
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2017 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

Summer 2017

Learning Contextual Embeddings for Knowledge
Graph Completion
Changsung Moon
North Carolina State University at Raleigh, cmoon2@ncsu.edu

Steve Harenberg
North Carolina State University Raleigh, sdharenb@ncsu.edu

John Slankas
Laboratory of Analytic Sciences Raleigh, jbslanka@ncsu.edu

Nagiza F. Samatova
North Carolina State University Raleigh, samatova@csc.ncsu.edu

Follow this and additional works at: http://aisel.aisnet.org/pacis2017

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2017 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Moon, Changsung; Harenberg, Steve; Slankas, John; and Samatova, Nagiza F., "Learning Contextual Embeddings for Knowledge
Graph Completion" (2017). PACIS 2017 Proceedings. 248.
http://aisel.aisnet.org/pacis2017/248

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301373012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2017%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2017?utm_source=aisel.aisnet.org%2Fpacis2017%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2017%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2017%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2017?utm_source=aisel.aisnet.org%2Fpacis2017%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2017/248?utm_source=aisel.aisnet.org%2Fpacis2017%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


 Learning Contextual Embeddings for Knowledge Graph Completion 
  

 Twenty First Pacific Asia Conference on Information Systems, Langkawi  2017  

Learning Contextual Embeddings for 
Knowledge Graph Completion 

Completed Research Paper 
 

Changsung Moon 
North Carolina State University 

Raleigh, NC 27695, USA 
cmoon2@ncsu.edu 

 

Steve Harenberg 
North Carolina State University 

Raleigh, NC 27695, USA 
sdharenb@ncsu.edu 

 

John Slankas 
Laboratory of Analytic Sciences 

Raleigh, NC 27695, USA 
jbslanka@ncsu.edu 

Nagiza F. Samatova* 
North Carolina State University 

Raleigh, NC 27695, USA 
Oak Ridge National Laboratory 

Oak Ridge, TN 37831, USA 
samatova@csc.ncsu.edu 

 

Abstract 
Knowledge Graphs capture entities and their relationships. However, many 
knowledge graphs are afflicted by missing data. Recently, embedding methods have 
been used to alleviate this issue via knowledge graph completion. However, most 
existing methods only consider the relationship in triples, even though contextual 
relation types, consisting of the surrounding relation types of a triple, can 
substantially improve prediction accuracy. Therefore, we propose a contextual 
embedding method that learns the embeddings of entities and predicates while taking 
contextual relation types into account. The main benefits of our approach are: (1) 
improved scalability via a reduced number of epochs needed to achieve comparable 
or better results with the same memory complexity, (2) higher prediction accuracy 
(an average of 14%) compared to the related algorithms, and (3) high accuracy for 
both missing entity and predicate predictions. The source code and the YAGO43k 
dataset of this paper can be found from (https://github.ncsu.edu/cmoon2/kg). 

Keywords:  Knowledge Graph Completion, KG Embedding Method, Translation-based 
Model, Vector Embedding, Contextual Embedding  

 

Introduction 
Knowledge Graphs (KGs) have recently become mainstream in IT companies, such as Google, 
Facebook, Microsoft, and Yahoo, as a way of storing information about entities and enhancing search 
results based on the captured semantic information. KGs store information as SPO triples, with each 
triple consisting of two entities (subject and object) and the relationship (predicate), for example (Star 
Wars, genre, Science Fiction). Naturally, a KG can be modeled as a directed multigraph, with nodes 
representing entities and each edge labeled by the relation type. An example KG is shown in Figure 1. 

Although KGs have been constructed in various ways, such as public collaborative efforts and curated 
approaches by closed groups, KGs often suffer from numerous missing relationships. For  
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Figure 1. Sample Knowledge Graph. Figure adapted from (Nickel et al. 2016a). 

example, every person has a place of birth; however, 71% of all people do not have place of birth data in 
the Freebase KG (West et al. 2014). Similarly, 75% of people have no known nationality in this dataset. 
Missing relationships such as these can disrupt semantic-based search (Guu et al. 2015). For example, 
missing nationality relationships would inhibit even a simple path query such as "What languages are 
spoken by people living in Lisbon?". Therefore, it is critical to develop methods that address the task of 
KG completion - the prediction of missing entities and missing relation types. 

