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Abstract 

E-Commerce firms collect enormous amounts of information in their databases. Yet, only a fraction is 

used to improve business processes and decision-making, while many useful sources often remain un-

derexplored. Therefore, we propose a new and interdisciplinary method to identify goals of consumers 

and develop an online shopping typology. We use k-means clustering and non-parametric analysis of 

variance tests to categorize search patterns as Buying, Searching, Browsing or Bouncing. Adding to 

purchase decision-making theory we propose that the use of off-site clickstream data—the sequence of 

consumers’ advertising channel clicks to a firm’s website—can significantly enhance the understand-

ing of shopping motivation and transaction-related behavior, even before entering the website. To run 

our consumer data analytics we use a unique and extensive dataset from a large European apparel 

company with over 80 million clicks covering 11 online advertising channels. Our results show that 

consumers with higher goal-direction have significantly higher purchase propensities, and against our 

expectations - consumers with higher levels of shopping involvement show higher return rates. Our 

conceptual approach and insights contribute to theory and practice alike such that it may help to im-

prove real-time decision-making in marketing analytics to substantially enhance the customer experi-

ence online. 

 

Keywords: clickstream analysis, online consumer journey, big data, e-commerce 

 

1 Introduction 

Synonymous with the rise of B2C purchases shifting online ($1.6 trillion or 7% of total retail spending 

in 2015), marketers are moving more and more advertising budgets into digital channels and formats – 

today almost 30% of $600 billion worldwide total media spend is already digital (eMarketer, 2015). 

Developments in information technology and internet analytics have provided practitioners and re-

searchers with an unprecedented ability to track and analyze consumer choices according to their indi-

viduals’’ shopping journey touch points in great detail (e.g., Winer 2009; Kauffman et al. 2012). But 

naturally, in addition to its many promises, big data also raises new challenges – most prominently 

online companies struggle to use the vast amounts of available consumer data to systematically create 

actionable marketing insights on an ongoing basis (Bharadwaj et al., 2013). Therefore, it is ever more 

success-critical to generate relevant insights out of consumer and market data to understand the drivers 

and characteristics of online shopping in order to improve marketing decision-making leading to more 

conversions and ultimately more loyal customers (Bucklin and Sismeiro, 2009; Lambrecht and Tuck-

er, 2013; Yadav and Pavlou, 2014). 
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One of the main aims of our study is to find out if online shopping types can already be identified be-

fore the consumer enters the website. To address this, we run a data-driven cluster analysis approach 

to develop a typology of online shoppers by operationalizing off-site clickstream metrics – more spe-

cifically via the level of consumer involvement and consumer search behavior. We use large-scale off-

site clickstream data—the sequence of advertising channel clicks towards a website over time—as it 

provides information on the exposure and effects of online advertising on consumers and their subse-

quent transaction-related behavior (Li and Kannan, 2014; Nottorf and Funk, 2013). 

Existing research has shown that purchasing behavior may differ depending on the visiting pattern of 

the individual in question (Moe and Fader, 2004; Montgomery et al., 2004; Sismeiro and Bucklin, 

2004). Bonfrer and Dreze (2009) in their study on e-mail performance posit that in future applications 

and with better data availability, optimizing purchase behavior should be possible through insights on 

the link of clicks with purchase behavior per user type. Therefore, we conjecture that at the underlying 

link between shopping type affiliation and purchase propensity is manifested in the navigation path the 

user takes in the way that the path unveils the user’s underlying search goal. The empirical results and 

insights from our study can help marketers and advertisers to better manage their consumer traffic 

online by understanding the role advertising channel choice plays in e-commerce purchase and post-

purchase behavior in order to substantially enhance the customer experience online, e.g., by personal-

izing the website design and more targeted and relevant advertising campaigns. 

From a marketer and advertiser standpoint, off-site advertising click path data offers multiple opportu-

nities to generate insights but has not been looked at as part of a consumer behavior study (Bucklin 

and Sismeiro, 2009). Therefore, we follow several calls to use clickstream data to infer shopping goals 

of users—finding out if the user is planning to make a purchase, or just in for exploratory reasons in 

order to understand consumer decision-making (Bucklin et al., 2002; Rohm and Swaminathan, 2004). 

In order to leverage the wealth of available information, big data needs to be managed intelligently 

requiring new methods and diagnostics to filter out the relevant information to subsequently turn event 

data into valuable insights for marketing decision-making (Leeflang et al., 2014; Lilien, 2011), allow-

ing e-commerce firms to make more accurate and predictive forecasts in order to more profitably 

target and market to customers. 

Our research contributes to theory and practice in at least three ways. First, we extend the literature on 

the interlink between consumer behavior and advertising effectiveness research (Ganesh et al., 2010; 

Moe, 2003; Rohm and Swaminathan, 2004) by presenting a novel shopping type framework devel-

oped by and interdisciplinary metrics from clickstream data. Second, we generate new empirical con-

sumer insights through development of significant shopping type clusters, and provide strong evidence 

for clear link with transaction-related metrics, extending related prior studies on effects on purchase 

(Van  den  Poel  and  Buckinx,  2005;  Sismeiro  and  Bucklin,  2004), and post-purchase behavior 

(Bechwati and Siegal, 2005; Kang and Johnson, 2009). Third, our large-scale data-driven approach 

shows how to develop new methods to analyze existing online advertising channel data to generate 

consumer insights for individual-level and dynamic marketing decision-making. 

