
Association for Information Systems
AIS Electronic Library (AISeL)

Research-in-Progress Papers ECIS 2017 Proceedings

Spring 6-10-2017

WHEN IS AGILE APPROPRIATE FOR
ENTERPRISE SOFTWARE DEVELOPMENT?
Gary Spurrier
Bentley University, gspurrier@bentley.edu

Heikki Topi
Bentley University, htopi@bentley.edu

Follow this and additional works at: http://aisel.aisnet.org/ecis2017_rip

This material is brought to you by the ECIS 2017 Proceedings at AIS Electronic Library (AISeL). It has been accepted for inclusion in Research-in-
Progress Papers by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Spurrier, Gary and Topi, Heikki, (2017). "WHEN IS AGILE APPROPRIATE FOR ENTERPRISE SOFTWARE
DEVELOPMENT?". In Proceedings of the 25th European Conference on Information Systems (ECIS), Guimarães, Portugal, June
5-10, 2017 (pp. 2536-2545). ISBN 978-0-9915567-0-0 Research-in-Progress Papers.
http://aisel.aisnet.org/ecis2017_rip/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301372442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2017_rip%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2017_rip?utm_source=aisel.aisnet.org%2Fecis2017_rip%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2017?utm_source=aisel.aisnet.org%2Fecis2017_rip%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2017_rip?utm_source=aisel.aisnet.org%2Fecis2017_rip%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2017_rip/6?utm_source=aisel.aisnet.org%2Fecis2017_rip%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

WHEN IS AGILE APPROPRIATE FOR ENTERPRISE
SOFTWARE DEVELOPMENT?

Research in Progress

Gary Spurrier, Bentley University, Waltham, Massachusetts, USA, gspurrier@bentley.edu
Heikki Topi, Bentley University, Waltham, Massachusetts, USA, htopi@bentley.edu

Abstract
Using agile methods for enterprise software development (ESD) remains contentious. Advocates
of agile and plan-driven methods (i.e., waterfall) argue their respective cases with near evangelical
zeal, and recent evidence indicates that waterfall (or some variant) remains a widely used
approach. This controversy persists despite strong arguments by Boehm and Turner (2004)
recommending a balanced software development approach combining aspects of agile and plan-
driven methods, aligned to pro-jects based on each project’s fit with agile vs. plan-driven “home
ground” characteristics. In this re-search, we hypothesize that Boehm and Turner were
fundamentally correct and that neither of the “pure” models will lead to the highest level of
project success in all circumstances. This paper de-scribes a research project to study the impact of
alignment with a flexible but simple agile vs. hybrid vs. plan-driven approach on ESD outcomes. The
discussion includes: 1) Articulating the identifying characteristics of ESD, 2) distilling the essence of
plan-driven vs. agile methods along two key dimen-sions, 3) explicating a hybrid method of software
development using those dimensions, and 4) extend-ing Boehm and Turner’s “home grounds” model
to better determine the optimal ESD approach. The discussion includes our planned research
questions, data collection and analysis, and hypotheses.
Keywords: Agile Development, Plan-Driven Development, Enterprise Software Development

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017

1 Introduction

Agile software development methods can often deliver project success superior to traditional, plan-
driven methods (i.e., waterfall), especially in small projects (The Standish Group, 2015; Hastie and
Wojewoda, 2015). What remains contentious is the extent to which agile methods can be successfully
used, to use terminology from Boehm and Turner (2003, 2004), in contexts outside of the agile meth-
ods’ “home ground.” The context we are particularly interested in this research is enterprise software
development (ESD). The home grounds model states that there are different characteristics corre-
sponding to agile and to plan-driven methods under which each type of method is most likely to suc-
ceed (Boehm and Turner, 2004, p. 51). In Table 1, we present a refined and extended version of
Boehm and Turner’s original home grounds model based upon ideas from subsequent literature (Turk
et al., 2005; Leffingwell, 2007; Ågerfalk et al., 2009; Sheffield and Lemétayer, 2013). In this table, the
Industry and Organization characteristics in which a software development project is embedded are in
the first table section. The second section includes the Project and Application software characteristics
that define a given software release or initiative. (Bolded text is explained in the next section.)

