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Abstract 
Cloud infrastructure with its massive storage and computing power is an ideal 
platform to perform large scale data analysis tasks to extract knowledge and 
support decision-making. However, there are critical data privacy and security 
issues associated with this platform, as the data is stored in a public infrastructure. 
Recently, fully homomorphic data encryption has been proposed as a solution due to 
its capabilities in performing computations over encrypted data. However, it is 
demonstrably slow for practical data mining applications. To address this and 
related concerns, we introduce a fully homomorphic and distributed data processing 
framework that utilizes MapReduce to perform distributed computations for data 
clustering tasks on a large number of cloud Virtual Machines (VMs). We illustrate 
how a variety of fully homomorphic-based computations can be carried out to 
accomplish data clustering tasks independently in the cloud and show that the 
distributed execution of data clustering tasks based on MapReduce can significantly 
reduce the execution time overhead caused by fully homomorphic computations. To 
evaluate our framework, we performed experiments using electricity consumption 
measurement data on the Google cloud platform with 100 VMs. We found the 
proposed distributed data processing framework to be highly efficient when 
compared to a centralized approach and as accurate as a plaintext implementation. 
 
Keywords:   Privacy-preserving data clustering, Fully homomorphic encryption, Cloud-based 

framework 
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Introduction 
Data analytics has proven its potential to extract knowledge and support decision-making. However, 
the continuous increase in data generated by enterprises, as evidenced by the rise of social media and 
the Internet of Things (IoT), has produced an overwhelming data flow that, in turn, raises critical 
issues concerning the capabilities of traditional analytics tools (Labrinidis and Jagadish 2012), 
(Cuzzocrea et al. 2011). The cloud platform has been introduced as a convenient platform with on 
demand unlimited ‘on demand’ access to resources and location independence. Figure 1 illustrates the 
applications domains that can benefit from delegating their services to cloud computing. Nevertheless, 
perspective users (e.g. individuals or organizations) have major concerns about the privacy of data 
because it is stored in public cloud infrastructure that is managed by the cloud service provider (CSP) 
(Subashini and Kavitha 2011). Accordingly, several data privacy issue can arise if the CSP misuses data 
or if outside malicious attackers gain unauthorized access to data stored on the cloud (Subashini and 
Kavitha 2011). 

 
Preservation of the privacy of data mining algorithms has been an area studied extensively 

over the last decade. For example, Agarwal and Srikant (Agrawal and Srikant 2000) and Lindell and 
Pinkas (Lindell and Pinkas 2000) introduced privacy preserving models to extract useful information 
from private data. Since that time, several privacy-preserving data mining approaches have been 
introduced, including (Vaidya and Clifton 2003), (Bunn and Ostrovsky 2007). The existing models are 
either randomization-based models, as in (Agrawal and Srikant 2000), (Kargupta et al. 2003), or 
cryptographic-based models, as in (Doganay et al. 2008), (Inan et al. 2007). Although randomization-
based models are efficient, they do not rely on a well-defined security mechanism and, because of this, 
add a large amount of noise causing the data to no longer represent the original values (Pedersen et al. 
2007). On the another hand, although the cryptographic-based models preserve a high level of 
privacy, they suffer in terms of high computational cost and communication overheads (Pedersen et 
al. 2007). Therefore, overhead reduction is a focal issue in cryptography-based research. 

 
The state-of-the-art cryptographic privacy-preserving data mining approach is categorized 

