

JOURNAL OF INFORMATION TECHNOLOGY

THEORY AND APPLICATION

 ISSN: 1532-3416

Volume 18 Issue 2 Paper 3 pp. 29 – 56 July 2017

 A Platform-based Design Approach for Flexible
Software Components

Marcus A. Rothenberger

Lee Business School

University of Nevada Las Vegas

Hemant Jain

College of Business

University of Tennessee at Chattanooga

 Vijayan Sugumaran

School of Business Administration

Oakland University

Abstract:

We develop a design method that promotes flexible component design based on a common component platform with
various plug-ins. The approach increases the flexibility and expandability of software components, which improves
their reuse opportunities. We argue that such a flexible component design can expand reuse from relatively small
infrastructure items, such as user interfaces, printing functionality, and data access modules, to the core of the
application domain. Reusing such domain-specific items helps realize the true value of component-based software
development. Following a design science research approach, we evaluated the component design method by
assessing its correctness and its application to different scenarios. We also recruited a panel of experts to assess it.

Keywords: Component Design, Software Reuse, Component-based Development, Service Composition, Design

Science.

Timo O. Saarinen was the Senior Editor for this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301372762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

30 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

1 Introduction

Although software productivity has steadily increased, the demand for improvements in software
development methods remains high. To address these demands, research has built reusable artifacts,
such as components, services (Chengjun, 2008; Chu & Qian, 2009; Jain & Vitharana, 2000; Orriens &
Yang, 2008; Vitharana, Zahedi, & Jain, 2003b; Yau et al., 2009), and design patterns (Czarnecki, 2007;
Erwig & Fu, 2005; Park, Park, & Sugumaran, 2007). Researchers have suggested that one can achieve
low development cost, high product quality, and low development time (Mohagheghi & Conradi, 2008;
Slyngstad et al., 2006) by generating new designs through combining high-level specifications with
existing artifacts (i.e., reusing artifacts) (Ramachandran, 2005). Initially, reuse research focused primarily
on code-based in-house reuse. However, a comparably small repository limits such reuse (Basili, Briand,
& Melo, 1996; Poulin, Caruso, & Hancock, 1993). Only after the introduction of component standards such
as CORBA and JavaBeans that component markets that support the notion of inter-organizational reuse
started emerging. The wide adoption of Web-service standards (Rodriguez, Crasso, Mateos, Zunino, &
Campo, 2013; Silic, Delac, Krka, & Srbljic, 2013) and service-oriented architectures (Girbea, Suciu,
Nechifor, & Sisakm, 2013; Li, Muthusamy, & Jacobson, 2010; Welke, Hirschheim, & Schwarz, 2011) has
further enhanced this movement. In service composition and component-based development, one
customizes services or components by setting appropriate parameters that prompt the service or
component to act consistently with the application’s requirements. However, because reuse requires a
high-level of standardization in functionality and interfaces and clearly defined functionality to enable
searches, organizations are achieving reuse more widely at the infrastructure level than at the application
domain level (Holmes & Walker, 2012). Reusable software assets at the infrastructure level include user
interface constructs, printing functions, and data-access routines with highly standardized interfaces and
functionality that one can clearly define for easy retrieval through search engines (Crnkovic, Stafford, &
Szyperski, 2011). These infrastructure services or components have high reuse potential because one
can use their functionality across application domains. On the other hand, domain-level services or
components are more difficult to standardize and have limited reuse potential since their functionality must
match functional application requirements. Thus, one may attribute low domain-level reuse to low
component flexibility and the difficulty of finding software assets that meet application requirements (Gill,
2003; Vitharana, Zahedi, & Jain, 2003a). Nevertheless, one cannot realize the true value of reuse until
one can build a substantial portion of an application in a business domain by reusing software
components/services at the domain level and the infrastructure level. To do so, one must design domain-
level software assets to be flexible in order to improve the chances of matching requirements and, thus,
increase reuse potential. In fact, Sharp and Ryan (2010) have pointed out the need for additional work on
component adaptability.

Developing applications through component assembly and through service composition are similar in that
both can benefit from a more flexible design as we discuss above; however, the service paradigm differs
in the sense that a service might use multiple components to provide the functionality or a component
could provide multiple services. In this study, we develop a design approach for flexible software assets
that can apply to both contexts; nevertheless, we present and evaluate the design approach in the context
of the component-based paradigm. Because of its lower conceptual complexity, it better suits our work to
develop and illustrate this new approach.

Contribution:

This paper proposes a novel component design approach that can lead to increased domain-level reuse
opportunities. The approach applies lessons learned from manufacturing about platform-based products (e.g., cars,
printers, etc.) to design software components. While developers have used platform concepts at the software product
level in the past, we develop a novel approach in designing each individual domain-specific component intended for
reuse as a combination of a generic and highly reusable component platform and more specific plug-ins. One can
repurpose component platforms to meet new domain needs by adding new plug-ins in different ways without rewriting
the original component platform. The design approach defines how one can structure domain-specific components to
support flexibility and maximize their reuse potential, and we evaluate the approach against its objectives.

Journal of Information Technology Theory and Application 31

Volume 18 Issue 2 Paper 3

The proposed design approach defines how one can structure domain-specific components to support
their flexibility and, thus, reuse potential. The approach builds on platform-based components—that is,
domain-level components that one can customize (without code changes) to meet varying needs (Jain,
Rothenberger, & Sugumaran, 2006). Thus, the proposed approach enhances the flexibility of components
in meeting application requirements. Motivated by the concept of product platforms in manufacturing
(Sääksjärvi, 2002; Salvador, Forza, & Rungtusanatham, 2002), we develop a component design method
that incorporates aspects of domain analysis and domain modeling to design core component platforms
and plug-ins.

The paper proceeds as follows: in Section 1.1, we discuss the related literature to specify the problem and
motivate the design approach. In Section 2, we present the flexible component design approach. In
Section 3, we demonstrate how the approach works by applying it to a sample scenario. In Section 4, we
evaluate the approach by having a group of software development experts interact with it and assess its
utility (Hevner, March, Park, & Ram, 2004; Peffers, Tuunanen, Rothenberger, & Chatterjee, 2008). In
Section 5, we conclude the paper.

1.1 Problem Definition

Researchers have argued that developing an information system from reusable components results in a
more reliable product (Hissam, Seacord, & Lewis, 2002; Hopkins, 2000), increases developer productivity
(Lau, 2006), reduces required skills (Sinha & Jain, 2013), shortens development lifecycle (Due, 2000;
Manolios, Vroon, & Subramanian, 2007), reduces time to market (Kharb & Singh, 2008), increases the
developed system’s quality (Sprott, 2000), and reduces development costs (Due 2000). Beyond these
operational benefits, researchers have also found component-based software development (CBSD) to
provide strategic benefits, such as the opportunity to enter new markets or the flexibility to respond to
competitive forces and changing market conditions (Favaro, Favaro, & Favaro, 1998; Hissam et al., 2002).
Component providers have the opportunity to enter new markets because of the potential to cross-sell
components with associated functionalities. Similarly, end user organizations have the flexibility to quickly
substitute components with newer ones that contain additional features to respond to competitive forces
and changing market conditions (Scott, Robert, & Grace, 2002).

