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Abstract Conceptual modeling supports analyses of IT

artifacts and the enterprise action system they are embedded

in. However, in this paper it is argued that for IT landscape

analyses existing modeling approaches fall short due to,

among others, (a) problems with accounting for specifics of

the IT domain, e.g., an elaborate technical terminology with

various hierarchy levels, and (b) inadequate support for

automated analyses within and across those different levels.

In this paper, the authors discuss how a designed multilevel

model of IT platforms created using the multilevel modeling

language FMMLx can help overcome these problems. To this

end, limitations of IT platform models created with con-

ventional, two-level modeling languages are shown. Fur-

thermore, benefits resulting from the application of the

selected multilevel modeling language are discussed.

Keywords IT landscape analyses � Multilevel modeling �
FMMLx

1 Introduction and Motivation

Enterprise modeling supports sense-making of an enterprise

by providing abstractions over its enterprise action system

(e.g., business processes, goals) and enterprise information

system, (cf. Frank 2014a; Sandkuhl et al. 2014). One of the

aims of enterprise modeling is to enable enterprise-wide

analyses, among others, IT infrastructure analyses (Lankhorst

2013; Antunes et al. 2015). A model-driven IT infrastructure

analysis concerns assessment of IT infrastructure with a par-

ticular purpose in mind. Although model-driven analyses

steadily increase in importance, practical applications show

serious limitations when the analyses rely on conventional

two-level modeling methods, (cf. Frank 2016; Schmidt et al.

2014). In linewith our ownobservations, these limitations are:

(1) a conflict between reuse and productivity, (cf. Frank

2014b)1, (2) problems with accounting for specifics of the IT

domain, specifically, an elaborate technical terminology with

various hierarchy levels (cf. Frank 2016), (3) inadequate

support for automated analyses, and (4) a lack ofmechanisms

linking models and operational-level data (Schmidt and

Möhring 2016).

These observations lead us to consider an alternative

language paradigm, namely multilevel modeling (Atkinson

and Kühne 2001; Frank 2014b), which promises, among

others, to alleviate the conflict between language reuse and

productivity, and to account for the elaborate hierarchies of

the IT domain. In this paper, we investigate the suitability

of multilevel modeling in general, and of a selected mul-

tilevel modeling language Flexible Meta-Modeling and

Execution Language (FMMLx) (Frank 2014b, 2016) in

particular, for model-driven IT infrastructure analyses. In
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1 The semantically richer the modeling concepts are, the higher the

potential productivity gain as domain-specific concepts do not have to

be reconstructed from scratch. However, increasing the semantic

richness of the modeling concepts lowers the range of their

applicability across different contexts. Hence, semantic richness

lowers language reuse. Conversely, the more generic the modeling

concepts are, the wider their range of reuse. However, this genericity

implies a lower semantic richness and hence, a lower productivity of

the modeling process.
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order to identify requirements that a modeling approach

should meet to support IT infrastructure analyses, we

consider different types of analysis scenarios and reported

users’ needs (cf. Malavolta et al. 2013; Lago et al. 2015).

Then, taking an IT platform as a point of departure, we

discuss the fulfillment of the identified requirements by

conventional modeling languages and show the limitations

thereof. Finally, we contrast the identified limitations with

the promises of the selected multilevel modeling approach.

In this paper, we focus on the concept of an IT platform,

as it plays an important role in IT landscape analyses (cf.

Kaczmarek and de Kinderen 2016). This is because it

forms the foundation on which software applications and

the corresponding business capabilities build. Therefore,

for the needs of IT landscape analyses, we contribute a

multilevel model of IT platforms that: (1) accounts for

provided functionalities and imposed constraints (in line

with our prior findings, Kaczmarek and de Kinderen 2016),

(2) reflects the idea that the functionality and constraints on

one IT platform type serve as a foundation for another

platform, (3) supports multiple hierarchy levels of IT

platforms, and, thanks to specific features of FMMLx,

(4) supports automated analyses within and across different

hierarchy levels, and finally, (5) allows for linking models

to the operational-level data.

We follow a design-oriented research strategy (Österle

et al. 2011) and construct a multilevel model of IT plat-

forms, which addresses the needs of users with respect to

enterprise IT landscape analyses (cf. Malavolta et al. 2013;

Lago et al. 2015). We follow an iterative process of

building a multilevel model, applying it, learning, and

modifying/enhancing the model. We evaluate the obtained

result against the identified requirements. To check the

applicability of the proposed model, we implement it in the

modeling/programming tool XModeler (Frank 2014b) and

apply it to selected analysis scenarios.

This paper is structured as follows. First, we introduce

model-driven analyses and formulate requirements towards

a modeling approach. Next, we confront the identified

requirements with existing IT modeling approaches and

discuss resulting limitations. Next, we describe multilevel

modeling and the modeling language FMMLx, and apply it

to create a multilevel model of IT platforms. Then, we

show the benefits of the model-driven analyses facilitated

by FMMLx. Finally, we discuss our findings and conclude

with final remarks.

2 Model-Driven Analyses and Resulting Requirements

A model-driven IT infrastructure analysis concerns IT

infrastructure assessment with a particular purpose in mind

(Johnson et al. 2007), be it the use of models for cost/

benefit analysis of an IT portfolio, IT resource load anal-

ysis, or otherwise (Lankhorst 2013).

2.1 Types of Analysis Scenarios and the Role

of Modeling

To show the role modeling plays in analyses, we focus on a

typology of analysis scenarios by Niemann (2005) and

Bucher et al. (2006). They roughly classify analysis sce-

narios into seven types, out of which we discuss two:

dependency analysis and cost/benefit analysis.

