Crypto 2012. Springer, pp. 850-867.
Guo, L., Guo, S., and Wu, X. 2007. "Privacy Preserving Market Basket Data Analysis," European Conference

on Principles of Data Mining and Knowledge Discovery: Springer, pp. 103-114.
Gurevich, A., and Gudes, E. 2006. "Privacy Preserving Data Mining Algorithms without the Use of Secure

Computation or Perturbation," Database Engineering and Applications Symposium, 2006. IDEAS'06.
10th International: IEEE, pp. 121-128.

Halevi, S., and Shoup, V. 2014. "Helib-an Implementation of Homomorphic Encryption."
Hayward, R., and Chiang, C.-C. 2015. "Parallelizing Fully Homomorphic Encryption for a Cloud Environment,"

Journal of applied research and technology (13:2), pp. 245-252.
Inan, A., Kaya, S. V., Saygın, Y., Savaş, E., Hintoğlu, A. A., and Levi, A. 2007. "Privacy Preserving Clustering

on Horizontally Partitioned Data," Data & Knowledge Engineering (63:3), pp. 646-666.
Jha, S., Kruger, L., and McDaniel, P. 2005. "Privacy Preserving Clustering," European Symposium on Research

in Computer Security: Springer, pp. 397-417.
Kargupta, H., Datta, S., Wang, Q., and Sivakumar, K. 2003. "On the Privacy Preserving Properties of Random

Data Perturbation Techniques," Data Mining, 2003. ICDM 2003. Third IEEE International Conference
on: IEEE, pp. 99-106.

Labrinidis, A., and Jagadish, H. V. 2012. "Challenges and Opportunities with Big Data," Proceedings of the
VLDB Endowment (5:12), pp. 2032-2033.

Lindell, Y., and Pinkas, B. 2000. "Privacy Preserving Data Mining," Annual International Cryptology
Conference: Springer, pp. 36-54.

Naehrig, M., Lauter, K., and Vaikuntanathan, V. 2011. "Can Homomorphic Encryption Be Practical?,"
Proceedings of the 3rd ACM workshop on Cloud computing security workshop: ACM, pp. 113-124.

Oliveira, S. R., and Zaiane, O. R. 2010. "Privacy Preserving Clustering by Data Transformation," Journal of
Information and Data Management (1:1), p. 37.

Paillier, P. 1999. "Advances in Cryptology—Eurocrypt’99." Springer Heidelberg Berlin, Germany:.
Panackal, J. J., and Pillai, A. S. 2013. "Privacy Preserving Data Mining: An Extensive Survey," ACEEE

International Conference on Multimedia Processing, Communication and Information Technology.
Pedersen, T. B., Saygın, Y., and Savaş, E. 2007. "Secret Charing Vs. Encryption-Based Techniques for Privacy

Preserving Data Mining,").
Rivest, R. L., Shamir, A., and Adleman, L. 1978b. "A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems," Communications of the ACM (21:2), pp. 120-126.
Shanthi, A., and Karthikeyan, M. 2012. "A Review on Privacy Preserving Data Mining," Computational

Intelligence & Computing Research (ICCIC), 2012 IEEE International Conference on: IEEE, pp. 1-4.
Subashini, S., and Kavitha, V. 2011. "A Survey on Security Issues in Service Delivery Models of Cloud

Computing," Journal of network and computer applications (34:1), pp. 1-11.
Vaidya, J., and Clifton, C. 2003. "Privacy-Preserving K-Means Clustering over Vertically Partitioned Data,"

Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining: ACM, pp. 206-215.

Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V. 2010. "Fully Homomorphic Encryption over the
Integers," Annual International Conference on the Theory and Applications of Cryptographic
Techniques: Springer, pp. 24-43.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Summer 7-20-2017

	Privacy-preserving Data clustering in Cloud Computing based on Fully Homomorphic Encryption
	Abdulatif Alabdulatif
	Ibrahim Khalil
	Mark Reynolds
	Heshan Kumarage
	Xun Yi
	Recommended Citation

	Microsoft Word - PACIS_2017_Template_FinalVersion.doc.pdf