CBSD has impacted the way organizations develop and deliver applications to end users (Forte, Claudino,
de Souza, do Prado, & Santana, 2007; Heinecke et al., 2008). It has caused a shift in software
development paradigms, particularly with the development of several component architecture standards
such as common object request broker Architecture (CORBA), component object model (COM), and
enterprise Java beans (EJB) (Gill, 2006; Szyperski, 1998). A component is a well-defined unit of software
that has a published interface and can be used in conjunction with other components to form larger units
(Heineman, 2000; Hopkins, 2000). As we discuss in Section 1, domain-level component reuse has been
low due to the limited flexibility of parameterized components and the difficulty of finding components in a
library that match an application’s exact requirements(Gill, 2003; Vitharana et al., 2003a).
Parameterization, an approach in which one develops components with optional functionalities and
choices that one can trigger by their parameters (Gill, 2006), limits a component’s possible applications to
what the component developer initially anticipated. In order to increase the reuse potential of domain-level
components, software components must provide the flexibility to allow their reuse in a large number of
applications (Heineman, 2000).

Designing smaller size components (with less functionality per component) would make it easier for
software developers to match the requirements with component functionality (Lau, 2006; Vitharana, Jain,
& Zahedi, 2004) and, thus, increase each individual component’s reuse potential. However, a low
component granularity with low functional complexity per component is problematic (Vitharana et al.,
2004) since one needs to perform more steps to retrieve and combine small components (Hong & Lerch,
2002). Further, each such component represents a low development effort, which reduces the reuse
leverage of each instance; activities, such as component retrieval and integration, take up a proportionally
larger share of development time and, thus, increase development costs, which can render the reuse
effort economically unfeasible (Nazareth & Rothenberger, 2004). This situation leads to low developer
demand for components with low functional complexity (Hong & Lerch, 2002). The platform-based
approach we propose in this paper provides a mechanism to create flexible components that can meet
user requirements without reducing component granularity.

In the physical world, modular product platforms have been a means to increase product variety to better
meet varying customer requirements (Sääksjärvi, 2002; Salvador et al., 2002). For example, Volkswagen

32 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

developed the PQ35 platform as a basis for at least 19 models, including the Audi A3, the Volkswagen
Tiguan and Golf, the Skoda Octavia, and the Seat Toledo (Volkswagen group A platform, n.d.). Hewlett-
Packard’s (HP) OfficeJet platform combined functions of previously distinct products, such as computer
printers, fax machines, scanners, and photocopiers, to meet customer demand in a flexible manner
(Meyer & Lehnerd, 1997). The principles of developing modular physical products may also apply to
developing software components (LaMantia, 2006; Salonen & Sääksjärvi, 2004). As in manufacturing,
modularity promotes an increased fit between software and customer specifications by enabling
developers to combine and customize elements of the application, which reduces the need for custom
development based on each client’s specifications.

The underlying concepts of physical product platforms have already found their way into software
development as software product lines. The software product line approach focuses on modeling the
commonalities and variations in features or functionalities in the application domain and linking them to
software components (Baresi, Guinea, & Pasquale, 2012; Capilla et al., 2014). This means that, if a
developer requires a particular feature in a system, then the developer can reuse the components that
support the feature (Dhungana, Rabiser, Grnbacher, & Neumayer, 2007; Rosenmller, Siegmund, Saake,
& Apel, 2008). The software product line approach is a means to produce software more quickly and
economically (Bell, 2007; Krueger, 2006), and researchers recognize it as a successful method for
improving reuse in software development (Bosch, 2000a; Kang, Lee, & Donohoe, 2002); however, it does
not address the flexibility of the individual reusable component. The platform-based component design
method we propose in this research fills this gap by addressing the nature of the reusable component
itself.

A product line enables organizations to develop a product family from reusable core assets rather than
from scratch (Sugumaran, Park, & Kang, 2006). The key requirements of developing future products drive
how organizations design product lines, which means they need to identify these requirements (Clements,
Jones, McGregor, & Northrop, 2006). Thus, organizations must perform a thorough requirements analysis
for the product line, which involves systematically identifying and describing particular common and
variant requirements (i.e., a commonality and variably (C&V) analysis) (Laguna, Gonzlez-Baixauli, &
Marques, 2007). Furthermore, the identified requirements and commonality and variability must satisfy an
organization’s high-level business goals. Thus, organizations must carry both analyses out to satisfy these
high-level business goals and provide the rationale for them. While software product lines apply platform
concepts at the application domain level, our approach uses them at a lower level of functional granularity
(i.e., at the individual component level), which results in more flexible components.

Thus, our approach provides the means to develop a component design that increases component
flexibility over traditional parameterized components by building a platform for each component that allows
one to create custom components using different combinations of available plug-ins (plug-ins are lower-
level component stubs that extend the functionality of a component platform or a higher-level plug-in). Our
method for designing a platform-based component combines individual functionally related components
from multiple domains into a component hierarchy that is equivalent in design to the original individual
components yet more flexible in that one can extend and use the hierarchy across multiple domains.

2 Development of the Platform-based Component Design Method

2.1 Platform-based Design through Unification of Domain Models

According to product platform principles, reusable flexible components comprise a core component
platform and multiple hierarchical levels of plug-ins. For a specific reuse instance, selecting appropriate
plug-ins from the hierarchy helps one to customize the component to meet various requirements. The
method we develop in this research consolidates different component designs that are based on different
requirements into a core platform component and one or more plug-in hierarchies that are consistent with
the product platform principles. The method we use to design the flexible components is the artifact of this
design science research. It unifies the functional requirements of the common component user base.
Based on platform-development in manufacturing, customers’ requirements and demands must guide the
design of a flexible component (Meyer & Seliger, 1998). In other words, the projected market for the
component must drive its design, which can be determined through domain analysis. We use the unified
modeling language (UML) notation of the object-oriented design model to illustrate the design of a flexible
component. Our method formalizes the design of the core component platform and plug-in hierarchy.

Journal of Information Technology Theory and Application 33

Volume 18 Issue 2 Paper 3

2.2 Design Methodology

Domain analysis is an activity similar to systems analysis. Domain analysis involves analyzing existing
systems in the application domain and creating a domain model that characterizes it (Tolvanen, Gray,
Rossi, & Sprinkle, 2008). According to Neighbors (1984), ―domain analysis and modeling is an activity in
which all systems in an application domain are generalized by means of a domain model that transcends
specific applications‖. Thus, a domain model represents the common characteristics and variations among
the existing and future members of a family of software systems in a particular application domain.
Researchers have used domain-analysis methods such as the feature-oriented approach (Fey, Fajta, &
Boros, 2002; Kang, Lee, & Lee, 2002; Metzger & Pohl, 2007), reuse-driven software engineering business
(RSEB) (Jacobson, Griss, & Jonsson, 1997), FODAcom (Vici, Argentieri, Mansour, d’Alessandro, &
Favaro 1998), FeatuRSEB (Griss, Favaro, & d’Alessandro, 1998), and product line analysis (PLA)
(Chastek, Donohoe, & McGregor, 2002) to analyze commonality and variability among families of software
systems in application domains. In particular, researchers and practitioners have used the feature-
oriented approach extensively (Clements et al., 2006; Donohoe, 2000; Kang et al., 2003). In this
approach, one analyzes commonality and variability in terms of features, which provides a feature-based
model to develop reusable assets (Kang et al., 2002; White et al., 2014). During feature modeling, if there
are no existing products or if the existing products do not have a specified set of features associated with
them, then one must identify and define the features associated with each individual product (Bosch,
2000b). Thus, feature modeling constitutes a big part of domain modeling (Fey et al., 2002; Griss et al.,
1998; Kang et al., 2002, 2003; Metzger & Pohl, 2007). Once feature model is developed, the component
designs that implement these features and establishes links between the features and the corresponding
component designs is completed. One limitation of the existing domain model-based approaches to reuse
concerns their lack of support for integrating different components that represent related functionalities
from various domain models (Czarnecki, 2007; Jalender, Govardhan, Premchand, 2010; Park et al.,
2007). Overcoming this limitation would allow one to extend the domain model with new features. As
such, our approach provides a systematic way to combine the designs of different components that
represent related functionalities from various domain models to create a higher level of abstraction.