Dependency analysis investigates the dependencies

(including imposed constraints and offered functionalities)

that exist among elements of IT infrastructure and between

IT artifacts and business concerns (Bucher et al. 2006;

Hanschke 2010). Considering the specific types of depen-

dencies that occur between different elements, an impor-

tant question for IT management is: what impact would

changing an IT artifact (e.g., replacing a technology plat-

form) have on the enterprise action system? Or vice versa:

if something were to change in the action system (e.g., the

introduction of a new business process), then how would

this affect the IT infrastructure and its performance?

Enterprise models support such dependency analyses. They

have the ability to precisely articulate IT artifacts and

different elements of the enterprise action system (e.g.,

business processes), and have the ability to express

dependencies between IT artifacts and the different orga-

nizational perspectives (Frank 2014a).

Cost/benefit analysis pertains to (1) an analysis of the IT

artifact itself, e.g., of the cost of creating and maintaining

it, as well as (2) an analysis of the surrounding action

system, e.g., of how effective and important an IT artifact

is to the execution of a business process (Bucher et al.

2006). As an example of model-driven cost/benefit analy-

sis, Quartel et al. (2010) and Lankhorst (2013, p. 206)

propose a model-driven analysis method for balancing the

investment in IT artifacts for an organization. In this

method, the modeling language ArchiMate (The Open

Group 2013) is used in conjunction with the Bedell method

(a method used for IT portfolio evaluation). First, it uses

ArchiMate to relate business processes to IT artifacts.

Then, the ArchiMate model is marked up with importance

values for the business processes and effectiveness values

of IT artifacts in supporting business processes. Thereafter,

using Bedell, model-driven calculations are done to advice

on IT investments, essentially by balancing the effective-

ness score of an IT artifact against the importance of the

business processes that require it. Considering in addition

the portfolio analysis, as proposed by Quartel et al. (2010)

and Lankhorst (2013), we observe the role that enterprise

modeling can play: it allows for identifying specific IT

artifacts for evaluation, as well as relating these IT artifacts
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to specific organizational concepts (such as individual tasks

in a business process). Such detailed analyses are hardly

possible with more generic methods such as Bedell, which

in their analysis capability often operate on a higher level

of abstraction by focusing on units of analysis such as

‘‘information system’’, and that assume a one-to-one

mapping between an information system and a business

process (Lankhorst 2013, p. 207).

2.2 Resulting Requirements

Let us consider which requirements an IT infrastructure

modeling approach should fulfill to support the model-

driven analyses. Already from the aforementioned two

types of analysis scenarios, we observe that IT artifacts

should be described in relation to the surrounding enter-

prise action system (R1 – ability to relate IT artifacts to the

enterprise action system). Also we observe that they

require a detailed description, from different points of

view, of IT artifacts and existing dependencies (R2 – of-

fering semantically rich concepts and relations). For

example, in the case of the portfolio analysis we need to

not only precisely articulate which IT infrastructure ele-

ment supports which business process, but also how

effective this support is. Moreover, the different types of

analyses require information about the characteristics of IT

artifacts on different hierarchy levels, e.g., on types,

models, editions or specific exemplars/instances. One may

be interested, e.g., in how many different types of software

platforms we have, or one may be interested in the type and

state of all components being part of it as well as the actual

software configuration. Thus, the IT artifacts are managed

and analyzed on different hierarchy levels (Hanschke

2010), which requires a modeling approach to account for

different hierarchy levels of IT artifacts and their level-

specific characteristics (R3). In addition, models are

expected to be able to support managing IT artifacts by

allowing to, e.g., compare design time and run time level

data (e.g., Bodenstaff et al. 2008). Thus, models should

provide abstractions over the large collections of opera-

tional IT infrastructure data, so that this data can be used

within various types of analysis scenarios (R4 – accounting

for the operational-level data within the model) (Schmidt

et al. 2014; Schmidt and Möhring 2016).

In turn, if we consider existing studies on business needs

for IT modeling languages (e.g., Malavolta et al. 2013;

Lago et al. 2015), we find the following contradiction.

Business users demand a modeling language to be ‘‘simple

and intuitive enough to communicate the right message to

the stakeholders’’ (R5) (Malavolta et al. 2013, p. 871). To

foster intuitiveness, it is suggested to keep language con-

cepts close to the domain-specific professional terminol-

ogy (Frank 2014a). In turn, to foster simplicity, Malavolta

et al. (2013, p. 871) advocate avoiding or at least hiding

semantic richness of the language concepts. This however,

is in apparent opposition to R2 and partly to R3. Avoiding

semantic richness is also postulated in the context of

demanded support for reuse (R6) (cf. Malavolta et al.

2013). This means that the modeling language should

provide modeling concepts that can be easily reused across

different scenarios. This requires the application of more

generic concepts with a generic set of properties, which

again is in opposition to R2 and R3.

Moreover, two additional requirements of business users

regarding the language mechanism should be mentioned

here. Firstly, it is not possible to properly foresee all rel-

evant changes in information needs/analysis needs of

stakeholders or in the domain itself (e.g., regulatory, mar-

ket). Therefore, a mechanism is needed that would allow

users to modify a language specification on demand (R7)

(cf. Malavolta et al. 2013), of course, without loosing the

possibility to use supporting modeling tools. Secondly,

business users demand more support for automated anal-

yses (R8) than is currently offered by existing modeling

environments (cf. Malavolta et al. 2013). From the

description of the analysis scenarios it follows that the

automated analyses should account for different hierarchy

levels (cf. R3). Also they should support different calcu-

lations based on the values of selected properties of the

model elements, both within and across different hierarchy

levels.