according to three main techniques: oblivious transfer, secret sharing and Homomorphic Encryption 
(HE). HE techniques have the ability to carry out computations on encrypted domains, such as the 
Pallier Homomorphic cryptosystem in (Paillier 1999) . However, Pillier and colleagues used a HE 
cryptosystem that is classified under Partially Homomorphic Encryption (PHE), where a limited 
number of computations are carried out and which lacks arithmetic operations variety. These 
drawbacks limit the usability the PHE cryptosystems in data mining applications. In short, the critical issues 
of current cryptography-based models can be summarized as follows: 1) The majority of the existing 
models rely on Trusted Third Party (TTP), as in (Inan et al. 2007), which creates critical privacy and 
security issues (Benjamin et al. 2010); 2) The secret sharing-based models have a limited scope for 
improvement in terms of communication overhead reduction, which would reduce the scaling 
capability of a number of parties in a distributed scenario (Doganay et al. 2008); and 3) The existing 
HE-based models adapt traditional public key cryptography techniques. However, the PHE 
cryptosystems are lacking in terms of computations capabilities and limited to certain number of 
computations. These incur high computation and communication overheads because they require 
many encryption/decryption operations for verification and computational processes(Jha et al. 2005). 
To address these concerns, in this paper we propose a privacy-preserving data clustering framework 
based on a fully homomorphic cryptographic technique with the following objectives: 1) Avoid using 
TTP, as this can give rise to several critical privacy and security issues; 2) Avoid intensive 
communication between various parties, as this can lead to information leakage during 
communication; 3) Avoid computation overheads resulting from a large number of 
encryption/decryption operations during data analysis, for encryption/decryption operations during 
data analysis, for either verification or computations purposes. These objectives can be achieved by 
adapting Fully Homomorphic Encryption (FHE), as described in (Gentry 2009). 
 

With FHE, mathematical computations can be carried out in an encrypted domain. However, 
although FHE such as the Gentry (Gentry 2009) and van Dijk (Van Dijk et al. 2010) schemes, are 
considered to be impractical compared with PHE (Naehrig et al. 2011), they can perform an unlimited 
number of both addition and multiplication operations. PHE has the ability to perform limited 
additions or multiplications, but not both, such as the RSA (Rivest et al. 1978) and Paillier (Paillier 
1999) approaches. FHE underwent several optimization stages intended to improve its performance 
efficiency. In 2012, Gentry et al. (Gentry et al. 2012) implemented an efficient encryption procedure of  
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Figure 1.  An overview of applications domains that can benefit 
from our privacy-preserving data clustering framework in cloud 
computing. Data owners can delegate their data analytic services 

to the cloud computing securely. 

 
the Advanced Encryption Standard (AES) cipher. After several further optimizations to improve the 
evaluation time, the Brakerski-Gentry-Vaikuntanathan (BVG) scheme (Brakerski and Vaikuntanathan 
2011) made it possible to perform an AES evaluation in less than three hours. Despite these 
optimizations, it is still far from ready to be applied in practical, real world situations. 
 

In this paper, we investigate the possibilities of adapting FHE for privacy-preserving data 
analytics in cloud computing. Distributed FHE computations offer a viable approach to overcome the 
huge overhead incurred by FHE computation and allows us to build scalable and efficient data 
analytics models (Hayward and Chiang 2015). To build this privacy-preserving data analysis model, 
we used the HElib library (Halevi and Shoup 2014), which is written using C++ and based on the 
Number Theory Library (NTL). However, the HElib scheme has shortcomings in its ability to perform 
data analysis tasks, such as the ability to perform computations on floating-point numbers, which is 
essential in most data mining applications. Moreover, it also does not provide functionality for 
performing fundamental data analysis operations, such as division and comparison. In this paper, we 
provide a convenient solution to solve these shortcomings. The IEEE standard for floating-point 
arithmetic (IEEE 754) is utilized to convert floating-point numbers in their integer representation, 
which makes it suitable for processing in the HElib. Moreover, we built secure division and 
comparison functions on top of the HElib library to enable automation of the entire data analysis 
process. The MapReduce functionality was adapted to distribute the analysis computations to 
significantly reduce the FHE computation time overhead. For the sake of simplicity, we used Fixed- 
Width Clustering (FWC) as a possible data clustering method, as it can be deployed in various existing 
applications. 

Contribution 
The major contributions of this paper are as follows: 

• The design and implementation of a distributed data clustering approach using fully 
homomorphic encryption. 

• The distribution of encrypted computations amongst a large number of virtual machines 
(VMs) to perform data analysis tasks in a matter of minutes, significantly reducing the 
computation time overhead of a fully homomorphic approach as in BGV scheme .It is 
demonstrated that the proposed framework can perform analysis tasks on encrypted data 
completely in cloud, without the need to interact with other entities (e.g. data owners or TTP). 

• The development and introduction of functions to perform comparison and division 
operations into the BGV scheme, with capability to perform operations on both integer and 
floating-point representations. We show that fully homomorphic floating- point arithmetic 
computations can be carried out using the IEEE standard for floating-point arithmetic (IEEE 
754). 