To design a platform-based component, we use the individual component models that meet the
requirements of each application domain that the platform-based component targets. One must transfer
the commonalities between the individual component designs into the core platform component; the plug-
in design hierarchy of the platform-based component handles the variations (we assume that
commonalities exist because only sets of domain models that share at least some common design
features would be good candidates for a platform component hierarchy). Finally, if necessary, one can
evaluate and fine-tune the platform-based component design. Figure 1 shows the overall process diagram
that depicts our method for creating the flexible component design. The proposed method has two major
steps: 1) select relevant component designs from the domain models and 2) apply the transformation
algorithm to generate the core component platform and plug-in hierarchy.

2.2.1 Selecting Relevant Component Designs

The domain models contain feature models and, for each feature, the corresponding component designs
that implement that feature. Based on the functional requirement specified for the flexible component one
seeks to design, one can identify the appropriate features incorporated in the domain models that would
satisfy this requirement and gather the component designs associated with these features. For example, if
one seeks to design a flexible reservation component, then one would consider domain models that
support the reservation feature and identify the corresponding component designs that implement this
feature as the potential components for the transformation algorithm to transform. The reservation concept
is inherent to the airline, train, entertainment show, and sporting event domains. Consequently, the
domain models from these domains would incorporate the reservation feature and include components
that implement it. Hence, to develop a flexible component design for the reservation functionality, one
would select the reservation-related features and the respective component designs from these domain
models. While researchers have discussed several approaches in the domain modeling and software
product line literature (Bosch, 2000b; Kang et al., 2003; Neighbors, 1984; Sugumaran, Tanniru, & Storey,
2008; Sugumaran et al., 2006) for identifying features and selecting components, we adopt the approach
that Sugumaran et al. (2008) discuss. Thus, this step outputs the component designs that implement the
features from various domain models that correspond to the functionality that one desires in the flexible
component that one seeks to develop. The next step uses this set of components as its input.

34 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

Figure 1. Overall Process Diagram

2.2.2 Applying Transformation Algorithm

In this step, one applies the transformation algorithm, which takes the set of selected component designs
and generates the core component platform and plug-in hierarchy. To transform the individual component
designs to the platform-based component, the algorithm identifies and integrates the commonalities that
exist between the individual component designs. We use a simplified example of three component
designs to illustrate the approach. All classes in the example are either distinct from or common to other
designs; the example does not include classes with partially common functionality across individual
component designs. We discuss how the approach deals with classes that contain partially common
functionality across the individual component designs in Section 3. Figures 2 through 4 show the
simplified component design examples that the process will later integrate into a component hierarchy.

A

B C

*

*

* *

Figure 2. Example: Relevant Component from Domain Model 1

Select

Relevant

Component

Designs

Functional

Requirement

Generate

Platform &

Plug-ins

Transformation

Algorithm

Core Platform &

Plug-in Hierarchy

Domain

Models

VOF

Follow

Log-onUser

Localize

Virtual

Printer

File

Upload

Printer

Register

User Positioning

Method

…

…

…

RES

Train

Log-onUser

Localize

Events

User

Register

authenticate

Method

User

Payment

…

Ship

Feature

Model

Component

Design

Domain

Model 1

Feature

Model

Component

Design

Domain

Model n
...

...

Flexible Component

Design

Selected

Component Designs

Journal of Information Technology Theory and Application 35

Volume 18 Issue 2 Paper 3

A

B D

*

*

* *

Figure 3. Example: Relevant Component from Domain Model 2

A

E

*

*

Figure 4. Example: Relevant Component from Domain Model 3

Since all three component designs have class A, the process moves it into the core component platform.
As a result, class B becomes common to the largest number of different designs (two out of the three).
Thus, the process moves it into one level 1 plug-in, and it builds the component hierarchy for these two
designs to the lowest level by recursively executing the same steps for these designs: the two designs
that have class B in common differ in that one design includes class C and the other design includes class
D. Thus, the process includes classes C and D in two different level 2 plug-ins that are subordinate to the
level 1 plug in that contains class B. Subsequently, the process deals with the remaining designs: only the
third design is left and it includes class E, which differentiates it from the other designs. Thus, the process
moves class E into a separate level 1 plug-in. Figure 5 shows the resulting plug-in hierarchy.

We developed the above transformation algorithm via an application and refinement process that involved
going through multiple iterations of applying the method to different scenarios and evaluating the outcome.
Table 1 depicts the resulting recursive algorithm in pseudo code that we name ―CreatePlugIn‖. Appendix
A provides a formal specification of this algorithm. While both are equivalent, we include the pseudo code
version in the main body of the paper for better readability. Like in the preceding simplified example, the
process identifies commonalities across all individual component designs that it will later integrate into a
plug-in hierarchy. Hereby, the process must identify commonalities based on identical functionality rather
than identical names because class, method, and attribute names may vary across different designs even
though they may implement the same functionality. The process moves common classes (or generalizable
common parts of different classes) across the individual designs into the core platform component.
Subsequently, it recursively identifies commonalities between subsets of all designs (starting with common
design elements across the largest number of individual domain models) and moves them into the next level
of plug-ins. We provide an illustrative application of the transformation algorithm in Section 3.

36 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

A

B

C

*

*

*

*

Core Component Platform

D

E

*

*

*

*
Plug-In (Level 1) Plug-In (Level 1)

 Plug-In (Level 2) Plug-In (Level 2)

Figure 5. Example: Platform-based Component that Comprises a Core Component Platform and Plug-ins

Table 1. CreatePlugIn(SD) in Pseudo Code)

1. SC is the union of all classes contained in the individual component designs SD

2. For all classes (or possible class generalizations) Cj’ that are part of the set of classes Sc,
where no other class generalization exists in any individual component design that incorporates more
functionality of the original class than Cj’ does,
add Cj’ to the current plug-in (or core component platform if this is the highest level), remove Cj’ from the set of
classes SC, and remove Cj’ from all individual component designs Di.

3. Repeat until the set of designs SD is empty

a. Find the class (or possible class generalizations) Cj’ that is part of the set of classes SC and that is
contained in the largest number of individual component designs Di

where no other class generalization exists in the same set of individual component designs Di that
incorporates more functionality of the original class than Cj’ does,

create a subset of all designs SD’ that includes only the individual designs that contain Cj’ and remove
the designs SD’ from SD

b. The next Plug-In will be a child of the current Plug-In Pk.

3 Demonstration of the Method Using a Sample Scenario

To demonstrate our method to design flexible components, we use a sample scenario of designing a
reservation component. We use the individual component designs selected from four different but related
domain models (namely, train reservations, airline reservations, show reservations, and sporting event
reservations) as input. Appendix B presents these component designs. All individual component designs
have common elements pertaining to ticketing, payment, customer information, booking agent, and the
transaction processing. Further, transport reservations (airline and trains) and event reservations (shows

Journal of Information Technology Theory and Application 37

Volume 18 Issue 2 Paper 3

and sporting events) have partial commonalities: transport reservations have itineraries, passengers, and
routes in common, while the event reservations both use venues, seats, events, and price categories. We
applied the method we introduce in this paper to design the core component platform and plug-in
hierarchy of the reservation component. Figure 6 illustrates the resulting design of core component
platform and plug-in hierarchy.

Figure 6. Reservation Component Consisting of Core Component Platform with Industry Plug-ins

38 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

This example demonstrates that a platform component can have multiple levels of plug-ins; the
transformation method and the nature of the domain models used as input determine the actual number of
levels for a specific design. Here, the example provides plug-ins at two levels; the first level incorporates
industry segment-specific functionality for transportation and event reservations, and the second level
provides the lowest level of industry functionality for train, airline, show, and sporting event reservations.