3 Existing IT Modeling Languages, Fulfillment

of Requirements and Observed Limitations

We now discuss to what extent the stated requirements are

fulfilled by existing IT modeling languages. Following this,

focusing on one language, namely the IT Modeling Lan-

guage (ITML), we discuss limitations of approaches that

follow the conventional two-level paradigm.

3.1 Evaluation of Selected Modeling Languages

Several enterprise modeling languages exist that support

modeling of IT infrastructure in the context of an enterprise

action system (cf. R1). Those languages adhere (with a few

exceptions) to the traditional meta modeling paradigm

(corresponding to the meta object facility (MOF)) and offer

modeling tools with the semantics of the mainstream

object-oriented programming languages. Although con-

ceptual overlaps between the existing enterprise modeling

approaches can be assumed, they differ substantially in

terms of the domain coverage and semantic richness of

offered concepts. In the following, we focus on two dis-

tinctive ones, namely ArchiMate (The Open Group 2013)
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and Multi-Perspective Enterprise Modeling (MEMO)

(Frank 2014a). We have selected these specific modeling

approaches considering, on the one hand, the extensive

capacity to relate perspectives and popularity of the lan-

guage (ArchiMate, as shown, e.g., by Malavolta et al.

2013), and on the other hand, the expressiveness of the IT

domain (MEMO ITML, as shown, e.g., by Kaczmarek and

de Kinderen 2016). Whereas ArchiMate favors a concise

language design, MEMO offers an extensive language

design in the form of a family of domain specific modeling

languages (DSMLs). These DSMLs, among them, the IT

modeling language (ITML) (Heise 2013), offer compre-

hensive reconstructions of the technical languages that

domain experts are familiar with (cf. Frank 2014a). The

difference between both languages is clearly visible, if we

consider how they account for software and hardware

artifacts and dependencies between those (cf. Table 1).

As can be seen (cf. Table 1), ArchiMate provides gen-

eric concepts (with no attributes) (cf. R5), thus it facilitates

reuse (cf. R6). However, as the concepts are generic and do

not possess attributes, there is not enough information to

conduct most of the analysis scenarios (cf. R2–R4).

Therefore, the relevant information needs to be added at a

later stage in order to perform a selected analysis type (cf.

Florez et al. 2014). In addition, the created models are not

fit for (automated) quantitative analyses (cf. R8), therefore

intermediate translation steps (e.g., a normalization step,

cf. Lankhorst 2013, p. 201), or transformation into a dif-

ferent formalism (cf. Johnson et al. 2007) are required. In

addition, the offered concepts do not provide relevant

abstractions over operational-level data (cf. R4).

In turn, ITML provides more differentiated elements (cf.

R2). These express a variety of types of dependencies

between different types of software and hardware artifacts,

thus ITML is more geared to support productivity, but not

reuse (cf. R6). However, although different analysis sce-

narios are supported by the offered tool (cf. Bock and

Frank 2016), the level of support for the performed anal-

yses is still deemed unsatisfactory. This especially con-

cerns different hierarchy levels, which are not accounted

for in the language (cf. Kaczmarek and de Kinderen 2016).

Similar to ArchiMate, analyses of enterprise models are

characterized by a lack of information from the actual

systems and, although the meta modeling language used

allows for accounting for the instance level (Frank 2014a),

this is not accounted for in the supporting modeling tool

(Bock and Frank 2016). Thus, R3–R6 and R8 remain

unfulfilled.

Finally, when it comes to R7, both languages offer

different mechanisms allowing to modify a language

specification: meta model customization (in the case of

MEMO) and language-built-in mechanisms (in the case of

ArchiMate). However, as explained in detail by Atkinson

et al. (2015), those mechanisms are not satisfactory and

cause notable problems. For instance, in the case of meta

model customization, if it is at all supported by a given

modeling environment (as often a meta model is ‘hard-

wired’ in the tool, cf. Atkinson et al. 2015), in the standard

meta modeling environment it requires a recompilation/

redeployment step so that the change can be reflected into

the tool.

We argue that the lack of the fulfillment of the identified

requirements by the existing modeling languages results

from the limitations of the currently dominant language

architecture and as such, cannot be addressed by, e.g.,

modifying or extending them. To illustrate this, in the next

section we undertake an attempt to extend ITML (as it

already offers a rich set of concepts) with the required

aspects.

3.2 Model-Driven Analysis with ITML

To discuss, using the example of ITML, limitations of the

conventional modeling paradigm, we focus on analyses in

the context of IT platforms.

As we have shown in our previous research (cf. Kacz-

marek and de Kinderen 2016), different understandings of

an IT platform exist that range from a hardware-oriented to

a software-oriented interpretation, down to architecture/

industry/technology platforms, or a platform as an enabler

of innovation. As a response to this diffuse understanding

we have proposed, based upon Sun et al. (2015) and

Table 1 The selected concepts supporting modeling of an IT Landscape – an overview

Approach Software Hardware Relation types Attr. Constr.