• Comprehensive experimental evaluations that compare the efficiency of the proposed 
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approach to that of a centralized data processing. We show that the proposed models work to 
significantly improve the computational performance efficiency for clustering tasks. 
 

Related work 
 
Privacy-preserving data mining approaches are classified into two main categories: randomization 
and cryptographic techniques. The latter includes secret sharing, oblivious transfer and HE. In the 
randomization approach, Agarwal and Srikant (Agrawal and Srikant 2000) proposed a randomization 
scheme which added a random number only to the sensitive value of an attribute. They claim that it is 
possible to reconstruct the distribution of the original data for a given distribution of random noise. 
Moreover, Kargupta et al. (Kargupta et al. 2003) introduced a random matrix based on a spectral 
filtering technique that has the ability to recover the original data from the perturbed data. Other 
randomization techniques have been proposed in (Oliveira and Zaiane 2010) and (Gurevich and 
Gudes 2006). Although compared to the cryptographic techniques the randomization approach is an 
efficient and simple technique that can be easily implemented, a great amount of information is lost 
during the transformation processes (Shanthi and Karthikeyan 2012). Moreover, the randomization 
approach does not provide a formal way of indicating how much security and privacy is guaranteed. 
Therefore, it is not a convenient approach for applications that require high security, privacy and 
accurate results (Pedersen et al. 2007). 
 

Cryptographic approaches are classified as either Secure Multi-party Computation (SMC) or 
HE. SMC was originally introduced by Yao (Yao 1982) and allows different parties to jointly 
collaborate to compute a specific function on their private data, while preserving the data privacy of 
each party. Secret sharing (Doganay et al. 2008) and oblivious transfer (Inan et al. 2007), (Vaidya and 
Clifton 2003) are two of the main protocols of SMC and most SMC applications are based on semi-
honest models (Panackal and Pillai 2013). The SMC applications based on malicious adversary models 
are too complex to be suitable for data mining application in their current form (Panackal and Pillai 
2013). HE has the ability to carry out computations on encrypted domains and has two main 
categories: PHE, as in (Rivest et al. 1978), (Paillier 1999), and FHE schemes, as in (Gentry 2009), 
(Brakerski and Vaikuntanathan 2011). Despite that fact that PHE schemes are efficient, they are 
impractical because they lack the arithmetic operations capabilities required for data analysis 
applications (Aguilar-Melchor et al. 2013). They also cause a huge communication overhead as both 
the sender and the receiver are required to transmit data several times to each other to perform even 
simple addition and multiplication operations. On the other hand, FHE schemes require the 
encrypted data to be transmitted only once. However, due to the large computational overhead, most 
of them are still far from being ready to use in practical applications. 
 

Data mining applications require a very large number of arithmetic operations, but FHE 
schemes can be made suitable if the required operations are executed in parallel or in a distributed 
environment to achieve near real-time performance. MapReduce on a cloud platform is considered to 
be the most viable option to achieve this objective. However, the absence of cryptographic security 
would be seen as a serious weakness in such applications. Since data analysis is already 
computationally heavy and HE adds an enormous computational burden to the existing woes, we took 
advantage of both to build secure, but scalable, distributed data mining algorithms. 
 
Preliminaries 
 
The Brakerski-Gentry-Vaikuntanathan (BGV) fully homomorphic encryption 
scheme 
 
The BGV (Brakerski et al. 2014)is an asymmetric encryption scheme, the security of which is linked to 
the difficulty of ring-learning with errors (RLWE) problem. The BGV scheme is a leveled fully 
homomorphic scheme that eliminates the expensive re-encryption operation. Therefore, it can 
evaluate all circuits homomorphically up to a predefined depth without bootstrapping. The BGV 
operates over a polynomial ring  where  is a cyclotomic polynomial. The ciphertext 
space is polynomials over  where  is an integer modulus, the plaintext space is a ring 

 some integers and .  The basic BGV operations can be distributed as 
follows: 
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• The key generation algorithm has three inputs: a prime 
number (  that defines the plaintext space, a security parameter ( ), and the depth level of 
the evaluated arithmetic circuit ). The outputs are a secret key ( ) and a corresponding 
public key ( ).  