As we discuss in Section 2, in the context of the simplified example, the method will move a class with
functionality that differs from those contained in the other domain models into the plug-in that implements
the respective class’s domain model (e.g., seat class in Figure 6). However, some classes may appear in
similar yet not identical form in multiple of the component designs that the process will later transform into
a platform component. The method deals with the commonalities between similar (not identical) classes in
multiple component designs by implementing common attributes or common methods in a parent class
that will be located in the core platform or in a higher-level plug-in (e.g., scheduled route class in Figure 6).
To implement the differences between such similar classes in multiple component designs, the lower-level
plug-ins contain a class that inherits the properties from the parent class that the process previously
added to the core component platform or a higher-level plug-in; this child class then extends the parent
class functionality according to the differences in functionality in each component design (e.g., flight class
in Figure 6).

4 Evaluation of the Design Method

In Section 2, we introduce a component design method that combines individual domain component
designs into a flexible platform-based component. We developed such a component to create reusable
software assets that are flexible in two ways: they meet the requirements across all the individual
components’ domains that they have been built from, and one can extend them to meet requirements
beyond the domains that the original individual components covered.

As such, our method must address both of these aspects when evaluating it. To demonstrate that the
flexible platform-based components our method creates meet the requirements of the original individual
components that one builds them from, we show that a resulting core component platform and its plug-in
hierarchy are equivalent in design to the individual components they came from. To demonstrate that one
can extend the flexible platform-based components beyond their original domains, we asked five software
development experts to independently assess how one would need to extend the flexible platform-based
reservation component we developed to meet the new requirements of cruise ship reservations. Their
evaluation results show that the experts matched the component extensions that we developed according
to our approach.

4.1 Evaluation of Equivalency of the Design

First, we evaluate whether the flexible platform component design we developed using our method is
equivalent to the individual components of the various domains used as input. We evaluated the flexible
platform component by decomposing it into its original individual separate components and comparing the
decomposed pieces with the original component designs used as input. We evaluated the component
using the demonstration scenario we discuss above. We decomposed the core component platform and
plug-in hierarchy (Figure 6) into the component designs we built them from as follows: we start off with the
platform component design that resulted from the application of our approach, referred to as a tree
structure. Each plug-in is connected to plug-ins that are located on a higher level in that tree structure with
the lowest-level plug-in being the leaf node, higher-level plug-ins being the parent nodes, and the core
component platform being the root of the tree. The paths from each leaf node via the parent nodes to the
core component platform represent the path of plug-ins, which we merge to represent a decomposed
functionality modeled by a leaf node. One can decompose the flexible platform component in Figure 6 into
four separate individual component designs because it has four leaves. Hereby, one creates each
decomposed component design by adding all classes and their associations located on a path discussed
above. However, the platform-based component design approach may have introduced additional parent
classes into the design by breaking down a class of the original design into a parent-child pair (our design
approach does that to model the common functionality across the individual component designs). These
new parent-child pairs carry over into the decomposed design, and one must merge them to get the
original class. One can easily identify the additional parent classes because they are the only parent
classes with only one child in the decomposed design (note that the original design should not include
parent classes with only one child because this would be poor modeling). After reintegrating each parent

Journal of Information Technology Theory and Application 39

Volume 18 Issue 2 Paper 3

class with its child class, one can see that the four decomposed components’ designs are semantically
equivalent to the four original component designs shown in the Appendix B.

For space considerations, we present here only the decomposition for the airline reservation plug-in.
However, we conducted the other decompositions as well. Decomposing the airlines reservation plug-in
resulted in the component that Figure 7 depicts. The parent-child pair scheduled route/flight was originally
a single class that our approach converted into the inheritance hierarchy. Merging these two parent-child
pairs into an individual class leads to the component design that Figure 8 shows. Its design is syntactically
and semantically equivalent to that of the original airline reservation component depicted in the Appendix
B (please note that different names for the individual classes do not affect the equivalency of two
designs). Thus, given that we demonstrate the designs’ equivalency, we can conclude that flexible
platform component designs that we developed according to the method we introduce in this study meet
the same utility as the sum of the individual component designs that we developed them from. The
evaluation shows that the core component platform and plug-in hierarchy that resulted by applying the
proposed method to the individual component designs is equivalent to the individual component designs.
Thus, one can deem the transformation algorithm lossless and correct.

Figure 7. Decomposed Airlines Reservation Component (Step 1)

40 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

Figure 8. Decomposed Airline Reservation Component (Step 2)

4.2 Higher Flexibility of Platform Component

Second, we evaluate whether the platform component design that results from the method we introduce in
this paper is more flexible than the original individual component designs. In the first evaluation step, we
demonstrate that the platform component addresses the requirements of all individual components that
we created it from. However, this feature alone only represents a limited advantage over individual
components because platform components may be cheaper to develop and maintain (compared to
developing four separate components in the scenario) and easier to organize and retrieve from a
component repository. However, the flexibility advantage of a platform component design concerns
whether one can reuse it in another (not initially planned for) domain by extending it via plug-ins that do
not require the developer to understand the implementation details of the core component platform and
existing plug-ins. Not needing to understand these details represents a substantial advantage over
developing the component from scratch or extending a domain component because it encourages one to
reuse the core component platform and plug-ins. Additionally, the core component platform clearly defines
plug-in interfaces, which enables developers to meet new functional requirements by adding new ones to
the core component platform without needing to understand design and implementation details of the
reused parts of the core component platform. Thus, one can make functional additions to a component
that one otherwise reuses in a black-box fashion. In contrast, extending a domain component design with
functionality that exceeds the original design would require developers to understand the component in
detail so they could assess which classes of the original design to reuse and how to integrate the design
extension into the existing design. To support our claim of higher flexibility, we demonstrate the
extensibility of the platform component design using the reservation scenario. One can make two types of
extensions: one can extend a platform-based component along an existing functional dimension, which
means that one or more new plug-ins are added to an existing plug-in hierarchy, or one can add a new
functional dimension by creating new plug-ins to form an additional plug-in hierarchy that is rooted in the
same core component platform as the original plug-in hierarchy. We applied both types of extensions to
our scenario. Additionally, we used five experts to evaluate the flexibility of component hierarchy we
designed using the proposed method. They evaluated flexibility by extending the component design to
meet new requirements: one involved extending an existing plug-in hierarchy of the flexible component,
and the other involved adding a new plug-in hierarchy to an existing core component platform (the two
possible dimensions we describe above).

Journal of Information Technology Theory and Application 41

Volume 18 Issue 2 Paper 3

4.2.1 Extension Along an Existing Functional Dimension

As we discuss in Section 4.2, one can extend a platform component along an existing functional
dimension (e.g., in our example, by adding another mode to the transportation function). Figure 9
illustrates how one can add a new plug-in to an existing plug-in hierarchy. With respect to the reservation
platform example (Figure 6), it means that one can expand the set of supported industries by adding a
new industry plug-in. To support this claim, we demonstrate that we can add a new plug-in to the
reservation platform component to support a new domain (cruise reservation) that differs from the original
four domains we used to design the platform component. The new cruise reservation plug-in provides the
support for cruise reservation by adding functionality required specifically for cruise reservations. The
cruise and the cabin classes of the new plug-in provide this functionality. Appendix C provides the
requirements specification for the cruise reservation. The new cruise reservation plug-in extends the plug-
in hierarchy below the lowest plug-in level that fits the domain of the extension. In the case of the cruise
reservation, we extended the transport reservation with a level 2 plug-in because a cruise ship is a means
of transportation that shares functionality with the design modeled in the transport reservation plug-in and,
hence, can leverage this design (Figure 10).