ArchiMate Artifact, Node, SystemSoftware,

ApplicationComponent,

ApplicationInterface, App. service,

Infrastr. service

Node, Device Access, association,

used by

– –

ITML Software, Architecture, License,

SoftwareProduct, SoftwareInterface,

ComunicationProtocol, Data,

FormatType

Computer,

PhysicalDataMedium,

NetworkComponent, Network,

Printer, Scanner, Fax

Multiple domain

relations, e.g.: used

in, requires, runs on

Multiple

attributes

defined for each

concept

Numerous

OCL

constraints
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Sangiovanni-Vincentelli and Martin (2001), to perceive an

IT platform as ‘‘a baseline piece of hardware or software

that enables the development of, and imposes constraints

on, other software or hardware. In turn, the other software

or hardware can by itself be an IT platform’’ (Kaczmarek

and de Kinderen 2016, p. 77). Here a key characteristic is

that a platform enables and constrains development of

further hardware and software, by offering, e.g., a certain

instruction set (in the case of hardware), a software inter-

face, or a set of methods. Thus, on the one hand, a platform

defines constraints on an application, because it is written

for a specific platform. On the other hand, a platform

provides functionalities that developers can take advantage

of. Furthermore, the functionality of, and constraints on

one type of IT platform serve as a foundation for another

type of a platform (cf. Table 2). Finally, IT platforms come

with different hierarchy levels, i.e., there exists a hierarchy

of concepts, where more general concepts are refined into

more specific ones (e.g., Software platform, Software

Server, Web Server, Apache Server, TomCat – cf. Fig. 3).

To conceptualize IT platforms, as stated, we extend

MEMO ITML. In conventional meta modeling, one

describes domain concepts and their relations using a meta

model (i.e., M2) (language specification) and subsequently,

this meta model can be instantiated on the type level (i.e.,

M1) (language application). Therefore, we need to modify

the ITML’s meta model. As we extend ITML from the

MEMO language family, we use MEMO’s common Meta

Modeling Language (MML) (Frank 2011). MML uses

concepts common to meta modeling, such as meta types,

attributes and associations. In addition, it provides the

possibility to model intrinsic features and intrinsic relations

(marked by the white literal ‘‘i’’ on a black background),

which are to be instantiated only on the instance level (M0)

and not on the type level (M1). In addition, MML allows

for modeling so called Language Level Types – visualized

with a black name of the concept on a grey background –

which specify concepts that represent instances already on

the type level (M1) and cannot be instantiated further

(Frank 2011, pp. 23–24).

A meta model excerpt, corresponding with the presented

understanding of IT platforms, is provided in Fig. 1. Trying

to find a balance between productivity and reuse, and

taking into account the modeling constructs we can use, we

model a meta type Software with three main specializations

OperatingSystem, TechnologyInfrastructureSoftware, Ap-

plicationSoftware. Also, we model two meta types: Hard-

warePlatform and SoftwarePlatform. To account for

specific kinds of HardwarePlatform we use an enumeration

attribute caseType. In addition, HardwarePlatform has a

ProcessorArchitecture and finally, an OperatingSystem

running on it. In turn, a Software offers a SoftwareInterface

which in turn provides a Method covering a Functionality.

Software can communicate (SoftwareCommunicationRe-

lation) with some other Software. Due to the space limi-

tations and to increase the meta model’s understandability,

only exemplary attributes, values of enumerations, and

constraints specified in the Object Constraint Language

(OCL) have been included (Fig. 1).

Analysis possibilities To illustrate model-driven analy-

ses, Fig. 2 shows IT platforms of a fictitious insurance

company called ArchiSurance, from Jonkers et al. (2012)

and extended by Kaczmarek and de Kinderen (2016). They

are modeled using the extended ITML with an exemplary

concrete syntax. The diagram is divided into two main

parts. First, the IT Landscape part of the diagram depicts

different platforms running at ArchiSurance: a hardware

platform, a system platform, a technology platform and an

application platform combined with application software.

This model is integrated with a business process model

created using the MEMO Organisation Modeling Language

(OrgML) (Frank 2014a). The created diagram allows

developers and analysts, by browsing it, to e.g., (1) Assess

compatibility with existing legacy applications – e.g.,

ArchiSurance has a legacy financial application written in

COBOL, which clashes with the overall use of the Java

platform; (2) Assess business IT alignment – we learn that

the financial legacy application, which clashes with the

Java platform, supports ArchiSurance’s business process

for paying out insurance claims; (3) Assess the level of

Table 2 Different types of an IT platform, based on Kaczmarek and de Kinderen (2016)

Type of platform Understanding

Hardware platform The type of a processor and/or other hardware on which a given operating system runs. It can also refer to

the type of system in general (e.g., mainframe, workstation, desktop)

Software platforms:

Operating system platform An operating environment under which various smaller application programs can be designed to run. An

operating system is installed on some dedicated hardware platform

Technology-oriented and

infrastructure platform

A piece of software enabling the realization of applications, rather than software offering specialized

functionality to an end user, e.g., a virtual machine, enterprise system platform

Software application platform A piece of software under which various smaller application programs can be designed to run
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interoperability – e.g., ArchiSurance has different hard-

ware platforms that impose constraints on the development

of new applications.

Observed limitations As illustrated, we can use the

created models to conduct additional analyses compared to

the original ITML. However, the requirements are still

unfulfilled as, among others, (1) the analyses need to be

mostly performed by navigating different diagrams and

relations between them (cf. R8), (2) to perform different

analyses, still a different level of abstraction is required to

draw meaningful conclusions (cf. R2 and R3), (3) flexi-

bility is missing that would allow to move between

different hierarchy levels (cf. R3), (4) the models do not

account for operational-level data (cf. R4). As shown

subsequently, extending the ITML’s specification further

(e.g., with the hierarchy of IT platforms), will not change

this situation. We argue that this is due to limitations

imposed by (a) mainstream object-oriented programming

languages used to implement the corresponding modeling

tools (R4, R7–R8), and (b) relying on the traditional two-

level conceptual modeling approach (R2–R3, R5–R6).