Existing methods that address the task of KG completion can fall into one of two categories (Nickel et 
al. 2016a): (1) graph feature models that use features directly extracted from observed edges in a graph 
(Muggleton 1995; Galárraga et al. 2013) (e.g., rule mining, inductive logic programming, etc.) and (2) 
latent feature models that use features not directly observed in a graph (e.g., semantic embeddings, 
matrix factorization, tensor factorization, etc.). There have been a number of methods based on graph 
feature models, though these have scalability limitations and often do not work for large KGs. In 
contrast, latent feature models have been gaining considerable attention because they scale to large KGs 
by representing features of entities and relation types in a low-dimensional vector space. We call these 
features the "embeddings" because they are not directly observed in the data; rather, they are 
automatically inferred from the training data. In light of the improved scalability of latent feature 
approaches, we developed our method in this space via semantic embeddings. 

Recently proposed KG embedding methods (Bordes et al. 2011; Nickel et al. 2011; Bordes et al. 2013; 
Dong et al. 2014; Wang et al. 2014b; Lin et al. 2015; Nickel et al. 2016b) can discover new knowledge 
via KG completion. However, most of them only capture the relationship in a triple, even though 
contextual relation types (i.e., surrounding relation types) of the triple can be used to significantly 
improve the accuracy of the discovery. For example, in our test datasets, over 97% of the predicates 
between S and O have already been used as a predicate of S to a different object or as a predicate of O 
from a different subject. Hence, the predictions using these methods are made without regard to 
valuable information contained in the KG. There are also recent KG embedding methods (Socher et al. 
2013; Wang et al. 2014a; Zhong et al. 2015; Xie et al. 2016a; 2016b), which use rich information like 
text and entity type. However, usually, they are more complex to deal with the additional information, 
and the rich data might not be available for some KGs. 

To address these issues, we introduce our method, Contextual Embeddings (ContE). The basic idea of 
our method is that ContE includes outgoing (from the subject) and incoming (to the object) relation 
types of a triple as contextual relation types or contexts, which are shown in Figure 2, into the 
embedding learning process. Thus, as a probable missing relation type between two entities, ContE 
considers predicates that have appeared in the outgoing relation types of the subject or incoming 
relation types of the object. In summary, our main contributions are as follows: 

• Our approach requires a reduced number of training epochs to achieve comparable 
or better results without increasing the memory complexity. For example, for entity prediction 
on the FB15k dataset, ContE needs to run only 1,200 epochs to achieve the optimal result of the 
next best method, which requires 3,300 epochs. Our method can also scale to large KGs, taking 
linear time in the size of KG and storing only a low-dimensional vector for each entity and 
relation type. 

• We perform extensive experimental comparisons of ContE against other state-of-the-
art KG embedding methods on two real-world datasets for relation type prediction and entity 
prediction. In all experiments, ContE had a consistently higher accuracy (an average of 14% 
against the state-of-the-art methods). 
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Figure 2. Contextual Relation Types for a Triple (s, p, o) in a KG 

• Our proposed method shows high accuracy for both entity and relation type 
predictions, while some baseline methods show a high accuracy for one and a low accuracy 
for the other. To achieve better KG completion, it is critical to improve the accuracy 
performance for the both predictions. 

Problem Definition 
The problem of KG completion (i.e., relation type and entity predictions in knowledge graphs) can be 
formally defined as follows: Let 𝐸 = {𝑒%, 𝑒',⋯ , 𝑒)} be a set of all entities, and let 𝑅 = {𝑟%, 𝑟',⋯ , 𝑟-} be a 
set of all relation types. A triple can be denoted by (s, p, o) where 𝑠, 𝑜 ∈ 𝐸 and 𝑝 ∈ 𝑅, with s indicating 
the subject, p representing the predicate, and o being the object. The problem of relation type prediction 
is to determine the score or the probability 𝜓(𝑝 = 𝑟4	|	𝑠, 𝑜) , for all 𝑟4 ∈ 𝑅 . The problem of entity 
prediction is to determine the score or the probability 𝜓(𝑠 = 𝑒8	|	𝑝, 𝑜) or 𝜓(𝑜 = 𝑒8	|	𝑠, 𝑝), for all 𝑒8 ∈ 𝐸. 