Core Component Platform

Level 2

Plug-In A

Level 2

Plug-In B

Level 2

Plug-In C

Level 2

Plug-In D
New

Level 2

Plug-In

* * **** ** **

*
*

*
*

Level 1 Plug-In A Level 1 Plug-In B

Figure 9. New plug-in Added to an Existing Plug-in Hierarchy

42 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

Itinerary

-AgentID

-Name

Agent

0..1

-processes

*

-Amount

-Type

Payment

-pays 1

*
-Last Name

-First Name

-Street

-City

-Zip

-Country

-Phone

-Email

Customer

-initiates

* 1

-Name

Passenger

*

-is issued for1

-Origin

-Destination

-Departure Time

-Departure Data

-Arrival Time

-Arrival Date

Route Segment

*

-reserves1..*

+reserve()

-Car

-Seat No

Seat

0..*

-is on

1

1

-holds0..*

-Origination Date

Scheduled Route

-has1..*
1

-TicketNo

Ticket

-Transaction No

Transaction

-sells1
1..*

-Airline

-Flight No

Flight

-Train Name

Train

Seat Reservation

1

-reserves 1..*

Reservation Core Component Platform

Transportation Reservation Plug-In (Level 1)

Train Reservation Plug-In

(Level 2)

Airline Reservation Plug-In

(Level 2)

Cruise Reservation Plug-In

(Level 2)

+reserve()

-Row

-Seat No

Seat

-is on *

1

-Ship Name

-Cruise Name

Cruise

-Deck

-Number

-Occupancy

Cabin

*

-is on

1

1

-is on

*

1..*

-routes1

*

-reserves

1

Figure 10. Platform-based Reservation Component with Cruise Reservation Extension

To further evaluate how easy it is to extend a platform component, we asked five software development
experts to assess how one would need to extend the platform-based component (Figure 6) to meet the
requirements of the cruise reservation. We purposefully selected the experts based on their relevant
experience (Miles & Hubermann, 1994). They had worked for four to 20 years in software development
and on between two and 30 software development projects each; all had experience with object-oriented
modeling. Further, two experts worked in academia and three worked in industry in senior development

Journal of Information Technology Theory and Application 43

Volume 18 Issue 2 Paper 3

positions. We provided each expert the four sets of scenario requirements that we used to develop the
domain model and the individual component designs: the train reservation, the airline reservation, the
show reservation, and the sporting event reservation system (Appendices C and B provide the
requirements and the individual component designs, respectively). Further, we gave them a version of the
flexible platform component (Figure 6), and we removed the plug-ins’ names so they did not direct
respondents to the applicable plug-ins. We gave each expert the option to either add a new plug-in
hierarchy or to add a new plug-in to an existing hierarchy to support cruise reservation functionality (i.e.,
the two ways in which one can extend a platform component). All experts independently and correctly
identified that one must add an additional plug-in on level 2 below the transport reservation level 1 plug-in.
All participants confirmed that it is feasible to make such extensions in the framework of the platform
component. As such, since the formal demonstration and the expert assignment support the extensibility
along an existing functional dimension, we conclude that the platform component design provides such
flexibility.

4.2.2 Extension Using a New Functional Dimension

If the existing platform hierarchy does not include one’s desired new functionality, then one can add a new
functional dimension as an additional plug-in hierarchy. Thus, one can add functionality to a core
component platform that its designer did not anticipate without changing it. Figure 11 illustrates how a new
plug-in hierarchy ties into an existing platform component.

Figure 21. New Hierarchy Added to the Core Component Platform

In the context of the reservation platform component, one can add different types of booking agents as an
afterthought if this addition does not affect the original core component platform. Figure 12 shows this
addition, which is possible because the different types of booking agents specializes an existing platform
class without modifying the original platform component design.

Core Component Platform

Level 2

Plug-In A

Level 2

Plug-In B

Level 2

Plug-In C

Level 2

Plug-In D

**** ** **

*
*

*
*

Level 1 Plug-In A Level 1 Plug-In B

Level 1 Plug-In

Level 1 Plug-In

Level 1 Plug-In

*** *

* *

New

Plug-In

 Hierarchy

-End1* -End2*

-End1

*

-End2

*
Existing

Plug-In

 Hierarchy

44 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

Figure 32. Reservation Core Component Platform with Booking Agent plug-in Extension

To evaluate the ease of extending the platform component in this dimension, we asked the same experts
to provide ways of extending the reservation platform component (Figure 6) to meet the requirements of
supporting multiple distribution channels in the form of airline agents and travel agents (compared to the
demonstration above, we limited the scope in which the experts could extend the component to airline
reservation and two booking agents to help them focus on the task). They had the option to either add
another plug-in hierarchy or to add a plug-in to an existing hierarchy (the two ways one can extend a
platform component). Four out of the five participants correctly identified that one must add a new plug-in
hierarchy to the existing platform component; they also confirmed that it is feasible to meet the new
requirements by extending the platform component with a new plug-in hierarchy. One participant did not
respond to the questions pertaining to this set of requirements. Since both the formal assessment and the
results of the expert assignment support the extensibility with a new functional dimension, we conclude
that the platform component design provides such flexibility.

4.2.3 Participant Feedback

In addition to demonstrating the flexibility by using the earlier example and having the experts interact with
different tasks to extend the functionality of a specific component hierarchy, we also solicited feedback
from the experts on the platform component design after they interacted with it. The experts provided
answers on a Likert scale (1: strongly disagree, 2: disagree, 3: neutral, 4: agree, and 5: strongly agree) to
questions relating to the efficacy of the approach (Table 2). As Table 2 shows, the expert panel found that
the platform component design and the plug-ins are ―easy to understand‖, that one can easily select
appropriate plug-ins to reuse or modify, and that the platform-based component design is useful. While
the sample size is small and the feedback is subjective, the results are encouraging.

Journal of Information Technology Theory and Application 45

Volume 18 Issue 2 Paper 3

Table 2. Expert Panel Evaluation Scores

Question
Average

score

I found the platform component design and the plug-ins easy
to understand.

4.4

The design of four components to satisfy given requirement
makes sense.

4

It was easy to select the appropriate plug-in(s) to reuse or
modify.

4.4

It was easy to design plug-in(s) to support unfilled
requirements.

3.8

I believe that the platform-based component design is useful. 4

4.3 Evaluation Summary

We show that the design that a platform component hierarchy represents supports the same functionality
as the domain models one develops it from and that one can extend a platform component in ways that
individual component designs cannot. Thus, we conclude that the method that creates platform
component with these properties, which is the artifact of this design research, meets the objectives that
motivated our research.

5 Conclusions and Future Work

We develop an innovative method for component design that allows one to develop more flexible reusable
components. We evaluated the method using several scenarios, demonstrations, and expert assessment.
We found that method works and that it improves the flexibility of reusable components without requiring
developers to invest time in thoroughly understanding the implementation details of the existing
components. Thus, we believe that our approach can move reuse forward from an infrastructure-centered
reuse paradigm to domain-specific reuse. Through the availability of more flexible components, software
developers can derive increased benefits from component-based software development.

As we mention in Section 1, reusing services in the context of a service-oriented architecture (e.g., Web
services) is conceptually similar to component-based reuse. Although one does not reuse software
artifacts in a service-oriented architecture by calling up locally hosted compiled code but by sending
messages to remotely hosted services, the challenge of maximizing reuse opportunities applies to both
paradigms. Thus, services can also benefit from increased design flexibility. Service providers may be
able to apply the platform design concepts we present in this study to hosted services if they can account
for the differences in interfacing between a service platform and service plug-ins. The availability of
platform-based services may also change how service consumers obtain, retrieve, and possibly extend
services. Thus, future research could apply our method to service-oriented architecture. Such work will
need to develop methods and standards for interfacing related services in a platform and investigate how
to integrate such platform-based services into a service composition.