• ( c )   The encryption algorithm has two inputs: the public key ( ) 
and the plaintext message . The output is a ciphtertext  that is homomorphically 
encrypted. 

•  The decryption algorithm has two inputs: the secret key  
and the ciphertext message . The output is a plaintext . 

HElib library 
We built our privacy-preserving data clustering framework on the HElib library that is an open source 
implementation of the BGV HE scheme and includes many optimizations to speed up homomorphic 
evaluation. The focus is on the effective use of the Smart-Vercauteren ciphertext packing techniques 
and the Gentry-Halevi-Smart optimizations. The HElib library does not support arithmetic 
computations on float-point numbers, which is an obstacle because most applications in data mining 
domain require computations on floating-point numbers. Therefore, we contributed to improving the 
HElib library by providing a practical solution to perform arithmetic computations on floating-point 
numbers by utilizing an IEEE standard for floating-point arithmetic (IEEE 754). IEEE 754 has the 
ability to transform a floating-point number to a set of integer values that can, in turn, be used in the 
HElib library. The process can reverse a set of encrypted integer values to determine: the floating-
point value. We expand on the IEEE 754 representation and arithmetic operations below. 
 
IEEE standard for floating-point arithmetic (IEEE 754) 

IEEE 754 is a representation for floating-point computation. In this paper, IEEE 754 is used to 
perform floating-point arithmetic by converting floating-point numbers to a set of integers that in 
turn become compatible with the HElib library. The IEEE 754 representation of a floating point 
number F which in Figure 2 has 32 bits (and can be extended to 64 bits) is arranged as follows: 

• is the sign bit (a 1-bit field). 
• is the exponent field (an 8-bit field). 
•  is the mantissa field (a 23-bit field). 

 

Figure 2. The IEEE 754 (32 bits) representation for a 
floating-point number. 

 

Some implementations store a hidden 24th mantissa bit to help with rounding calculations. The sign 
bit  is for a positive number and for a negative number. The exponent field is the actual 
exponent , so should be treated as an unsigned value in the range  The mantissa field 
represents a number in the range [1.0,2.0) except that the leading 1 is not encoded in . Therefore,  
can be mathematically expressed as follows: 

   (1) 

 

The integer values  and  can be used to perform arithmetic operations with other floating-point 
numbers that have the same representation in the HElib library.   

Privacy-preserving distributed data clustering framework  
In this section, we describe the privacy-preserving distributed data clustering framework. We 
illustrate how clustering computations can be carried out based on FHE. We also show FHE 
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computations based on a distributed approach. We used a Fixed-width clustering (FWC) algorithm as 
a case study to demonstrate how our framework can be adapted to preserve the privacy of data 
clustering in cloud computing. Therefor, we design a mathematical model based on IEEE 754 
standard to be able carry out FHE computations for both integer and floating-point numbers. 

FHE floating-point operations 
Most of data clustering applications require to carry out computations based on floating-point 
representation which make exists FHE schemes are inefficient in this case because it lacks the ability 
to represent floating-point numbers. . The IEEE standard representation for a floating-point number 

 occupies 32 bits. These bits are arranged as follows:  is an 
integer in the range ,  is an integer in the range  and  is a binary fraction that represents 
a floating point number in the range . Henceforth, we will use  to denote the fractional part of 
the mantissa, so the actual mantissa is . The basic operations involved in data clustering 
are addition, subtraction, multiplication, division, and comparison. We show how these operations 
can be carried based on BGV scheme as follows: 

• Addition and subtraction operations 
In the case of addition and subtraction operations involving two floating-point numbers, 
simple arithmetic shows that any expression of the form  or can be written in 
the form , where  and  are sign bits. The first step in FHE addition and 
subtraction is to rewrite it in its canonical form. 

   (2) 

The second step is to find canonical shared components and carry out the computations of 
these components based on a default integer representation of the BGV scheme. 

• Multiplication operation 
A multiplication operation of two floating-point numbers  and  requires determining 
canonical shared components as follows: 

 
=  

  (3) 

 
We can compute the product of  in an encrypted fashion through three quantities: 

 , , and  , which can be carried out 
in the BGV scheme.  

• Division operation 
The division operation  can be expressed as in Equation 4, where . 