First, mainstream object-oriented programming lan-

guages feature only one classification level. Therefore

types or even meta types are represented as objects by

Software
name : String
vendor : String
multiUser : Boolean
noOfLicences : Integer
licenceType : String
d crossPlatform : Boolean
i version : String
i purchased : Date
... : ...

ImplementationLanguage
name : String
type : {object-oriented, functional, ...}
staticTyping : Boolean
... : ...

SoftwareCommunicationRelation
description : String
communicationProtocol : String
isMandatory : Boolean
hasAlternative : Boolean
... : ...

0..*
1..*

implemented with0..*

referringSoftware
1..1

0..* referredSoftware 1..1

whole

0..*

part
0..*

is part of

SoftwareInterface
name : String
synchronous : Boolean
... : ...

1..*

0..*
implemented with

1..1 1..*
provides

0..* 0..*

requires

Method
name : String
description : String
precondition : String
postcondition : String
... : ...

1..1

1..*

pr
ov
id
es

Functionality
name : String
description : String

0..*

1..*

covers

SoftwarePlatform
name : String
type : {System, Technology, Application}
d isCollection : Boolean
... : ...

0..*

softwareAsPlatform
1..1

acts as

part
0..*

collection
0..*

belongs to

0..*

runSoftware

0..*

runs on

installedSoftware

0..*

1..1 installed oni

OperatingSystem
OS-Family : {Win., Linux, z/OS, ...}
type-OS : {desktop, server, mobile, ...}
multitasking : Boolean
fileSystem : {FAT32, NTFS, ...}
bitArchitecture : {32bit, 64bit, ...}
i serialNo : String
... : ...

TechnologyInfrastructureSoftware
type : String
... : ...

ApplicationSoftware
type : {office app, social, web, ...}
sourceCode : Boolean
... : ...

HardwarePlatform
name : String
caseType : {desktop, server, ...}
portable : Boolean
maxWeight : Float
i actualWeight : Float
isVirtual : Boolean
i serialNumber : String
i amountRAM : Integer
i cloudBased : Boolean
... : ...

ProcessorArchitecture
processorFamily : String
ISA : {CISC, MMd, RICS}
wordWidth : String
performance : Integer
maxMemory : Integer
i noOfCores : Integer

0..*

0..*
runs on

0..*

1..1

has

context SoftwareCommunicationRelation inv:
self.referredSoftware->excludes
(self.referringSoftware)

C01

context Software inv:
self.whole->excludes(self)

C02

context SoftwarePlatform inv:
self.collection->excludes(self)

C03

C04

C05

context SoftwarePlatform inv:
self.type=’System’ implies
self.softwareAsPlatform.oclIsTypeOf
(OperatingSystem)

C06 context SoftwarePlatform inv:
self.type=’Application’ implies
self.softwareAsPlatform.oclIsTypeOf
(ApplicationSoftware)

C07

C06
0..*

1..*

offers

context SoftwarePlatform inv:
self.softwareAsPlatform->
excludes(self.runSoftware)

0..*

0..*

requires

C07

...

C..

context SoftwarePlatform inv:
self.softwareAsPlatform->
includes(self.installedSoftware)

Fig. 1 Excerpt from the extended ITML meta model (Kaczmarek and de Kinderen 2016)
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overloading the M0 level of a programming language. As a

result a common representation of code and model is not

possible (Frank 2014b). Thus, not only a recompilation of

modeling tools is required whenever we want to change

something in the language specification, but also equipping

model elements with operations (to support automated

analyses), or linking them with operational-level data, is

hardly conceivable (cf. Frank 2014b, 2016).

Second, there are limitations that inherently come with

using the two-level modeling paradigm. We illustrate them

by referring to the hierarchy of IT platforms we want to

account for.

A fixed number of classification levels: IT platforms

exist in a remarkable variety of types (e.g., hardware

platforms, technology platforms, cf. Table 2), each of them

possessing a variety of type-specific attributes and further

hierarchies (cf. Fig. 3).

Considering the identified requirements and with the

aim to avoid conceptual redundancy, we are interested in

making this hierarchy part of a language specification (M2).

Thus, we model, e.g., an additional meta type Soft-

wareServer and specialize it in, e.g., WebServer, which in

turn may be specialized into specific products Apa-

cheHTTP, TomCat and specific editions (e.g., TomCatv8)

(cf. Fig. 3). However, by deciding to represent the refine-

ment relations between the elements of the presented

hierarchy as specializations, we would be dealing with a so

called level mismatch problem (cf. Atkinson and Kühne

2008) as various domain levels/hierarchy levels are map-

ped onto exactly the same model level (i.e., M2). Although

Fig. 2 An exemplary extended ITML diagram integrated with OrgML
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it is certainly technically possible to overload the (M2)

level, by relying on specialization, this would constitute a

workaround. Such workarounds are necessary since ITML,

based on the traditional two-level paradigm, natively does

not offer constructs to mirror the hierarchies that naturally

exist in the IT infrastructure domain.

Problems with incorporating relevant information: as

we use the specialization relation to model the platform

hierarchy, moving along it we are able to extend the defi-

nition of specialized meta types (e.g., adding information

that a WebServer has additional attributes such as ker-

nelSpace, userSpace). However, we face problems when

trying to incorporate relevant information, in particular

when trying to assign values to attributes of meta types.