46 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

References

Baresi, L., Guinea, S., & Pasquale, L. (2012). Service-oriented dynamic software product lines. IEEE
Computer, 45(10), 42-48.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). How reuse influences productivity in object-oriented
systems. Communications of the ACM, 39(10), 104-116.

Bell, P. (2007). A practical high volume software product line. In Proceedings of the 22nd ACM SIGPLAN
Conference on Object Oriented Programming Systems and Applications Companion (pp. 994-1003).

Bosch, J. (2000a). Design and use of software architectures: Adopting and evolving a product-line
approach. Boston: Addison-Wesley.

Bosch, J. (2000b). Organizing for software product lines. In Proceedings of the 3rd International Workshop
on Software Architectures for Product Families (pp. 117-134).

Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, Antonio, & Hinchey, M. (2014). An overview of dynamic
software product line architectures and techniques: Observations from research and industry.
Journal of Systems and Software, 91, 3-23.

Chastek, G., Donohoe, P., & McGregor, J. D. (2002). Product line production planning for the home
integration system example (Technical Note CMU/SEI-2002-TN-029). Pittsburgh, PA: Software
Engineering Institute.

Chengjun, W. (2008). Pattern oriented service development for coarse-grained service reuse. In
Proceedings of the International Symposium on Knowledge Acquisition and Modeling (pp. 832-836).

Chu, W., & Qian, D. (2009). Design web services: Towards service reuse at the design level. Journal of
Computers, 4(3), 193-200.

Clements, P. C., Jones, L. G., McGregor, J. D., & Northrop, L. M. (2006). Getting there from here: a
roadmap for software product line adoption. Commun. ACM, 49(12), 33-36.

Crnkovic, I., Stafford, J., & Szyperski, C. (2011). Software components beyond programming: From
routines to services. IEEE Software, 28(3), 22–26.

Czarnecki, K. (2007). Software reuse and evolution with generative techniques. In Proceedings of the
22nd IEEE/ACM International Conference on Automated Software Engineering.

Dhungana, D., Rabiser, R., Grnbacher, P., & Neumayer, T. (2007). Integrated tool support for software
product line engineering. Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering.

Donohoe, P. (2000). Software product lines: Experience and research directions. Boston: Kluwer
Academic Publishers.

Due, R. (2000). The economics of component-based development. Information Systems Management,
17(1), 92-95.

Erwig, M., & Fu, Z. (2005). Software reuse for scientific computing through program generation. ACM
Transactions on Software Engineering and Methodology, 14(2), 168-198.

Favaro, J. M., Favaro, K. R., & Favaro, P. F. (1998). Value based software reuse investment. Annals of
Software Engineering, 5, 5-52.

Fey, D., Fajta, R., & Boros, A. (2002). Feature modeling: A meta-model to enhance usability and
usefulness. In G. Chastek (Ed.), Second software product line conference (pp. 198-216). Berlin:
Springer.

Forte, M., Claudino, R. A. T., de Souza, W. L., do Prado, A. F., & Santana, L. H. Z. (2007). A component-
based framework for the internet content adaptation domain. In Proceedings of the 2007 ACM
Symposium on Applied Computing.

Gill, N. S. (2003). Reusability issues in component-based development. SIGSOFT Software Engineering
Notes, 28(4), 4-4.

Gill, N. S. (2006). Importance of software component characterization for better software reusability.
SIGSOFT Software Engineering Notes, 31(1), 1-3.

Journal of Information Technology Theory and Application 47

Volume 18 Issue 2 Paper 3

Girbea, A., Suciu, C., Nechifor, S., & Sisakm, F. (2013). Design and implementation of a service-oriented
architecture for the optimization of industrial applications. IEEE Transactions on Industrial
Computing, 10(1), 185-196.

Griss, M. L., Favaro, J., & d’Alessandro, M. (1998). Integrating feature modeling with the RSEB. In
Proceedings of the 5th International Conference on Software Reuse (pp. 76-85).

Heinecke, H., Damm, W., Josko, B., Metzner, A., Kopetz, H., Sangiovanni-Vincentelli, A., & Di Natale, M.
(2008). Software components for reliable automotive systems. In Proceedings of the Conference on
Design, Automation and Test in Europe.

Heineman, G. T. (2000). A model for designing adaptable software components. SIGSOFT Software
Engineering Notes, 25(1), 55-56.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research.
MIS Quarterly, 28(1), 75-105.

Hissam, S. A., Seacord, R. C., & Lewis, G. A. (2002). Building systems from commercial components. In
Proceedings of the 24th International Conference on Software Engineering.

Holmes, R., & Walker, R. J. (2012). Systematizing pragmatic software reuse. ACM Transactions on
Software Engineering and Methodology, 21(4), 1-44.

Hong, S.-J., & Lerch, F. J. (2002). A laboratory study of consumers’ preference and purchasing behavioe
with regards to software components. The Data Base for Advances in Information Systems, 33(3),
23-37.

Hopkins, J. (2000). Component primer. Communications of the ACM, 43(10), 27-30.

Jacobson, I., Griss, M. L., & Jonsson, P. (1997). Software Reuse: Architecture, process and organization
for business success. New York, NY: Addison-Wesley Publishing Company.

Jain, H. K., & Vitharana, P. (2000). Research issues in testing business components. Information &
Management, 37(5), 297-309.

Jain, H., Rothenberger, M., & Sugumaran, V. (2006). Flexible software component design using a product
platform approach. In Proceedings of the International Conference on Information Systems.

Jalender, B., Govardhan, A., & Premchand, P. (2010). A pragmatic approach to software reuse. Journal of
Theoretical and Applied Information Technology, 14(2), 87-96.

Kang, K. C., Lee, J., & Donohoe, P. (2002). Feature-oriented product line engineering. IEEE Software,
9(4), 58-65.

Kang, K. C., Lee, K., & Lee, J. (2003). Feature oriented product line software engineering: Principles and
guidelines. In Domain oriented systems development: Practices and perspectives (pp. 19-36).
London: Taylor & Francis.

Kharb, L., & Singh, R. (2008). Complexity metrics for component-oriented software systems. SIGSOFT
Software Engineering Notes, 33(2), 1-3.

Krueger, C. W. (2006). New methods in software product line practice. Communications of the ACM,
49(12), 37-40.

Laguna, M. A., Gonzlez-Baixauli, B., & Marques, J. M. (2007). Seamless development of software product
lines. In Proceedings of the 6th International Conference on Generative Programming and
Component Engineering.

LaMantia, M. J. (2006). Dependency models as a basis for analyzing software product platform
modularity: A case study in strategic software design rationalization (master’s thesis). Massachusetts
Institute of Technology, Boston.

Lau, K.-K. (2006). Software component models. In Proceedings of the 28th International Conference on
Software Engineering.

Li, G., Muthusamy, V., & Jacobson, H. A. (2010). A distributed service-oriented architecture for business
process execution. ACM Transactions on the Web, 4(1), 1-33.

Manolios, P., Vroon, D., & Subramanian, G. (2007). Automating component-based system assembly. In
Proceedings of the 2007 International Symposium on Software Testing and Analysis.

48 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

Metzger, A., & Pohl, K. (2007). Variability management in software product line engineering. In
Proceedings of the 29th International Conference on Software Engineering.

Meyer, M. H., & Lehnerd, A. P. (1997). The power of product platforms: Building value and cost
leadership. New York: Free Press.

Meyer, M. H., & Seliger, R. (1998). Product platforms in software development. Sloan Management
Review, 40(1), 61-74.