  

         =  

  

  (4) 

 
Where  and . We already know how to 
compute  in encrypted form and therefore only need to develop a method to compute . 
Because , we can use the Taylor expansion to evaluate  and then take 
the product of that result with to get the division result.    

• Comparison operation 
The comparison operation can be carried by take the advantage of shift function in the HElib 
library. The library has the ability to test if an encrypted context Ctxt is zero, so we only need 
the  and  operators. Observe that if  then (  is negative, and if  then 

 is negative, so we only need to be able to compute the sign function  of 
an encrypted context. In unencrypted -bit arithmetic , so if (  
represents arithmetic shift right, then we have that . Any unencrypted 
negative number will always have the sign bit set, so will always be of the form 

, where is positive in the range . However, for a floating 
point number there are at most  bits of precision. Observe that for a negative number  
there must be some ,  such that , with  nonzero. For a 
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positive number  this is not the case. Thus we can compute , where  is an 
encrypted quantity, by producing all the shifted values and testing for the equality of any two 
adjacent terms. If equality is found then  is negative; otherwise it is zero or positive.   

FHE data clustering based on MapReduce 
The FHE computations time overhead is an obstacle to practical implementation of large-scale data 
processing based on fully homomorphic encryption. Therefor, distributed fully homomorphic-based 
computations based on MapReduce can overcome this issue by parallelize processing tasks amongst a 
large number of virtual machines. Figure 3 illustrates the overview of the privacy-preserving 
distributed data clustering framework. The MapReduce is a programming model for processing large-
scale data. Users can distribute computations by specify them in terms of a map and a reduce 
functions and the computations are automatically parallelized across large number of virtual 
machines. In this paper, we show how iterative distance-based computations can be parallelize based 
on MapReduce. We use FWC algorithm as a case study of how its computations can accomplished 
independently in cloud without interaction with any external parties such as data owner or TTP.   

Hadoop Distributed File Systems (HDFS)

Data sensors Encrypteddata

Secureend user
Reduce task

sort ()reduce ()
Input

Output

Map task
map()fully homomorphiccomputations ()combine ()
Input

Regain 1Regain 2
Regain M

Input data1 - {ctxt(x.xxx) , ctxt(xx.xxx)}2 - {ctxt(x.xxx) , ctxt(xx.xxx)}..N-1 - {ctxt(x.xxx) , ctxt(xx.xxx)}N - {ctxt(x.xxx) , ctxt(xx.xxx)}
Output dataResult 1 { ctxt () }Result 2 { ctxt () }..Result M-1 { ctxt () }Result M { ctxt () }

Split 1Sub-computationsSplit 2Sub-computations
Split M-1Sub-computationsSplit MSub-computations

 

Figure 3.  An overview of privacy-preserving distributed data 
clustering framework. 

 

Fixed-width clustering (FWC) algorithm  
Fixed-width clustering is an unsupervised clustering algorithm that works based on a distance 
measure. We show how the FWC algorithm works in the following steps: 

• Choose a random set of clusters  where  from a given dataset  with a 
predetermined cluster width . 

• For each data point  where , calculate the Euclidean distance  between  and 
each cluster , as in Equation 5. 

 
  (5) 

 
• If  to the closest cluster centroid  from the current data point is  , then  is added to 

 and the centroid of cluster   is adjusted to be the mean of the data points it now contains. 
For example, for  points in a cluster, the centroid is calculated as follows: 

   (6) 

• If  to the closest cluster centroid  from the current data point is , then  is considered 
as a centroid of a new cluster .  

• Repeat steps 2, 3, and 4 until the end of the dataset. 
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Distributed FWC using MapReduce 
The FWC algorithm based MapReduce works by distributing arithmetic computations that can be 
parallelizes though a large number of VMs. The MapReduce framework that is implemented in 
Hadoop can handle the FWC algorithm through its map and reduce functions, as follows: 

• Inputs: The MapReduce framework receives two inputs that are a dataset  and initial 
clusters , ,…, . 

• Data partitioning: The dataset  is partitioned among a set of mappers as follows. We 
allocate the  data points equally among the  VMs available to perform MapReduce 
operations. If the result (i.e. ) is not an integer value, we add the remaining data points to the 

last VM.  Expressed mathematically, the number of data points per VM equals   for all VMs 

,  and the  one would receive ) data points. We illustrate a 
generic example of how data is partitioned among a distributed set of Mappers in Figure 4. 