This is because in conventional meta modeling meta types

cannot have a state. To illustrate this consider that we want

to specify that TomCat is produced by the organization

‘Apache’ and made available on the terms of the Apache

license. To do it we would need to assign values to

inherited (via specialization) attributes: vendor and li-

cenceType of the meta type TomCat (M2). However, since

meta types are stateless, this would not be possible. The

only solution would be to define an OCL constraint that

would state that each instance of TomCat (i.e., on M1)

needs to have, e.g., the value of attribute vendor set to

‘Apache’. This however, not only increases the complexity

of the model, but also such OCL constraints are not always

supported by modeling tools.

No associations between objects on different levels: in

conventional meta modeling the only relation allowed

between different levels (e.g., M2, M1) is the instantiation

relation (Atkinson and Kühne 2008). As a result, we

cannot link a concept defined as part of language speci-

fication with a concept that is part of language applica-

tion. To illustrate this, let us consider again TomCat being

produced by ‘Apache’. Instead of using an attribute ven-

dor, we could decide to model a meta type Vendor (M2)

and define a relation that each SoftwareServer (and thus,

also its specializations) has some Vendor. However, when

we would like to relate TomCat (a specialization of a

WebServer, M2) with the relevant vendor, it turns out to

be impossible. This is because the Apache organization

would be in most cases defined as an instance of Vendor,

so would be part of language application (M1) and not

language specification, as TomCat. Alternatively, we

could define both TomCat and Apache on M1 (i.e.,

TomCat would be an instance and not a specialization of

WebServer) and then state the relation between them. This

would however lead to redundancy in corresponding

models, as the information not stated in the language

specification would need to be always added during the

use of the language.

Summarizing, we see that the identified requirements for

IT infrastructure modeling languages cannot be satisfac-

torily addressed with a conventional language architecture.

A satisfactory solution is understood as a solution that

would promote model integrity, avoid model redundancy,

and that would allow to express all relevant knowledge at

the relevant abstraction level. Thus, as a response, we now

introduce multilevel modeling and discuss to what extent

this would be a suitable instrument for model-driven IT

infrastructure analyses.

4 Multilevel Modeling and FMMLx

The need to deal with more than two levels of classifi-

cation has been receiving increasing attention over the

years (cf. Atkinson and Kühne 2001, 2008; Frank

2014b, 2016; Carvalho and Almeida 2016). A number of

multilevel modeling approaches have been proposed,

among them, a potency-based multilevel modeling (also

called deep instantiation) (Atkinson and Kühne 2008),

multilevel objects and multilevel relationships (m-objects

and m-relationships) (Neumayr et al. 2009) and lately, the

Flexible Meta-Modeling and Execution Language

(FMMLx) (Frank 2014b) as well as Multilevel Theory

(MLT) (Carvalho and Almeida 2016). Three features are

shared by all multilevel approaches (cf. Table 3): (1) the

support for arbitrary-depth classification hierarchies,

Software Artifact

Software Server Operating System

Mail Server Web Server File Server Windows Mac OS

Windows 10

Windows10Home

IIS Apache HTTP

TomCat v.8.1 TomCat v.5

TomCat

Windows10Pro

Windows 8

Fig. 3 Excerpt from an

exemplary hierarchy of IT

platforms
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(2) relaxing the type/instance dichotomy, implying, among

others, that types (classes) can have a state, i.e., that their

attributes can be assigned with a value, and finally,

(3) offering a deferred instantiation mechanism2. How-

ever, these languages differ when it comes to (1) the way

these features have been implemented, (2) their applica-

bility and expressiveness, and (3) additional mechanisms

and tool support offered (cf. Neumayr et al. 2011; de Lara

et al. 2014). For instance, to express a deferred instantia-

tion, a deep instantiation approach uses a special construct

‘potency’ that may be assigned to attributes only, MLT

uses the notion of ‘regularity’ attributes, whereas in the

case of FMMLx the concept of ‘intrinsic properties’ is

applied, which may be used together with attributes,

operations and relations.

FMMLx exhibits distinctive features compared to other

approaches (cf. Table 3), among others, it accounts for

operations as well as offers a common representation of

model and code. As those features support fulfillment of

identified requirements, as explained subsequently, there-

fore, FMMLx becomes our language architecture of choice.

Whereas a full description of FMMLx can be found in

Frank (2014b), here we briefly explain its most relevant

features.

FMMLx is based on an extension of XCore (Clark

et al. 2008), which is the meta model of an

executable meta modeling facility (XMF) (Clark and

Willans 2013). XCore allows for an arbitrary number of

classification levels, which is accomplished through a

recursive and reflexive language architecture. In XCore

a meta class Class inherits from Object. At the same

time, objects (instances of Object) are instantiated from

Class. As a result, every (meta) class is an object and

can have state (Frank 2014b). In addition, the recursive

language architecture allows for a common representa-

tion of code and model (Frank 2014b). This means that

(1) model elements are classes, which allows for the

definition of attributes and operations, and also

(2) classes are objects, so we can assign values and

execute operations (cf. R8).

In addition, the definition of attributes, operations and

relations has been equipped with an additional property:

intrinsicness (Frank 2014b). This property obtains an inte-

ger value that indicates the level on which a given attribute,

relation or operation will be instantiated. For instance, while

defining a meta class Process (on M2) we can express that it

has an attribute startTime which can only be instantiated

(meaning: it obtains a value) on M0 (cf. Fig. 4). The level of

instantiation is indicated by placing a white number in the

black box next to the definition of the element in question

(cf. the FMMLx concrete syntax, Fig. 4).

Finally, FMMLx is supplemented by a meta modeling

and programming environment, called XModeler (Frank

2014b). XModeler offers an environment that, among

others, allows to integrate the external data sources into a

model.