Miles, M. B., & Hubermann, A. M. (1994). Qualitative analysis: A sourcebook of new methods. Newbury
Park, CA: Sage.

Mohagheghi, P., & Conradi, R. (2008). An empirical investigation of software reuse benefits in a large
telecom product. ACM Transactions on Software Engineering and Methodology, 17(3), 1-31.

Nazareth, D., & Rothenberger, M. A. (2004). Assessing the cost-effectiveness of software reuse: A model
for systematic Reuse. Journal for Systems and Software, 73(2), 245-255.

Neighbors, J. M. (1984). The draco approach to constructing software from reusable components. IEEE
Transactions on Software Engineering, SE10(5), 564-574.

Orriens, B., & Yang, J. (2008). Service componentization: Toward service reuse and specialization. In D.
Georgakopoulos & M. Papazoglou (Eds.), Service-oriented computing (pp. 295-330). Cambridge,
MA: MIT Press.

Park, S., Park, S., & Sugumaran, V. (2007). Extending reusable asset specification to improve software
reuse. In Proceedings of the 2007 ACM Symposium on Applied Computing. Seoul, Korea: ACM.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2008). A design science research
methodology for information systems research. Journal of Management Information Systems, 24(3),
45-77.

Poulin, J. S., Caruso, J. M., & Hancock, D. R. (1993). The business case for software reuse. IBM Systems
Journal, 32(4), 567-585.

Ramachandran, M. (2005). Software reuse guidelines. SIGSOFT Software Engineering Notes, 30(3), 1-8.

Rodriguez, J. M., Crasso, M., Mateos, C., Zunino, A., & Campo, M. (2013). Bottom-up and top-down cobol
systems migration to Web services. IEEE Internet Computing, 17(2), 44-51.

Rosenmller, M., Siegmund, N., Saake, G., & Apel, S. (2008). Code generation to support static and
dynamic composition of software product lines. In Proceedings of the 7th International Conference
on Generative Programming and Component Engineering.

Sääksjärvi, M. (2002). Software application platforms: From product architecture to integrated application
strategy. In Proceedings of the 26th Annual International Computer Software and Applications
Conference.

Salonen, P. I., & Sääksjärvi, M. (2004). Evaluation of a product platform strategy for analytical application
software. Helsinki School of Economics, Helsinki, Finland.

Salvador, F., Forza, C., & Rungtusanatham, M. (2002). Modularity, product variety, production volume,
and component sourcing: Theorizing beyond generic prescriptions. Journal of Operations
Management, 20(5), 549-575.

Scott, A. H., Robert, C. S., & Grace, A. L. (2002). Building systems from commercial components. In
Proceedings of the 24th International Conference on Software Engineering.

Sharp, J. H., & Ryan, S. D. (2010). A theoretical framework of component-based software development
phases. The Data Base for Advances in Information Systems, 41(1), 56-75.

Silic, M., Delac, G., Krka, I., & Srbljic, S. (2013). Scalable and accurate prediction of availability of aromic
Web services. IEEE Transactions on Services Computing.

Sinha, A., & Jain, H. (2013). Ease of reuse: An empirical comparison of components and objects. IEEE
Software, 30(5), 70-75.

Slyngstad, O. P. N., Gupta, A., Conradi, R., Mohagheghi, P., Ronneberg, H., & Landre, E. (2006). An
empirical study of developers views on software reuse in statoil ASA. In Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software Engineering.

Journal of Information Technology Theory and Application 49

Volume 18 Issue 2 Paper 3

Sprott, D. (2000). Componentizing the enterprise application packages. Communications of the ACM,
43(4), 63-69.

Sugumaran, V., Park, S., & Kang, K. C. (2006). Software product line engineering. Communications of the
ACM, 49(12), 28-32.

Sugumaran, V., Tanniru, M., & Storey, V. C. (2008). A knowledge-based framework for extracting
components in agile systems development. Information Technology & Management, 9(1), 37-53.

Szyperski, C. A. (1998). Emerging component software technologies—a strategic comparison. Software—
Concepts and Tools, 19(1), 2-10.

Tolvanen, J.-P., Gray, J., Rossi, M., & Sprinkle, J. (2008). The 8th OOPSLA workshop on domain-specific
modeling. In Proceedings of the 23rd ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications. New York, NY: ACM Press.

Vici, A. D., Argentieri, N., Mansour, A., d’Alessandro, M., & Favaro, J. (1998). FODAcom: An experience
with domain analysis in the Italian telecom industry. In Proceedings of the 5th International
Conference on Software Reuse pp. 166-175).

Vitharana, P., Jain, H., & Zahedi, F. M. (2004). Strategy-based design of reusable business components.
IEEE Transactions on Systems, Man and Cybernetics—Part C, Applications and Reviews, 34(4),
460-475.

Vitharana, P., Zahedi, F. M., & Jain, H. (2003a). Knowledge-based repository scheme for storing and
retireving businesss components: A theoretical design and an empirical analysis. IEEE Transactions
on Software Engineering, 29(7), 649-664.

Vitharana, P., Zahedi, F. M., & Jain, H. K. (2003b). Design retrieval and assembly in component based
software development. Communications of the ACM, 46(11), 97-102.

Welke, R., Hirschheim, R., & Schwarz, A. (2011). Service-oriented architectur maturity. IEEE Computer,
44(2), 61-67.

White, J., Galindo, J. A., Saxena, T., Dougherty, B., Benavides, D., & Schmidt, D. C. (2014). Evolving
feature model configurations in software product lines. Journal of Systems and Software, 87, 119-
136.

Volkswagen group A platform. (n.d.). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/PQ34

Yau, S. S., Ye, N., Sarjoughian, H. S., Dazhi, H., Roontiva, A., Baydogan, M., & Muqsith, M. A. (2009).
Towards development of adaptive service-based software systems. IEEE Transactions on Services
Computing, 2(3), 247-260.

50 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

Appendix A: CreatePlugIn() Specifications

Table A2. Formal Specification of CreatePlugIn(SD)

1.
DiijijiC

SDDCCS ||

2. Cjjj
SCCC

 |

ijDi
DCSD ::

 a. For Cjjj
SCCC

| contained in the most

Di
SD

 where

jjjj

CCCC | that is contained in the same Di

 DDijDiDD
SSDCSDSS

 ::

 b. The next PLUG-IN will be a child of Pk

 c. Execute CreatePlugIn(

D
S)

 where: SD Set of Individual Component Designs

 Di An Individual Component Design
Di

SD

 SC Set of Classes

 Cj Classes
Cj

SC

 Cji Classes
iji

DC

 Pk Platform-Based Component Plug-In
 (Highest Level Plug-In is the Component
 Platform)

Journal of Information Technology Theory and Application 51

Volume 18 Issue 2 Paper 3

Appendix B: Individual Component Designs

Figure B1. Component Design for Train Reservation

Figure B2. Component Design for Airline Reservation

52 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

Figure B3. Component Design for Show Reservation

Figure B3. Component Design for Sporting Event Reservation

Journal of Information Technology Theory and Application 53

Volume 18 Issue 2 Paper 3

Appendix C: Requirements Specifications of the Individual Domain
Models

Train Reservation

 Customer initiates transaction for train ticket reservations.

 A booking agent can process a transaction.

 Payments are recorded for each transaction.

 A transaction facilitates the sale of one or many tickets.

 Each ticket authorizes one passenger to travel.

 Itineraries specify the routing for tickets. A routing consists of multiple route segments. Multiple
tickets (for different passengers) can be on one itinerary as long as they have the same
routing.

 A train route consists of multiple route segments on a specific day. It is uniquely identified by
the train name and the origination date.