For our analysis, the scores or the probabilities are ranked to compute the Hits@N prediction and the 
mean reciprocal rank (MRR). Hits@N prediction refers to the problem of determining the top-N most 
probable subjects, predicates, or objects for a given triple that has a missing entity or relation type. MRR 
is a statistical measure for evaluating a ranking process and is defined as: 

𝑀𝑅𝑅 =
1
|𝑄|

1
𝑟𝑎𝑛𝑘8

|?|

8@%

																																																							(1) 

where Q is a set of test triples, and 𝑟𝑎𝑛𝑘8 is the rank position of the true entity or relation type for the i-
th triple. 

Related Work 

Translating Embeddings 

Translation-based models have shown great improvements in KG completion. In TransE (Bordes et al. 
2013), a predicate p is regarded as a translation from a subject s to an object o. In other words, when 
the triple (s, p, o) holds, TransE wants 𝒆B + 𝒓E ≈ 𝒆G where 𝒆B, 𝒆G ∈ ℝI are the vector embeddings of the 
entities (s and o) and 𝒓E ∈ ℝI is the vector embedding of the predicate (p). The score function is defined 
as follows: 

𝜓(𝑠, 𝑝, 𝑜) = −𝑑(𝒆B + 𝒓E, 𝒆G)   (2) 

where d() is a dissimilarity measure that is either the 𝐿% or the 𝐿'-norm. When the triple (s, p, o) holds, 
the vector of 𝒆B + 𝒓E should be close to 𝒆G. Otherwise, 𝒆B + 𝒓E should be far away from 𝒆G. TransE is a 
simple and efficient model, but it has issues in dealing with relation type prediction and 1-to-N, N-to-1 
and N-to-N triples for entity prediction. 

To address these issues, TransH (Wang et al. 2014b) introduces a mechanism of projecting to relation-
specific hyperplanes to enable an entity to have different embeddings in different triples. TransR (Lin 
et al. 2015) models entities and relation types in distinct entity and relation type spaces, and performs 
translation in relation type spaces. The score function of TransR is as follows: 

𝜓(𝑠, 𝑝, 𝑜) = −𝑑(𝒆BM𝑴E + 𝒓EM, 𝒆GM𝑴E)  (3) 

where d() is a dissimilarity measure given by the 𝐿%-norm, and 𝑴E ∈ ℝI×I is a projection matrix that  

s p o

Outgoing relation types of s
Incoming relation types of o
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Method Memory Complexity 

Rescal 𝒪(𝑛Q𝑘 + 𝑛R𝑘') 

TransE 𝒪(𝑛Q𝑘 + 𝑛R𝑘) 

TransH 𝒪(𝑛Q𝑘 + 2𝑛R𝑘) 

TransR 𝒪(𝑛Q𝑘 + 𝑛R𝑘 + 𝑛R𝑘') 

TKRL 𝒪(𝑛Q𝑘 + 𝑛R𝑘 + 𝑛-𝑘') 

HolE 𝒪(𝑛Q𝑘 + 𝑛R𝑘) 

ContE 𝒪(𝑛Q𝑘 + 𝑛R𝑘) 

Table 1. Memory Complexity of Embedding Models (𝒏𝒆: \# of entities, 𝒏𝒓: \# of  

relation types, 𝒏𝒎: \# of projection matrices of all sub-types, and k: \# of dimensions) 

projects entities from entity space to relation type space. 

TransH and TransR improve the performance of TransE on 1-to-N, N-to-1 and N-to-N as well as 1-to-1 
triples. However, they lose the simplicity and efficiency of TransE, leading to the higher memory 
complexities as shown in Table 1. Besides, they only concentrate on interactions within a triple. TKRL 
(Xie et al. 2016b) uses hierarchical entity type information as additional supplements to learn 
embeddings. It enables an entity to have multiple representations in different types. However, it is also 
complicated, with a higher memory complexity than TransE and requires additional data (i.e., well-
defined hierarchical entity types), which might not be available for some KGs. 