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2537

Spurrier and Topi / Agile for Enterprise Software Development

Characteristic Agile Home Ground Plan-Driven Home Ground
Overarching context: Industry/Organization Characteristics
Goals & Values • Rapid, responsive delivery of value • Predictable, high assurance delivery
Industry • Turbulent/rapidly evolving • Stable/mature
Organization • Agile organization valuing

freedom/empowerment/chaos
• Plan-driven organization valuing

policies/procedures/control
IT Team contends with: Project/Application Characteristics
Customers/
Product Owners

• Customers/Product Owners:
Few, dedicated, co-located

• Customers/Product Owners:
Many, not dedicated, not co-located

Software
Requirements

• Small/flexible scope
• Low development interdependence
• Low clarity
• Low stability over time
• Single project focused

• Large/fixed scope
• High development interdependence
• High clarity
• High stability over time
• Project portfolio/organization-focused

Software
Application

• “Greenfield” or small code base
• Non-strategic/non-mission-critical
• Low security/safety risk
• No need for intentional architecture

• Large code base and/or “legacy” app
• Strategic/mission-critical
• High security/safety risk
• High need for intentional architecture

IT Team • IT Team:
Small, generalists, co-located, high-
performing, stable/cohesive, using
tacit/shared informal knowledge

• IT Team(s):
Large, specialists, multiple locations and
time zones, few assumptions regarding
performance levels, unstable/new, needing
documentation for knowledge transfer

Table 1. Extended Home Grounds Model: Industry/organizational/software characteristics.

2 Background

2.1 ESD in context of home grounds
It is straightforward to establish that software development in an enterprise context falls outside of the
agile home ground. To begin, given the intrinsically risky nature of software development, organiza-
tions tend to avoid risk by using commercial off the shelf (COTS) software for functionality that is
relatively standardized and thus not contributing to strategic differentiation (Slaughter et al., 2006).
Thus, organizations tend to focus their own software development efforts on systems supporting func-
tionality unique to their industry vertical and providing strategic differentiation. For example, an In-
ternet retailer would likely focus on its web site, fulfilment, and customer profiling, while an insurance
broker would focus on policy renewals and risk analytics. Given this, we characterize enterprise soft-
ware developed within organizations as generally having the following distinguishing characteristics:

• Strategic & mission critical: Software key to strategic differentiation and ability to compete.

• Complex, organization-specific functionality: Typically not attainable via COTS software.

Because of these two factors, enterprise software also corresponds to some or all of the following:

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2538

Spurrier and Topi / Agile for Enterprise Software Development

• Serving many users: Across the organization, often in multiple roles and units.

• High risk: From handling customer data, facing the Internet, and/or supporting human safety.

• Needing planned, intentional architecture: To support industrial-strength reliability, scalability,
extensibility, criticality, and large amounts of complex, persistent data.

• High budget, large IT staff, and high visibility: Arising from all of the factors above.

By mapping these factors to Table 1 (shown in bold font), it is evident—perhaps not surprisingly—
that enterprise software development tends to fall solidly in the plan-driven home ground column.
Given this, one might wonder why a number of authors of recent, popular trade books on this subject
(e.g., Larman and Vodde, 2009, 2010; Leffingwell, 2007, 2011; Gruver, Young, and Fulghum, 2013;
Gruver and Mouser, 2015) have forcefully advocated for using agile approaches in most large-scale
ESD projects. Yet, despite this advocacy, plan-driven approaches such as waterfall or variants such as
iterative development within a waterfall process (“Water-Scrum-Fall”) remain prevalent today (Nelson
and Morris, 2014; West et al., 2011).
Part of the answer lies in the evangelistic zeal of some agile advocates, who see in agile a way to make
software development not just more effective, but also more humane (Boehm and Turner, 2004, p. 4).
Still, seen from a more instrumental perspective, applying agile approaches to ESD seems puzzling.
By delaying requirements elaboration until the “last responsible moment” (Leffingwell, 2007, p. 191),
agile appears to contradict the principle of reducing uncertainty by as much as possible as early as
possible, which has been a core idea in the management literature for decades (Thompson, 1967, p.
159). Conversely, we can discern why plan-driven approaches try to reduce requirements uncertainty
as early in the software development process as possible, especially with large scope. To make sense
of this, we need first to distil the essence of agile vs. plan-driven methods across two key dimensions,
and then analyse their associated, underlying cost and value assumptions.