Table 3 Comparison of selected features of selected multilevel modeling approaches

Feature Deep inst. FMMLx m-objects MLT

(1) Multiple levels of classification � � � �
(2) Relaxed type/instance dichotomy � � � �
(3) Deferred instantiation � � � �
(4) Accounting for operations � � � �
(5) Common rep. of code and model � � � �

� not supported/not offered, � supported

Fig. 4 FMMLx concrete syntax,

cf. (Frank 2014b)

2 Deferred instantiation allows to define on each level of abstraction

invariant commonalities which are relevant for our purposes, and

deferring their instantiation to some not directly proceeding lower

level.
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5 A Multilevel Model of IT Platforms

In this section,we apply FMMLx tomodel different aspects of

IT platforms. We express it in terms of what we refer to as a

multilevel model, so as to reflect the arbitrary number of

classification levels of IT platforms. Furthermore, we remove

the prefix ‘meta’ from model because in multilevel modeling

the separation between language specification and application

is blurred. Due to space restrictions, we discuss an excerpt of

the multilevel model (Fig. 5). In order to increase its under-

standability,most of themodel’s properties are omitted,which

is indicated by an additional line with ‘‘... : ...’’.

Following our understanding of an IT platform, on the

most abstract level, we distinguish two main categories of a

platform: hardware and software. In the multilevel model,

this is reflected in a division into HardwareComponent and

SoftwareArtifact (M5). A set of (intrinsic) attributes and

relations defined for each of them reflects our domain

knowledge on this abstraction level. In addition, Hard-

wareComponent as well as SoftwareArtifact have opera-

tions (mainly instantiated on lower levels), which allow for

running desired analyses. This can, e.g., pertain to a cal-

culation of the amount of categories (cf. ComputingDevice,

M4) or the total maintenance cost (cf. 3000 Euros for

WebServer, M3) for the needs of cost/benefit analysis.

Finally, the multilevel model includes relevant relations,

which in FMMLx can be cross-level. For instance, we

know that each HardwareComponent (M5) provides

Functionality (M2) and this relation will be instantiated on

M2 and M1, respectively.

Fig. 5 Excerpt from the multilevel model, covering M5 to M1
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HardwareComponent and SoftwareArtifact are instanti-

ated, among others, into different types of hardware and

software platforms. If we move along the created hierarchy,

for each class we can define additional attributes and oper-

ations for expressing particular phenomena. Furthermore,

we can instantiate attributes and relations defined on higher

levels. For example, the class Windows can define the attri-

bute value for vendor as ‘Microsoft’ (Fig. 5). Also, already

defined relations can be concretized. For example, the rela-

tion ‘suited for’ between the classes ComputingDevice and

TechnologyPlatform, can be concretized in the relation

‘suited for’ between MobileDevice and JavaME.

In turn, Fig. 6 presents a screenshot from the XModeler

tool with an excerpt of the multilevel model. It shows the

class SoftwareServer (M4) (being an instance of a Soft-

wareArtifact, cf. Fig. 5) and its instance, a class WebServer

(M3). AWebServer class specifies additional attributes such

as userSpace, kernelSpace, or CommonGatewayInteraface.

A WebServer is further instantiated into different types,

namely TomCat, ApacheHTTP and IIS. Please note that if a

user wants to model a different type of a server, a user can

instantiate theWebServer class using themodeling palette of

XModeler (cf. Fig. 6). A SoftwareServermeta class defines a

set of operations that can be executed at the corresponding

level. For instance, there are operations allowing to calculate

average load or average capacity of servers on M1. More-

over, it is possible to obtain the information regarding the

number of categories or the maintenance cost by executing

the relevant operations (defined at the M5 level within the

SoftwareArtifactmeta class). Various analyses regarding the

performance in the selected time horizon may be also

implemented as methods. The types of WebServers may be

further instantiated into specific versions and the additional

information may be added, e.g., that TomCatv8 requires at

least Java v7.We do it by instantiating the relation defined on

the upper level. Finally, on M0 we deal with a specific server

version running on a specific platform. This illustrates that

XModeler both (1) accounts for abstractions over the rele-

vant operational-level data, and (2) we could feed it with

data coming from the operational systems.

6 Multilevel Model-Based Dependency Analysis

In this section, by referring to the extension of the

ArchiSurance scenario (Sect. 4), we show additional

Fig. 6 Screenshot of the multilevel model implemented in XModeler
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mechanisms and enhanced analyses possibilities enabled

by FMMLx.

In particular, we consider the software communication

relation between the insurance application running on

Linux, and the CICS transaction processing middleware

running on z/OS. This communication takes place over a

communication channel.

Suppose that ArchiSurance decides to transition its

insurance application to a windows-based machine, to

reduce its dependence on the (legacy) mainframe. After the

transition, ArchiSurance notices a significant drop in

throughput over the communication channel, turning this

into a bottleneck for the number of transactions that the

insurance application can process. To find the cause of this

bottleneck, ArchiSurance uses a multilevel model as an

instrument to inspect dependencies in its IT infrastructure,

cf. Fig. 7. It learns that prior to the transition to Windows,

the Linux-based insurance application was running on the

Fig. 7 Multilevel model of a mainframe – an excerpt with highlighted aspects
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same hardware as the z/OS-based CICS middleware – by

means of virtualization3, this hardware was split into

multiple partitions. As a result the communication channel

used for communication between the insurance application

and CICS, while functioning the same as an ordinary

communication channel (thus allowing, e.g., the use of a

TCP/IP connection), was actually virtualized in the RAM

memory of the same machine. This virtualization offers

performance advantages compared to an actual network

connection, whereby data needs to take a ‘detour’ over

hardware networking infrastructure.