Other Models 

Rescal (Nickel et al. 2011) is a collective matrix factorization method that captures the interactions 
between two entities via pairwise interactions of embedding vectors. The score of a triple (s, p, o) is 
modeled as: 

𝜓 𝑠, 𝑝, 𝑜 = 𝒆BM𝑾E𝒆G = 𝒘XYE𝒆BX𝒆GY

I

Y@%

I

X@%

														(4) 

where 𝑾E ∈ ℝI	×	I is a weight matrix and 𝒘XYE indicates how much the latent features a and b interact 
with the relation type p. In our experiments, Rescal shows quite good results for relation type prediction, 
but it requires tuning many more parameters than other memory efficient models. 

HolE (Nickel et al. 2016b) employs a circular correlation of entity embeddings to create compositional 
representations. The probability of a triple is modeled as follows: 

𝜓(𝑠, 𝑝, 𝑜) = 𝜎(𝒓EM(𝒆B ∗ 𝒆G))   (5) 

where 𝜎(𝑧) = (1 + 𝑒𝑥𝑝(−𝑧))_%, and ∗ indicates the circular correlation: 

𝒙 ∗ 𝒚 𝑗 = 𝒙 𝑖 	𝒚 𝑗 + 𝑖 	𝑚𝑜𝑑	𝑘
I_%

8@e

																														(6) 

with k indicating the number of dimensions of a vector and j indicating the index of the output vector 
starting with 0. HolE can capture richer interactions between entities, but it has issues in capturing 
interactions between relation types and has a relatively slow training time. 

Method 
In this section, we propose a novel model for knowledge graph completion. Given a training triple (s, p, 
o), our model learns vector embeddings of outgoing relation types of s and incoming relation types of o  
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Figure 3. A framework for learning vectors of entities and relation types 

as well as s, p and o.  We label the outgoing relation types of s as 𝐶Ghi(B) and the incoming relation types 
of o as 𝐶8)(G). The set of both these relationships are referred to as the contextual relation types or 
contexts and denoted by 𝐶(B,G) = 𝐶Ghi(B) ∪ 𝐶8)(G) . ContE interprets contexts as translating operations 
between entities (subject and object) and the predicates between them. If a predicate has often appeared 
with a certain set of contexts, the predicate tends to appear again between two entities having a similar 
set of contexts.  

To reflect these observations in our model, we include 𝐶(B,G) in the embedding learning process for a 
triple as follows: 

𝒆B + 𝒆G + 𝒓k ≈ 𝒓E							𝑓𝑜𝑟		∀𝑐 ∈ 𝐶(B,G)  (7) 

where c is one of contextual relation types (as shown in Figure 2), and 𝒆B, 𝒆G, 𝒓k	𝑎𝑛𝑑	𝒓E ∈ ℝI are vector 
embeddings of the entities (s and o) and the relation types (c and p), respectively. When the triple (s, p, 
o) holds, 𝒓E  should be close to 𝒆B + 𝒆G + 𝒓k , otherwise 𝒆B + 𝒆G + 𝒓k  should be far away from 𝒓E . To 
calculate the dissimilarity 𝑑(𝒙, 𝒚) between two vectors 𝒙 and 𝒚, we use the 𝐿%-norm as follows: 

𝒕 = 𝒆B + 𝒆G + 𝒓k     (8) 

𝜂BEGk = 𝑑(𝒕, 𝒓E) = |	𝒕[𝑖]
I

8@%

	− 	𝒓E[𝑖]	|																											(9) 

We can then use the negative of the distance, −𝑑(𝒕, 𝒓E), to measure how much  𝒆B + 𝒆G + 𝒓k and 𝒓E are 
similar. This similarity function is used for training embeddings and making predictions in our model.  

Figure 3 shows our model with an example triple (Alec Guinness, starredIn, Star Wars) and one of 
contextual relation types, played. Every entity is mapped to a unique vector, which is a row in the matrix 
D. Every relation type is also mapped to a unique vector, which is represented by a row in the matrix W. 
The vectors of the entities (i.e., 𝒆tuvw	xyz{{v|| and 𝒆}~��	���|) and the context (i.e., 𝒓�u��v�) are combined 
as 𝒆tuvw	xyz{{v|| + 𝒆}~��	���| + 𝒓�u��v�, and we compute the similarity between the combined vector and 
the vector of the predicate (i.e., 𝒓|~���v��{). Our model trains these vectors so that this similarity value 
will be higher. The vectors of the entities and the predicate are shared across all contexts in the training 
procedure for the triple, and the contexts are used as translating operations between the entities and 
the predicate. By doing this, we can capture interactions between relation types as well as interactions 
within triples. 