2.2 The essence of agile vs. plan-driven methods
Specific agile and plan-driven methods differ in their details. For example, in agile, XP specifies the
use of pair programming, which is not an element of Scrum or most other methods such as DSDM or
FDD (Leffingwell, 2007, p. 38). Similarly, in plan-driven, the waterfall differs from earlier stage mod-
els in the incorporation of feedback loops between successive stages and a greater emphasis on proto-
typing during requirements (Boehm, 1988), while the V-Model emphasizes earlier development of test
cases (Balaji and Murugaiyan, 2012).
However, at their core, agile and plan-driven approaches can each be fundamentally characterized in
meaningful, straightforward ways. For example, virtually all agile approaches appear to embody the
principle of iterative development and concurrent testing, with detailed elaboration of
requirements scope delayed until the iteration in which the requirements will be built (Leffingwell,
2007, pp. 81-82). Conversely, all plan-driven approaches emphasize linear development with
requirements elabora-tion completed prior to that development, commonly and interchangeably termed
“Big Requirements Up Front (BRUF)” (Ambler, 2014), “Big Design Up Front (BDUF)” (Boehm and
Turner, 2004, p. 55), or “Big Up Front Design (BUFD)” (Leffingwell, 2007, p. 30). See Table 2.

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2539

Spurrier and Topi / Agile for Enterprise Software Development

Dimension Plan-Driven Approach Agile Approach

Requirements BRUF/BDUF/BUFD:
• Fixed scope up-front
• Fully elaborated

Emergent requirements:
• High-level “stories” reprioritized each sprint
• Elaborated during iterative development

Development Non-iterative:
• Single long-sequence
• Testing on delivery

Iterative:
• Concurrent development & test
• Demonstrations identify revisions needed

Table 2. Essential dimensions of software development: plan-driven vs. agile.

This 2X2 matrix implies the possibility of two other, hybrid software development approaches:

• BRUF with iterative development: This is the mixed, balanced approach we explicate below.

• Emergent requirements with non-iterative development: Upon reflection, this can be seen as an
illogical, “degenerate case” that does not need to be considered further.

Thus, Table 3 defines three essential software development approaches: plan-driven, hybrid, and agile.

Software Phase Plan-Driven Hybrid Agile
Current State
Analysis
• Make explicit
• Resolve differences

B
R

U
F

Current State

B
R

U
F

Current State

Pl
an

ni
ng

Story Backlog
• Prioritization
• Minimum

Viable Product
Requirements
Analysis (“What”)
• Business goals
• New features

Future State
• Fixed scope

Future State
• Scope (maximum

boundaries vs. min-
imum features)

Functional
Requirements
(“How -- User View”)
• Business Process

Design (BPD)
• Data model
• Logic
• UI/UX

Functional
Specification
• BPD
• Use cases
• ERD/Domain

models
• UI/UX Designs

Functional
Specification
• BPD
• Use cases
• ERD/Domain

models
• UI/UX Designs
• Test cases

It
er

at
iv

e
D

ev
el

op
m

en
t

Iterative
Functional
Requirements
• Lightweight de-

sign methods
• Emergent from

iterative
development

Technical Design
/Development
• Lightweight de-

sign methods
• Emergent from

iterative
development

Concurrent Tests

Technical Design/
Development (“How -
- Developer View”)
• Class designs
• Other UML or other

technical designs D
ev

el
op

m
en

t Technical Design/
Development
• Class designs
• Development
• Unit tests

It
er

at
iv

e
D

ev
el

op
m

en
t Technical Design/

Development
• Revised “within

boundaries” func-
tional designs

• Tech designs per
Plan-Driven

Concurrent Tests

Testing

T
es

tin
g System Tests,

User Acceptance
Tests

Table 3. Essential plan-driven vs. hybrid vs. agile software development approaches.