Dataset{Global_active_power, Voltage}1 - {ctxt(x.xxx) , ctxt(xx.xxx)}2 - {ctxt(x.xxx) , ctxt(xx.xxx)}3 - {ctxt(x.xxx) , ctxt(xx.xxx)}..N-1 - {ctxt(x.xxx) , ctxt(xx.xxx)}N - {ctxt(x.xxx) , ctxt(xx.xxx)}

The squared euclidean distancebetween a set of data points anda set of clusters
.... .... ....

---- ---- ----

Mapper 1

Mapper 2

Mapper M-1
Mapper M

----------

Each mapper receives a set of data pointsand a set of clusters (c1,c2,...,cm)

 

Figure 4.  Data partitioning for a number of data points ( ) among 

a distributed set of mappers (  virtual machines). 

 
• Map function: The input encrypted dataset is stored on the Hadoop Distributed File System 

(HDFS) as a sequence of pairs. The  is the index that refers to the 
position of a data point in a data file and the  is the actual encrypted numerical value of 
the data point. The data file is globally shared and broadcast to all mappers. In our 
framework, the mappers calculate the encrypted Euclidean distances  between each data 
point and a set of clusters where each mapper handles computations for Euclidean distances 

 through the (  function between a set of data points and a set of clusters. 
We use squared Euclidean distance rather than the standard Euclidean distance to avoid a 
square root operation as shown in Equation 7. 

   (7) 

 
The outputs of the map function are  where the  is an index and the 

 is a distance between a data point  and a cluster .  Algorithm 1 shows 
the pseudo-code of map function. 

• Reduce function: The input data for a reducer is a set of  that is the 
output of the mappers. The reducer has two main tasks: 

1. Find a minimum distance between each data point  and a set of the centroids of a set of 
clusters , ,…,  through the ( ) function. 
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2. Assign each data point to a specific cluster $ through the ( ) function. 
 

         
In a case where a data point is assigned to a cluster , we update the cluster centroid 

 through the ( ) function by calculating the mean of the data points it now 
contains, otherwise, we create a new cluster for the data point  through the 
( ) function. We illustrate the basic pseudo-code of reduce function in 
Algorithm 2.  

 
Security Assumptions 
The security assumptions of our framework are based on the security specifications of the BVG 
scheme for overall security.  If the BGV scheme is semantically secure (Coron et al. 2011), then the 
arithmetic computations with HElib performed for our data clustering framework are also secure. The 
secure client is the only application that has access to the raw data. It generates a public and private 
key pair  and makes the public key available to the non-secure server threads/nodes. When the 
secure client transfers data to the server, it transfers it in the form of  ( , followed by the names 
of files containing encrypted data. Thus, for example, an operation to compute the distance between a 
centroid  and a point  would be transmitted as . If we 
assume that the security guarantees of the BGV scheme hold, then it is computationally intractable to 
decrypt the contents of any of the files and gain access to the plaintext data. Furthermore, even if the 
results of a computation are exposed there is no way to recover the original values. It is obvious that a 
computation such as , given , cannot be inverted to recover either  or . The most that an 
attacker can learn by observing the traffic between the client and the server is the number of values 
that are being processed. This information has no practical value in terms of learning anything about 
the data points themselves. Therefore, if we assume that the BGV and its implemented HElib are 
secure, and then our implementation of floating point operations using the HElib library is also 
secure.  

Experiments and results 
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We used the Google cloud platform to build and evaluate our framework. The secure data clustering 
framework based on MapReduce is designed to use up to 100 VMs in various experimental setups. 
Each VM has a standard 4 CPU, each with 2.6 GHz Intel Xeon E5 with 3.75 GB. To understand how 
performance varies in a distributed environment, the experiments deployed different settings by 
varying dataset sizes and the number of VMs used to run the MapReduce tasks.    