The main advantages of our framework are as follows: (1) the structure is very simple, (2) it requires a 
low memory complexity that is linear in the dimensionality k of entity and relation type vectors (see 
Table 1), and (3) a new entity or relation type can be easily added and trained by adding a new row into 
the matrix D or W respectively. 

Negative Sampling 

Negative sampling, which was introduced by (Mikolov et al. 2013), makes a model differentiate positive 
samples from negative samples by means of logistic regression. It has been successfully applied to 
various areas such as Natural Language Processing, KG embedding, etc. For this reason, we also use 
negative samples, in addition to using the existing triples. Our negative sampling is defined as follows: 

Alec	Guinness Star	Wars played

D D W

W starredIn

Sum
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𝑆′(B,E,G) = {(𝑠′, 𝑝, 𝑜)	|	𝑠′ ∈ 𝐸} ∪ {(𝑠, 𝑝, 𝑜′)	|	𝑜′ ∈ 𝐸} ∪ {(𝑠, 𝑝′, 𝑜)	|	𝑝′ ∈ 𝑅} (10) 

That is, for each triple, we extract the set of negative samples with either the subject or object replaced 
by a random entity or the predicate by a random relation type. These negative samples are triples that 
have never appeared in the training set. For example, given a training triple (s, p, o) = 
(Stephen_Hawking, hasWonPrize, Wolf_Prize), its negative samples could be (New_York, 
hasWonPrize, Wolf_Prize), (Stephen_Hawking, hasWonPrize, Finland) and (Stephen_Hawking, 
isLocatedIn, Wolf_Prize). The following loss function (Equation 11) is used to distinguish each training 
triple from its negative samples by making the rank of the training triple higher than all of the triples in 
the negative samples. 

Margin-Based Ranking Loss Function 

To learn vector embeddings, we minimize the following margin-based ranking loss function over the 
training set: 

ℒ = (
B,E,G ∈�

					 max 0, 𝛾 + 𝜂BEGk − 𝜂B�EGk
k∈��� �B�,E,G ∈�� �,�,�

																							(11) 

+ 𝑚𝑎𝑥(0, 𝛾 + 𝜂BEGk − 𝜂BEG�k)
k∈����(�)(B,E,G�)∈��(�,�,�)

						 

+ 𝑚𝑎𝑥(0, 𝛾 + 𝜂BEGk − 𝜂BE�Gk)
k∈�(�,�)(B,E�,G)∈��(�,�,�)

						) 

where S is the set of positive triples, 𝑆� B,E,G  is the set of negative samples of the triple (s, p, o), C is the 
set of contextual relation types of the triple, and 𝛾 > 0 is the margin, and 𝜂BEGk  is the dissimilarity 
between 𝒆B + 𝒆G + 𝒓k and 𝒓E (see Equation 9). 

For each positive triple, we generate three kinds of negative samples, and a different set of contextual 
relation types is used for each kind of negative sample. For the negative samples with s' (i.e., (s', p, o)), 
we use only incoming relation types of o, 𝐶8) G , as the contextual relation types, and do not include 
𝐶Ghi B� . The reason is that the outgoing relation types of s' should not be treated as negative contexts to 
the predicate and the object even though s' is used as the negative. A similar reasoning is applied to the 
negative samples having o' (i.e., (s, p, o')). Only outgoing relation types of s, 𝐶Ghi(B), are used as the 
contextual relation types. For the negative samples having p' (i.e., (s, p', o)), we use the full set of 
contextual relation types 𝐶(B,G).  

Stochastic gradient descent (SGD) with AdaGrad (Duchi et al. 2011) is used as our optimization 
approach to minimize this loss function. This optimization algorithm adapts the learning rate by 
performing larger updates for infrequent entities and relation types and smaller updates for frequent 
entities and relation types. 

Prediction 

For KG completion, we make three kinds of predictions (the latter two being entity predictions): (1) 
relation type, (2) subject, and (3) object predictions. For each prediction, we use a different set of 
contextual relation types.  

Given two entities s and o, we predict the relation type for the predicate p by using the following score 
function: 

𝜓(𝑝 = 𝑟4	|	𝑠, 𝑜) =
1

|	𝐶(B,G)	|
	 −𝜂BEGk
k∈�(�,�)

						𝑓𝑜𝑟		∀𝑟4 ∈ 𝑅									(12) 

This score function computes the average similarity over all contextual relation types for each predicate. 