Spurrier and Topi / Agile for Enterprise Software Development

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2540

2.3 The hybrid approach and relationship to plan-driven and agile

Table 3 that illustrates that aspects of the plan-driven and agile approaches can be effectively com-
bined into a hybrid approach, combining the BRUF of plan-driven with the iterative construction of
agile. This approach is in fact commonly used today (West et al., 2011), given that it combines some
of the advantages of significant up-front requirements and design with the ability to make revisions or
“course corrections” from frequent customer feedback during software construction. In hybrid, it is all
(or most) detailed requirements are created prior to starting the construction phase of the project.
However, it is also true that these detailed requirements are subject to revisions as construction itera-
tions are completed, software is demonstrated to customers, and those customers provide feedback.
Thus, hybrid projects will in reality complete only a portion of their detailed requirements “up front,”
with more SA&D requirements work occurring on an on-going basis after construction commences.

2.4 Requirements approach: underlying assumptions
Three key assumptions underlie the BRUF vs. agile requirements approach selection decision:

• Scope clarity: Plan-driven assumes BRUF works because a well-defined set of requirements can
be created with proper time and effort (Leffingwell, 2007, p. 20). In contrast, agile holds that
BRUF fails, because accurately envisioning requirements prior to creating working code is nearly
impossible, especially given that deploying software, itself, tends to change requirements.

• Scope stability: Numerous agile sources (e.g., Cockburn and Highsmith, 2001; Augustine et al.,
2005; Sarker and Sarker, 2009) make broad claims that requirements are changing more rapidly in
recent years due to an increasingly dynamic business environment. This explains why agile es-
chews the uncertainty-reducing value of BRUF, as BRUF specifications would rapidly decline in
fidelity to actual business requirements as development continues over time. Thus, agile argues for
elaborating requirements at the “last responsible moment.” In contrast, plan-driven assumes re-
quirements are reasonably stable, preserving the value of BRUF during development.

• Cost of late requirements changes/development interdependence: Plan-driven assumes that
change costs accelerate as development progresses, thus underlining the need for BRUF to avoid
them (Leffingwell, 2007, p. 32). In contrast, agile assumes the cost of making changes remains
nearly level, implying little economic downside in elaborating at the “last responsible moment” and
thereby lowering the value of BRUF. We posit that a key determinant of “cost of changes” is the
increasing “development interdependence” of project features. This occurs where scope is both
large and intricate. Indeed, there are two non-mutually exclusive situations that can generate devel-
opment interdependence in this way:

o Large complex scope within a single application system: This can lead to needing to split
stories into smaller, linked predecessor/successor stories built over a series of sprints (Leff-
ingwell, 2011, pp. 110-114; Wake, 2012). In this case, late changes to an early story may have
ripple effects through its successor stories, leading to the plan-driven view of accelerating
costs over time. Conversely, if stories are “development independent,” then costs of late
changes will remain relatively low, as per agile.

o Intersystem “release train” interactions: If the project team must deliver its overall solution
by combining capabilities with applications supported by other teams, then those dependen-
cies increase development interdependence. This need to synchronize “release trains” is espe-
cially pertinent when the other teams are operating using different approaches, incompatible
requirements, cadences, and release dates (Leffingwell, 2007, pp. 237-247).

The differing assumptions and implications of plan-driven and agile approaches are shown in Figure 1.

Spurrier and Topi / Agile for Enterprise Software Development

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2541

Figure 1. Agile vs. plan-driven assumptions determining the value of BRUF.

Which camp—agile or plan-driven—is correct with respect to these assumptions? We suggest that the
answer is “neither.” Rather than being simply true or false in all circumstances, each of these “assump-
tions” are variable characteristics that must be assessed separately for each project.