 Seat reservations are optional and can be made on individual route segments. Seat
reservations do not require a ticket purchase and can be made independently from any
ticket purchase for transportation (e.g., if a passenger is not sure which train he/she will
take, he/she can make reservations on multiple trains without having to purchase a ticket for
each train). Each seat reservation is for a specific passenger.

Airline Reservation

 Customer initiates transaction for airplane ticket reservations.

 A booking agent can processes a transaction.

 Payments are recorded for each transaction.

 A transaction facilitates the sale of one or many tickets.

 Each ticket authorizes one passenger to travel.

 Itineraries specify the routing for tickets. A routing consists of multiple route segments. Multiple
tickets (for different passengers) can be on one itinerary as long as they have the same
routing.

 A flight consists of multiple route segments on a specific day. It is uniquely identified by the
airline, through the flight number, and the origination date.

 Seat reservations are optional and can be made for each route segment. Seat reservations
require a ticket and are for the passenger on that ticket.

Show Reservation

 Customer initiates transaction for show ticket reservations.

 A booking agent can processes a transaction.

 Payments are recorded for each transaction.

 A transaction facilitates the sale of one or many tickets.

 A show plays in a venue.

 A show is uniquely identified by the name, the date, and the time.

 A show has multiple price categories that may vary from show to show.

 Seats are available in specific price categories.

54 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

 Each ticket reserves one seat in a specific price category of the show. Tickets are not issued
for specific guests, but are good for anyone who holds them.

 Seat reservations are mandatory and are part of a ticket reservation. The price category of the
seat determines the ticket price.

Sports Game Reservation

 Customer initiates transaction for sports game ticket reservations.

 A booking agent can processes a transaction.

 Payments are recorded for each transaction.

 A transaction facilitates the sale of one or many tickets.

 A sports game takes place in a venue.

 A spots game is uniquely identified by the two team names, the date, and the time.

 A sports game has multiple price categories that may vary from game to game.

 Seats are available in specific price categories.

 Each ticket reserves one seat in a specific price category of the sports game. Tickets are not
issued for specific guests, but are good for anyone who holds them.

 Seat reservations are mandatory and are part of a ticket reservation. The price category of the
seat determines the ticket price.

Cruise Ship Reservation (for the Evaluation)

 Customer initiates transaction for cruise ship reservations.

 A booking agent can processes a transaction.

 Payments are recorded for each transaction.

 A transaction facilitates the sale of one or many tickets.

 Each ticket authorizes one passenger to take a cruise.

 Multiple tickets for different passengers that share a cabin for the cruise will be on one
itinerary.

 Itineraries specify the routing for cruise tickets. A routing consists of multiple route segments.

 A cruise consists of multiple route segments. It is uniquely identified by the ship name, cruise
name, and origination date.

Cabin reservations are mandatory and are made for the entire cruise (all segments). One cabin is being
reserved for multiple passengers on one itinerary. (Reservations of multiple cabins would require multiple
itineraries.)

Journal of Information Technology Theory and Application 55

Volume 18 Issue 2 Paper 3

About the Authors

Marcus A. Rothenberger is Professor of MIS in the Department of Management, Entrepreneurship, and
Technology of the Lee Business School at the University of Nevada Las Vegas. Previously, he was faculty
at the University of Wisconsin-Milwaukee. He holds a PhD in Information Systems from Arizona State
University. His work includes theory testing, theory development, and design science research in the
areas of software process improvement, software reusability, performance measurement, and the
adoption of Enterprise Resource Planning systems.

Hemant Jain is W. Max Finley Chair in Business, Free Enterprise and Capitalism and Professor of
Business Analytics, in College of Business at University of Tennessee Chattanooga. Before this, he was
Professor of Information Technology Management at University of Wisconsin Milwaukee. His research
interests are in data analytics, real time organizations, component based development, service-oriented
architecture and healthcare informatics. He received his PhD in information system from Lehigh
University, a Master of Technology from the Indian Institute of Technology, Kharagpur, India, and
Bachelor of Engineering from University of Indore, India.

Vijayan Sugumaran is Professor of Management Information Systems and Chair of the department of
Decision and Information Sciences at Oakland University, Rochester, Michigan, USA. His research
interests are in the areas of Component Based Software Development, Ontologies and Semantic Web,
Intelligent Agent and Multi-Agent Systems, and Data & Information Modeling. He is the editor-in-chief of
the International Journal of Intelligent Information Technologies and serves on the editorial board of seven
other journals. He is the Chair of the Intelligent Systems Track for Americas Conference on Information
Systems (AMCIS 1999-2017). He has served as the program co-chair for the International Conference on
Applications of Natural Language to Information Systems (NLDB 2008, NLDB 2013 and NLDB 2016).

Copyright © 2017 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to
publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-
mail from publications@aisnet.org.

56 A Platform-based Design Approach for Flexible Software Components

Volume 18 Issue 2 Paper 3

 JOURNAL OF INFORMATION TECHNOLOGY THEORY AND APPLICATION

Editors-in-Chief

Jan vom Brocke

University of Liechtenstein

Carol Hsu

National Taiwan University

Monica Tremblay

Florida International University

Executive Editor

Sandra Beyer

University of Liechtenstein

Governing Board

Virpi Tuunainen
AIS VP for Publications

Aalto University Lars Mathiassen Georgia State University

Ken Peffers, Founding
Editor, Emeritus EIC

University of Nevada Las Vegas Douglas Vogel City University of Hong Kong

Rajiv Kishore,
Emeritus Editor-in-Chief

State University of New York,
Buffalo

Senior Advisory Board

Tung Bui University of Hawaii Gurpreet Dhillon Virginia Commonwealth Univ

Brian L. Dos Santos University of Louisville Sirkka Jarvenpaa University of Texas at Austin

Robert Kauffman Singapore Management Univ. Julie Kendall Rutgers University

Ken Kendall Rutgers University Ting-Peng Liang Nat Sun Yat-sen Univ, Kaohsiung

Ephraim McLean Georgia State University Edward A. Stohr Stevens Institute of Technology

J. Christopher Westland HKUST

Senior Editors

Roman Beck IT University of Copenhagen Jerry Chang University of Nevada Las Vegas

Kevin Crowston Syracuse University Wendy Hui Curtin University

Karlheinz Kautz Copenhagen Business School Yong Jin Kim State Univ. of New York, Binghamton

Peter Axel Nielsen Aalborg University Balaji Rajagopalan Oakland University

Sudha Ram University of Arizona Jan Recker Queensland Univ of Technology

René Riedl University of Linz Nancy Russo Northern Illinois University

Timo Saarinen Aalto University Jason Thatcher Clemson University

John Venable Curtin University

Editorial Review Board

Murugan Anandarajan Drexel University F.K. Andoh-Baidoo University of Texas Pan American

Patrick Chau The University of Hong Kong Brian John Corbitt Deakin University

Khalil Drira LAAS-CNRS, Toulouse Lee A. Freeman The Univ. of Michigan Dearborn

Peter Green University of Queensland Chang-tseh Hsieh University of Southern Mississippi

Peter Kueng Credit Suisse, Zurich Glenn Lowry United Arab Emirates University

David Yuh Foong Law National Univ of Singapore Nirup M. Menon University of Texas at Dallas

Vijay Mookerjee University of Texas at Dallas David Paper Utah State University

Georg Peters Munich Univ of Appl. Sci. Mahesh S. Raisinghan University of Dallas

Rahul Singh U. of N. Carolina,Greensboro Jeffrey M. Stanton Syracuse University

Issa Traore University of Victoria, BC Ramesh Venkataraman Indiana University

Jonathan D. Wareham Georgia State University

JITTA is a Publication of the Association for Information Systems
ISSN: 1532-3416