To predict the subject given p and o, we use the following score function: 

𝜓(𝑠 = 𝑒8	|	𝑝, 𝑜) =
1

|	𝐶8)(G)	|
	 −𝜂BEGk
k∈���(�)

						𝑓𝑜𝑟		∀𝑒8 ∈ 𝐸							(13) 
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Dataset FB15k YAGO43k 

Relation types 1,345 37 

Entities 14,951 42,975 

Training triples 483,142 331,687 

Validation triples 50,000 30,000 

Test triples 59,071 30,000 

Table 2. Statistics of Datasets 

This score function is similar to the score function for relation type prediction, but we use only 𝐶8)(G) to 
compute the score for each subject candidate 𝑒8. Each entity is connected with a various number of 
relation types (e.g., maximum: 127 relation types and minimum: 1 relation type in the FB15k dataset). 
If we added outgoing relation types of 𝑒8 into the set of contexts, then a different number of contexts is 
used to calculate the score, causing a score normalization issue. As such, it would be possible that an 
entity could have the highest score with only a few training contexts even though the entity is not the 
answer. Other probable entities could have lower scores due to having more training contexts but a 
small number of negative contexts. To avoid this issue, we fix the contexts with the incoming relation 
types of o. 

The score function for the object prediction is similar to the subject prediction and is defined as follows: 

𝜓(𝑜 = 𝑒8	|	𝑠, 𝑝) =
1

|	𝐶Ghi(B)	|
	 −𝜂BEGk
k∈����(�)

						𝑓𝑜𝑟		∀𝑒8 ∈ 𝐸					(14) 

The only difference is that only the outgoing relation types of the subject s are used as the contexts for 
the same reason as stated above. 

Empirical Evaluation 
In this section, we first describe the datasets used for evaluation and the baseline methods. Then, we 
outline our parameter optimization and, finally, discuss our experimental results. 

Datasets 

ContE was evaluated on two real-world datasets that were extracted from Freebase and YAGO 
knowledge bases. The statistics of the datasets are given in Table 2. The main statistical differences 
being that FB15k has a much larger number of relation types, while YAGO43k has a much larger number 
of entities. 

• FB15k (https://everest.hds.utc.fr/doku.php?id=en:transe) - Freebase is a huge knowledge 
graph of general facts. We used a subset of Freebase, called FB15k, which was introduced in 
(Bordes et al. 2013). It contains 14,951 entities, 1,345 relation types, 483,142 training, 50,000 
validation, and 59,071 test triples. An example of the triple is (/m/0677ng, 
/music/artist/genre, /m/03ckfl9). 

• YAGO43k - The core facts of YAGO3 (http://www.yago-knowledge.org) currently consist of 
5,628,166 triples, 2,634,336 entities, and 37 relation types. For our experiments, we created a 
new dataset, called YAGO43k, by selecting triples that have entities appearing at least 20 times 
in the core facts of YAGO3, resulting in 391,687 triples, 42,975 entities, and 37 relation types. 
We split this dataset into 331,687 training, 30,000 validation, and 30,000 test triples. An 
example of the triple is (156a81d, isLocatedIn, 1lfplq). 

Baseline Methods and Implementation 

The prediction accuracy of ContE was compared to four state-of-the-art KG embedding methods 
(Rescal, TransE, TransR and HolE) as well as a Null model. ContE was implemented in the scikit-kge 
(https://github.com/mnick/scikit-kge), which is a Python library computing KG embeddings. We also 
used the library to run Rescal, TransE and HolE. For TransR, we used the public code provided by (Lin 
et al. 2015).  
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(a) Relation Type Prediction for FB15k 

 
(b) Relation Type Prediction for 

YAGO43k 

 
(c) Entity Prediction for FB15k 

 
(d) Entity Prediction for YAGO43k 

Figure 4. Optimizing values of the number of epochs using validation datasets.  

MRR results for FB15k and YAGO43k datasets. 

We applied SGD with AdaGrad for the optimization and a pairwise loss function to Rescal and TransE 
models to show better accuracy performances, which have been shown to be good for KG embedding 
methods in (Nickel et al. 2016b).  