2.5 Iterative development: an inherently better approach?
The above discussion summarizes arguments why BRUF vs. emergent requirements may be appropri-
ate in different circumstances. In contrast, with respect to development, a review of the literature pro-
vides virtually no arguments supporting non-iterative development over iterative development. Rather,
the literature appears to argue that iterative is intrinsically superior to non-iterative. This is because
iterative enables frequent customer feedback and refinements to requirements after each development
iteration (Rubin, 2013, pp. 33-34), while in non-iterative, the customer is only able to view and pro-
vide feedback at the end of the development process. Note that iterative advantages appear to apply to
both hybrid and agile, even given that in hybrid, BRUF creates overall functionality boundaries that
limit changes to the general scope of the project (but not limiting refinements within that general
scope) (Turk et al., 2005). This leads to a key question: if iterative development is inherently and gen-
erally superior to non-iterative, does it follow that the traditional “pure” plan-driven approach should
never be used? If so, our choice of approach to executing ESD is reduced to two options: hybrid vs.
agile. This is a question to be addressed in our research (specifically, RQ3 and H1, below).

3 An Extended Theory of Method Selection for ESD
As noted at the outset, our approach is to take the theory of Boehm and Turner (2003) and extend it to
accommodate the insights offered above. This original theory recognized the complex, multi-faceted
nature of software development projects, depicting five variables driving a project’s alignment with
either the plan-driven vs. agile home approaches (“low-to-high” indicates that a high value corre-
sponds to plan-driven, while “high-to-low” indicates that a low value corresponds to plan-driven):

• Size: number of personnel on the team (low-to-high).

• Personnel: measurement of percent of team that are highly skilled and capable (high-to-low).

• Dynamism: percent of requirements changing per month (high-to-low).

Spurrier and Topi / Agile for Enterprise Software Development

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2542

• Criticality: loss due to impact of defects (low-to-high).

• Culture: percent of team thriving on chaos/empowerment/freedom vs. order/policies/procedures
(low-to-high).

Comparing these five dimensions to those developed in the discussion above, it is clear that “Dyna-
mism” corresponds closely as the inverse of “scope stability” from section 2.3. However, section 2.3’s
“scope clarity” and “development interdependence” (along with “scope size” and “scope complexity,”
which drive development interdependence) are not explicitly represented in the original model, and,
still, they would seem to have a major impact on the selection of approach. Thus, given their con-
sistency with the home grounds models, we have included these dimensions as rows in the home
grounds table (Table 1, items not bolded in the “Project/Application Characteristics” section).
We have grouped these factors into a “Method Selection Dimensions” group, while making the fol-
lowing additional refinements to the original model:

• “People-Based Sources of Difficulty” group: Taking the original model’s “personnel,” “size,”
and “culture” dimensions, we have created this group adding key dimensions that have emerged in
recent writings as issues when operating at scale: location, and customer team characteristics.

• “Need for Intentional Architecture” group: Taking the original model’s “criticality” dimension
and creating this group including the non-functional requirement dimensions that often arise in en-
terprise software: “reliability,” “scalability,” “extensibility,” and “criticality.”

With these refinements, Figure 2 presents the revised model. Overall, based on our analysis of agile
vs. plan-driven assumptions, above, our method selection model emphasizes scope characteristics over
other issues, such as the original theory’s “Size,” “Personnel,” “Criticality,” and “Culture.”

Figure 2. Extended model; stars show key theory dimensions determining optimal method selec-
tion. Values near the perimeter suggest hybrid or plan-driven, rather than agile.

Spurrier and Topi / Agile for Enterprise Software Development

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2543

4 Research questions, hypotheses, target sample, and limitations
We are focused on answering the following research questions (RQs):

• RQ1: Is Plan-driven vs. Hybrid vs. Agile an appropriate taxonomy for ESD? In other words,
do practitioners recognize their own project practices as being described by this taxonomy? This
would be important both as a precursor to answering the remaining RQs, but also as a way to estab-
lish a relatively simple but meaningful taxonomy of key software development approaches.