Considering the use of multilevel modeling, first, we

observe how we benefit from relaxing the type/instance

dichotomy. In particular, while moving down the level of

abstraction for the communication channel, we can auto-

matically derive/obtain specific values. In the mainframe

multilevel model, this is particularly visible for the class

‘Hipersocket’ (Fig. 7). Once it is known that the commu-

nication channel is actually a Hipersocket, we obtain four

attribute values. Namely that the vendor is IBM, and that a

Hipervisor operates inMemory, meaning that it is by defi-

nition a virtualized communication channel. Also, we can

notice that the communication channel is not encrypted,

encryption being unnecessary with the communication

taking place over a virtualized communication channel.

Finally, taking into account that we now also know the

maximum memory capacity of the server that the hiper-

socket runs on (the Z13 server), we can also infer an

upperbound to the capacity of this communication channel

(7300 transactions per second).

Second, to compare actual performance of the commu-

nication channel between a physical network connection

and the hipersocket, we benefit from the common repre-

sentation of model and code. We can thus update the model

with instance level organizational data, coming from the

running hipersocket (7298, for the particular performance

snapshot shown in Fig. 7), as well as for an actual network

connection (not shown due to space restrictions).

Third, the flexibility to move between different hierar-

chy levels allows us to ‘zoom in’ on the ArchiSurance

scenario. In this case, it has allowed us to observe that the

communication channel for applications running on dif-

ferent partitions of the mainframe is virtualized, resulting

in a performance increase compared to traditional network

set-ups. Thus, multilevel modeling allows us to gain a

better understanding of what is going on underneath, if so

desired.

In the multilevel ArchiSurance scenario, the gained

understanding leads to the decision to move the insurance

application back to the Linux OS. This way, ArchiSurance

can capitalize on the virtual network connection capability

that is possible only because CICS and the insurance

application are running on two virtualized partitions of

what is essentially the same hardware.

7 Discussion

The application of FMMLx to model IT platforms leads us

to the following observations. By allowing multiple clas-

sification levels, FMMLx makes it possible to use concepts

that correspond directly with the hierarchy levels of the

concepts used by domain experts (R3 and R5). We can

choose the level of abstraction (or level of details) we want

to deal with (cf. R5) and take advantage of the defined

operations to satisfy information needs of different stake-

holders (R1–R3). Furthermore, by offering a flexible

number of levels, multilevel modeling has the potential to

offer a user exactly the knowledge required at a particular

level of abstraction. For instance, to have all knowledge

available on ‘Servers’, but equally on ‘Apache Servers’. As

a result, multilevel modeling actually alleviates the conflict

between reuse and productivity present in the traditional

two-level paradigm. It accounts for reuse (R6) by provid-

ing, at each classification level, all knowledge relevant for

a given context, while at the same time accounting for

productivity by providing the possibility to express

semantically rich concepts at each classification level (R2).

A common representation of model and code in an

integrated modeling and programming environment

(XModeler) avoids the cumbersome model and code syn-

chronisation problem, and treating classes as objects allows

to define relevant operations supporting different analysis

scenarios (R7). Thanks to the recursive architecture of

XMF and dynamic typing (Frank 2016), the introduction of

changes to the language definition in the accompanying

software tool does not require an additional recompilation

step. This eases modification of a language (R7). In addi-

tion, XModeler as a programming environment allows to

link to external applications. Thus, we can ensure that

enterprise models are up-to-date by linking them to exist-

ing data sources/applications (R8).

However, we experience several challenges. Firstly, new

‘principles’ need to be followed to use multilevel model-

ing, because it imposes a paradigm change (e.g., no type/

instance dichotomy, an arbitrary number of levels). This

requires a change in the mindset for those used to modeling

with the conventional paradigm. Secondly, as there is no

limitation regarding the classification levels, a language

designer requires the ability to think in terms of multiple

3 Virtualization of hardware resources is a common feature of

mainframes, in particular it allows (1) to offer redundant (virtual)

partitions, which helps with fault tolerance, and (2) to help distribut-

ing the ample hardware capabilities offered by a mainframe into

smaller, more manageable pieces.
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classification levels. On the one hand, the application of

multilevel modeling allows for a straightforward statement

of domain phenomena. Thus, this leads to the creation of

models without overloading levels. However, the possi-

bilities offered by this new modeling paradigm (e.g., using

various classification levels, equipping the model elements

with behavior) lead to models that are more complex and

semantically richer than their conventional counterparts

would be. Therefore, depending on the scenario, we should

equip supporting tools with visualization and customiza-

tion mechanisms that would facilitate fading out irrelevant

parts of a model. Finally, there is a need to define methods

to support the design of multilevel models and their

application.

8 Conclusions

In this paper, we used the concept of an IT platform and

corresponding analyses to (1) discuss limitations of the

conventional two-level modeling, and (2) show the benefits

resulting from the application of the multilevel modeling

language FMMLx. We have shown that multilevel model-

ing indeed better addresses the identified requirements due

to, among others, (1) introducing an arbitrary number of

abstraction levels, (2) relaxing the type/instance dichot-

omy, and, in the case of FMMLx, (3) offering a common

representation of model and code. Also, considering that

the IT domain intrinsically features more than two classi-

fication levels, and that it has a considerable amount of

coded enterprise level data, FMMLx seems to be particu-

larly suited to this end. Although the application of mul-

tilevel modeling in general, and FMMLx in particular, has

its challenges and requires additional research, our expe-

rience indicates that it is well suited for enabling more

powerful model-based analyses than the instruments cur-

rently offered.
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