Our null model uses a simple heuristic. To predict a relation type, we randomly choose out of the N 
relation types in the contexts. For subject prediction, we randomly choose out of the N entities that have 
used the given predicate as the outgoing relation type. For object prediction, we run the same procedure 
by finding entities that have used the predicate as the incoming relation type. Although this null model 
is pretty simple, it shows good relation type prediction accuracy for Hits@10, as seen in Tables 3 and 4. 
In fact, this approach shows the best accuracy compared to the other model-based approaches for 
Hits@10 on YAGO43k, which has a small number of relation types (see Table 2). These results support 
our observation that the contextual relation types of a triple can be considered as a missing relation type 
in the triple. 

Parameter Selection 

ContE and baseline methods depend mainly on four parameters. These parameters and their considered 
values for our experiments are the following: 

• k - the number of dimensions; {20, 50, 100, 200} 
• 𝛾 - margin; {0.2, 0.5, 1.0, 2.0, 4.0} 
• 𝜆 - learning rate; {0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25} 
• 𝜏 - training epochs; {𝑛}%��ee 

To select these parameter values, our method and the baselines were run on the validation set of the 
two datasets, and the best combination of parameters, according to MRR on the both datasets, was 
selected. Ultimately, we obtained the following combinations (see Tables 3-6 for 𝜏): 
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Method 

FB15k 

# of 
epochs 

MRR Hits @ 

Raw Filt. 1 3 10 

Null - - - 5.29 15.76 52.39 

Rescal 199 0.52 0.64 56.09 68.05 79.50 

TransE 184 0.44 0.52 44.33 55.98 65.04 

TransR 25 0.47 0.52 43.36 60.08 68.43 

HolE 196 0.49 0.56 43.29 63.68 81.27 

ContE 139 0.56 0.67 57.13 73.47 86.37 

Table 3. Relation Type Prediction Accuracy for FB15k 

Method 

YAGO43k 

# of 
epochs 

MRR Hits @ 

Raw Filt. 1 3 10 

Null - - - 10.11 29.70 99.05 

Rescal 32 0.62 0.66 56.76 67.57 97.30 

TransE 41 0.43 0.44 29.73 51.35 70.27 

TransR 40 0.53 0.67 61.54 67.73 77.60 

HolE 24 0.56 0.59 45.95 67.57 91.89 

ContE 6 0.78 0.81 72.97 86.49 97.30 

Table 4. Relation Type Prediction Accuracy for YAGO43k 

• Rescal - {k = 150, 𝛾 = 0.2, 𝜆 = 0.1} 
• TransE - {k = 50, 𝛾 = 2.0, 𝜆 = 0.1} 
• TransR - {k = 100, 𝛾 = 1.0, 𝜆 = 0.001} 
• HolE - {k = 200, 𝛾 = 0.2, 𝜆 = 0.1} 
• ContE - {k = 200, 𝛾 = 2.0, 𝜆 = 0.1} 

Figure 4 shows prediction accuracy as a function of the number of epochs on the validation sets. The 
number of epochs spans 1 and 200 for relation type prediction on FB15k (Figure 4 (a)) and between 1 
and 50 on YAGO43k (Figure 4 (b)). Models tend to reach their optimal accuracy with the small number 
of epochs for relation type prediction because the number of relation types |R| is relatively small 
compared to the number of entities |E| (e.g., |R|=37 and |E|=42,975 on YAGO43k). Therefore, during 
each epoch, a relation type is exposed to updates many more times than an entity. So, the vectors of 
relation types tend to be well trained earlier than entities. In addition, we also have run the models at 
every 100 epoch between 100 and 3,500 epochs for entity prediction (Figure 4 (c) and (d)). The optimal 
number of epochs for each method is shown in Tables 3-6. 

Experimental Results 

For entity prediction, we used the following evaluation protocol that has been introduced in (Bordes et 
al. 2013) and carried out in succeeding publications like (Lin et al. 2015; Nickel et al. 2016b): For each 
triple (s, p, o) in the test set, s is replaced by s', and for ∀𝑠′ ∈ 𝐸 we compute the score of (s', p, o). Then 
we rank all the corrupted triples by the scores in decreasing order (i.e., the rank of a corrupted triple 
that has the highest score is 1). This procedure is repeated by replacing o for the object prediction. For 
the relation type prediction, we also repeated this procedure but, in this case, p was replaced with p’ for 
∀𝑝′ ∈ 𝑅. 