• RQ2: Are key ESD project characteristics associated with method selection in a way predict-
ed by the theory? These include that high values of “scope stability,” “scope clarity,” and “devel-
opment interdependence” predict selection of either a Hybrid or Plan-Driven approach emphasizing
BRUF, while low values of these would predict select of an Agile approach. Regarding specifically
”development interdependence,” we also plan to determine if “development interdependence” that
construct correlates with high values of “scope size” and “scope intricacy.”

• RQ3: Do ESD projects using the method predicted by the theory experience higher rates of
project success? “Project success” will be the dependent variable, measured using multiple dimen-
sions, including the traditional “iron triangle” of budget, timing, and quality, but also, importantly,
business success, specifically “fitness for purpose” (de Wit, 1988; Baccarini, 1999; Nelson, 2005).

Specific hypotheses (HX) to test include the following:

• H1: Iterative development increases ESD project success: Based on the factors discussed in
Section 2, we expect to find a main effect for this.

• H2: The key ESD project characteristics predict method selection: Specifically,

o Agile: Low scope clarity, scope stability, and development interdependence.

o Hybrid or Plan-Driven: High scope clarity, scope stability, and development interdependence.

• H3: Use of the method compatible with the theory increases ESD project success: Primarily
using the business-oriented “fitness for purpose” (see RQ3, above), as that is seen as the most im-
portant ultimate outcome in the relatively short-term, and at times superseding (at least in overall
successful projects) minor deficiencies in budget, timing, and quality. However, we will also check
for relationships between the method and other measures of project success.

We will test these hypotheses using data from real organizations and projects. We are now validating
our constructs and research questionnaire via semi-structured 30 to 60 minute interviews of IT practi-
tioners. The finalized questionnaire will then be posted as a link on a public website for project man-
agers (our interviews suggest that only project managers possess the knowledge to consistently pro-
vide complete responses). This approach will limit our findings in three key ways. First, this is correla-
tional, rather than experimental, research, thus limiting inferences of causality. Second, the focus on
project managers for responses could skew our findings to views of that particular role, excluding
views of senior sponsors, other IT team members, and front-line business users. Third, our findings
will need to be interpreted within the sphere of a largely English-speaking, western cultural context.

5 Summary
In conclusion, we intend to conduct this research in a manner that combines scientific rigor with a high
degree of relevance to IT practitioners, educators, and students. The outcomes could result in a signifi-
cant contribution to the field, including fulfilling Boehm and Turner’s desire to guide those people
perplexed by the “method wars” to a more balanced and effective approach appropriate to each project
circumstance, resulting in a significant increase in the rate of project successes over time.

Spurrier and Topi / Agile for Enterprise Software Development

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2544

References
Ågerfalk, P. J., B. Fitzgerald and S. A. Slaughter. (2009). “Introduction to the Special Issue—Flexible

and Distributed Information Systems Development: State of the Art and Research Challenges.” In-
formation Systems Research, 20(3), 317–328.

Ambler, S. (2014). “Examining the ‘Big Requirements Up Front (BRUF) Approach.’" URL:
http://agilemodeling.com/essays/examiningBRUF.htm (visited on November 18, 2016).

Augustine, S., B. Payne, F. Sencindiver and S. Woodcock. (2005). “Agile project management: steer-
ing from the edges.” Communications of the ACM, 48(12), 85–89.

Baccarini, D. (1999). “The Logical Framework Method for Defining Project Success.” Project Man-
agement Journal, 30(4), 25-32.

Balaji, S., and Murugaiyan, M.S. (2012). “Waterfall vs. V-Model vs. Agile: A Comparative Study on
SDLC.” International Journal of Information Technology and Business Management, 2(1), 26-30.

Boehm, B. (1988). “A Spiral Model of Software Development and Enhancement.” IEEE Computer,
21(5), 61-72.