Dataset 
To evaluate the adapted FWC algorithm with MapReduce on the cloud platform, we used a dataset 
from the UC Irvine Machine Learning repository of individual household electricity consumption 
measurements with 10,080 data points. It represents measurements of electric power consumption in 
a household with one minute sampling rate over a period of almost four years. The preservation of 
privacy of such data is essential because electricity usage patterns can reveal sensitive behavioral 
information. Service providers or malicious intruders can take advantage of the data for business 
purposes or to monitor people's movements and behavior. The electricity consumption measurements 
dataset has nine attributes (date, time, global active power, global reactive power, voltage, global 
intensity, sub-metering 1, sub-metering 2 and sub-metering 3).  We selected two attributes, global 
active power (averaged active power in kilowatts per minute) and voltage, to perform data analysis to 
classify the electricity usage rates for different lengths of time (day, two days, four days and one week). 
Different clusters represent different utilization patterns.  

Baseline 
We evaluated our cloud-based framework by running experiments with datasets of varying sizes in 
different MapReduce settings (number of VMs) to explore how the number of VMs affects execution 
time. We built both plaintext and ciphertext versions to identify discrepancies in results that may 
occur due to the conversion of plaintext to the encrypted format. Moreover, we compared the 
efficiency of our distributed based framework with a centralized model (on a single machine).  

Performance evaluation 
We implemented our fixed-with clustering model with MapReduce on the Google cloud platform. We 
ran four datasets sizes of electricity measurements containing  and  data 
points that represent the electricity measurements for one, two and four days and one week 
respectively. Figure 5 shows detected clusters of electricity utilization patterns for different lengths of 
time. We achieved an equally accurate result for both plaintext and encrypted versions. Furthermore, 
Table 1 shows the execution time of data analysis for different datasets of varying sizes and numbers 
of VMs. We found that in most cases, increasing the numbers of VMs by  decreased the execution 
time by to . We performed another experiment to demonstrate the efficiency of our 
framework compared with a centralized-based model. Table 2 shows the performance in terms of 
execution time using the same setting as that of the previous experiment and the centralized-based 
model. Tables 1 and 2 show a significant gap in performance between our distributed-based model 
and the centralized-based model. In the centralized model, a single giant block of memory was used to 
hold intermediary results which slowed down computational processes. In the distributed model, each 
VM had its own memory block which was much smaller. Thus, the computational processes in the 
VMs run much faster than a simple linear scaling would indicate. For example, the distributed-based 
model within 20 VMs can analyze 1440 data points in just 94 seconds. On the other hand, the 
centralized-based model using a single VM takes 13,750 seconds, which is impractical in real world 
applications. It is clear that our distributed model outperforms the centralized model while ensuring 
the same level of accuracy of in results. 

Conclusion 
In this paper, we built an innovative cloud-based framework for privacy-preserving data clustering 
that has the ability to perform scalable and distributed data analyses in a secure manner. We 
implemented a distributed FWC algorithm using MapReduce to perform data analysis tasks 
completely on the cloud platform without the need for any TTP. This is unlike the existing approaches 
that require interaction between two or more parties during data analysis which leads to critical 
privacy and security issues. The experimental results show that our framework can ensure secure 
analysis of the encrypted data as accurately as plaintext data with a highly efficient performance. The 
distributed FWC algorithm is built based on MapReduce, which plays an important role in 
overcoming the computational overhead of the HElib library. This in turn leads to a significant 
improvement in the data analysis process.  The privacy of data is protected based on the security 
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assumption of the BGV Fully Homomorphic scheme. The proposed framework can be adapted 
efficiently to several data mining applications that desire to take advantage of public cloud computing 
without compromising data security and privacy.  

Table 1. The execution time of data clustering based on different dataset sizes and number of VMs 
(unit: second). 

 Dataset size 

No.VMs  data points  data points  data points  data points 

     

     

     

     

     
 

Table 2. The execution time of data analysis based on different dataset sizes in a centralized-based 
model (unit: second). 

 Dataset size 

  data points  data points  data points  data points 

Execution time     
 

 

Figure 5.  Detected clusters of electricity utilization patterns for different lengths of time for both 
plaintext ((a), (c), (e), (g)) and ciphertext ((b), (d), (f), (g)) versions and different datasets of varying 
sizes, 1440 data points represent a day of electricity usage (top, left) and 2880 represent two days of 

electricity usage (top, right), 5760 represent four days of electricity usage and 10080 data points 
represent one week of electricity usage (below, left) and (below, right) respectively. 
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