It is possible that multiple corrupted triples of a triple exist in a dataset because a pair of two entities 
could have multiple relation types, and a pair of an entity and a relation type could be connected with 
multiple entities. In this case, only one corrupted triple is considered correct one, and the rest would be  
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Method   

FB15k 

# of 
epochs 

MRR Hits @ 

Raw Filt. 1 3 10 

Null - - - 1.20 3.66 12.36 

Rescal 3300 0.16 0.31 21.19 34.99 51.20 

TransE 3500 0.24 0.43 30.59 49.80 66.72 

TransR 3300 0.25 0.49 35.93 58.17 72.83 

HolE 2500 0.20 0.47 35.78 54.94 66.64 

ContE 3400 0.26 0.52 40.29 58.45 74.53 

Table 5. Entity Prediction Accuracy for FB15k 

Method 

YAGO43k 

# of 
epochs 

MRR Hits @ 

Raw Filt. 1 3 10 

Null - - - 0.24 0.73 2.70 

Rescal 3500 0.07 0.21 12.04 23.46 40.12 

TransE 3500 0.11 0.26 14.43 29.84 49.85 

TransR 3500 0.10 0.37 25.87 43.74 59.16 

HolE 2800 0.10 0.42 33.59 47.57 57.07 

ContE 2900 0.11 0.44 33.97 50.75 62.38 

Table 6. Entity Prediction Accuracy for YAGO43k 

counted as errors, even though they are all valid. This effect can lead to misleading results. To avoid this 
behavior, we remove all triples from the ranking if (s', p, o) = true and 𝑠 ≠ 𝑠′ for a test triple (s, p, o) in 
the same way as in (Nickel et al. 2016b). That is, we remove any corrupted triples that appear in the 
training, validation, or test set aside from the triple being tested. We refer to the setting that does not 
remove the triples as Raw, while the setting that removes them is indicated as Filtered (Filt.). To 
measure the quality of the ranking, we use MRR, and also report "Hits @ 1, 3, 10" that indicates the 
proportion of correct triples that appear in the top 1, 3 and 10. 

Table 1 shows the memory complexity of ContE and baseline methods. ContE has the same or better 
complexity with other memory-efficient methods but shows higher accuracy than them, as shown in 
Tables 3-6. It can be seen that ContE outperforms all other methods for entity and relation type 
predictions over both datasets. For example, ContE predicts relation types with 72.97% accuracy, while 
Rescal, TransE, TransR and HolE show 56.76%, 29.73%, 61.54% and 45.95% accuracy for Hits@1 on 
YAGO43k, respectively. ContE also shows consistently better results than all other methods. For 
example, Rescal shows good results for relation type prediction, but worse results for entity prediction 
compare to all the other baselines. 

We also compared the number of epochs needed for our method and second-ranked baselines to reach 
the optimal MRR results of the baseline methods or better than them. As shown in Figure 4, ContE 
needs to run only 1,200 epochs to reach TransR's the best MRR, while the second-ranked method has 
to run 3,300 epochs to get its best results for entity prediction on FB15k. For relation type prediction 
on YAGO43k, ContE can achieve HolE's best MRR by running only 1 epoch, while the baseline has to 
run 24 epochs. These results imply that ContE is more scalable than the other methods because it can 
build the better embeddings with a reduced number of epochs while having the same memory 
complexity as the memory-efficient methods. 
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Conclusion and Future Work 
In this paper, we focused on making a better model for KG completion, with scalability and prediction 
performance as the most critical issues. We proposed ContE, a contextual embedding model for KGs. 
We have shown that by including contextual relation types, in addition to the entities and the predicate 
of a triple, higher quality vector embeddings can be achieved. It is intuitive, memory-efficient, and easily 
supports the addition of new entities and relation types. From our experiments, we show that our 
method is more scalable and has a higher prediction accuracy than all other baselines for both relation 
type and entity predictions. 

We evaluated our method for static KGs, but this work could also be extended for dynamic graphs that 
have changes over time. For example, anomalies could be detected by capturing changes in the 
contextual edges of nodes in the embedded space. This area will be the focus of our future work. 
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