Boehm, B., and R. Turner. (2003). “Using Risk to Balance Agile and Plan-Driven Methods.” Comput-
er, 36(6), 57-66.

Boehm, B. W. and R. Turner. (2004). Balancing Agility and Discipline: A Guide for the Perplexed.
Boston: Addison-Wesley Professional.

Cockburn, A. and J. Highsmith. (2001). “Agile software development, the people factor.” Computer,
34(11), 131–133.

De Wit, A. (1988). “Measurement of project success.” International Journal of Project Management,
6(3), 164–170.

Gruver, G. and T. Mouser. (2015). Leading the Transformation: Applying Agile and DevOps Princi-
ples at Scale. Portland, OR: IT Revolution.

Gruver, G., M. Young and P. Fulghum. (2013). A Practical Approach to Large-Scale Agile Develop-
ment: How HP Transformed LaserJet FutureSmart Firmware. Upper Saddle River, NJ: Pearson
Education.

Hastie, S., and S. Wojewoda. (2015). “Standish Group 2015 Chaos Report – Q&A with Jennifer
Lynch.” URL: https://www.infoq.com/articles/standish-chaos-2015 (visited on October 27, 2016).

Larman, C. and B. Vodde. (2009). Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum. Boston: Pearson Education.

Larman, C. and B. Vodde. (2010). Practices for Scaling Lean & Agile development: Large, Multisite,
and Offshore Product Development with Large-Scale Scrum. Boston: Pearson Education.

Leffingwell, D. (2007). Scaling Software Agility: Best Practices for Large Enterprises. Boston: Pear-
son Education.

Leffingwell, D. (2011). Agile Software Requirements: Lean Requirements Practices for Teams, Pro-
grams, and the Enterprise. Boston: Pearson Education.

Nelson, R. R. (2005). “Project retrospectives: Evaluating project success, failure, and everything in
between.” MIS Quarterly Executive, 4(3), 361–372.

Nelson, R. R. and M. G. Morris. (2014). “IT Project Estimation: Contemporary Practices and Man-
agement Guidelines.” MIS Quarterly Executive, 13(1), 15-30.

Rubin, K. S. (2012). Essential Scrum: A Practical Guide to the Most Popular Agile Process. Upper
Saddle River, NJ: Addison-Wesley.

Sarker, S. and S. Sarker. (2009). “Exploring Agility in Distributed Information Systems Development
Teams: An Interpretive Study in an Offshoring Context.” Information Systems Research, 20(3),
440–461.

Sheffield, J. and J. Lemétayer. (2013). “Factors associated with the software development agility of
successful projects.” International Journal of Project Management, 31(3), 459–472.

Slaughter, S., L. Levine, B. Ramesh, J Pries-Heje, and R. Baskerville. (2006). “Aligning Software
Processes with Strategy.” MIS Quarterly, 30(4), 891-918.

Spurrier and Topi / Agile for Enterprise Software Development

Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal, 2017 2545

The Standish Group. (2015). “Chaos Report 2015.” URL:
https://www.standishgroup.com/store/services/chaos-report-2015-blue-pm2go-membership.html
(visited on June 26, 2016).

Thompson, J. D. (1967). Organizations in Action: Social Science Bases of Administrative Theory.
New York: McGraw-Hill.

Turk, D., R. France and B. Rumpe. (2005). “Assumptions underlying agile software development pro-
cesses.” Journal of Database Management, 16(4), 62–87.

Wake, B. (2012). “Independent Stories in the INVEST Model.” URL:
http://xp123.com/articles/independent-stories-in-the-invest-model/ (visited on October 27, 2016).

West, D., M. Gilpin, T. Grant and A. Anderson. (2011). “Water-scrum-fall is the reality of agile for
most organizations today.” Forrester Research.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Spring 6-10-2017

	WHEN IS AGILE APPROPRIATE FOR ENTERPRISE SOFTWARE DEVELOPMENT?
	Gary Spurrier
	Heikki Topi
	Recommended Citation

	Microsoft Word - ECIS2017 Manuscript #2723 final.docx