2 Conceptual Framework and Shopping Typology Development 

We seek to advance purchase decision-making theory as part of the overall consumer journey online in 

operationalizing consumer shopping involvement and user search behavior to develop specific 

shopping types by empirically analyzing patterns of individual-level off-site clickstream data. More 

concretely, we analyze how consumers react to advertising appeals in different advertising channels 

and collect all revisits to an online retailer's website within a 30-day timeframe preceding a potential 

purchase or non-purchase decision (see Data section for more detailed information on the definition 

off-site clickstream). For illustrative purposes, Figure 1 presents an example of an off-site clickstream. 
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Figure 1. Example of an off-site clickstream 

In this example, the first touch point was a click on an affiliate link at t1, which subsequently forward-

ed the user to the advertiser’s landing page or product detail page. At t2, the user clicked on a display 

retargeting banner advertisement (content of the ad based on previous browsing behavior on the web-

site), before searching for a branded keyword string on a search engine and clicking the respective 

sponsored search advertisement on which the e-commerce firm was bidding on. The user continues his 

shopping process on various other channels until ultimately choosing whether to purchase or not at t8. 

The remainder of this chapter is structured as follows, we describe our online consumer shopping type 

framework based on two dimensions and present the respective theoretical grounding thereof. After 

that, we specify the characteristics of the emerging shopping types before discussing the expected off-

site clickstream patterns and the anticipated effect on purchase and post-purchase behavior. 

2.1 Online Shopping Motivation 

Consumer behavior literature highlights the importance to better understand online shopping motiva-

tion for effective marketing campaigns (Bettman et al., 1991; Janiszewski, 1998). Each consumer runs 

through multiple decision stages and browses through various online channels, e-commerce websites 

and multiple brands and product detail pages on his path to purchase (Hauser and Wernerfelt, 1990). 

However, to the best of our knowledge, little attention has been paid to the inherent intention of con-

sumers to select specific advertising channels to access online shops. 

In this context, the question concerning how shopping goals can be conceptualized using real data 

forms a major challenge to scholars and practitioners and has not been researched much apart from a 

few studies (Klapdor et al., 2015; Moe, 2003; Puccinelli et al., 2009). Existing research on consumer 

shopping goals looks at consumers’ general orientation and specific goals, mostly based on experi-

mental or survey data (Ganesh et al., 2010; Rohm and Swaminathan, 2004). A key element of this pa-

per is exploring the possibilities on how to uncover search types of browsing and shopping behavior 

by defining and analyzing off-site clickstream metrics to offer new insights into consumer behavior 

online. 

To address this issue, we follow the general research framework from Moe (2003), which was just 

recently replicated for off-site clickstream data by Schellong et al. (2016). Furthermore, we use a 

much larger clickstream data set and combine it with all relevant purchase and post-purchase infor-

mation. 

2.2 Typology Dimensions 

The conceptual framework of our typology is based on two dimensions, consumer shopping 

involvement, and consumer search behavior. 
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2.2.1 Shopping Involvement 

Consumer shopping involvement reflects the degree to which the user is involved with the selected 

website helping to form his consideration set, pursuing information acquisition activities about a brand 

or product while considering alternatives before making a purchase or non-purchase (Puccinelli et al., 

2009; Zaichkowsky, 1985). “Depending on their level of involvement, individual consumers differ in 

the extent of their decision process and their search for information” (Laurant and Kapferer, 1985). 

Therefore we recap, the amount of information necessary to satisfy a purchasing or information goal is 

determined by the shopping involvement level.  

The broad and popular term referred to as engagement is a phenomenon that subsumes varied forms of 

user interaction and involvement with media and is constituted of psychological as well as behavioral 

elements (Brodie et al., 2011; Mollen and Wilson, 2010). Calder et al. (2009) argue that engagement is 

antecedent to shopping behavior outcomes such as usage, affect, and responses to advertising. Our 

research on involvement most prominently falls into the classification of website engagement, or more 

concretely engagement employing internet websites, and shopping involvement is a dimension of 

website engagement (Hyder, 2015). Involvement and more specifically purchase-decision involvement 

can be defined as a state of mental readiness that influences the ‘‘the extent of interest and concern 

that a customer brings to bear on a purchase decision task” (Mittal, 1989, p. 150). Therefore, we use 

visits and the duration of each clickstream as a proxy to elicit the level of involvement per shopping 

type. 

2.2.2 Search Behavior 

Following Janiszewski (1998), we differentiate between goal-directed and exploratory search as forms 

of consumer search behavior.  

That’s why we introduce a unique and interdisciplinary approach to operationalize between goal-

directed and exploratory search in integrating information retrieval insights to categorize advertising 

channels for the clustering analyses. Based on Broder's (2002) work on classifying web search queries 

regarding the users’ degree of goal-direction, we follow a similar approach as Klapdor et al. (2015) 

and categorize advertising channels in informational or navigational (see metrics section for more de-

tails on the classification per channel). This categorization matches to what we want to extract out of 

advertising channel choice patterns – the specific user's goal when entering an e-commerce website in 

order to categorize shopping types.  

To summarize, the level of shopping involvement (frequency and horizon) and search behavior in the 

form of type of channels used (navigational or informational) characterize the framework of shopping 

types. We distinguish between four specific shopping types: Buying, Searching, Browsing, and 

Bouncing. 

Table 1 summarizes the framework of online consumer shopping types. 

Consumer Shopping 

Involvement Directed Exploratory

High Involvement Buying Browsing

Low Involvement Searching Bouncing

Consumer Search Behavior

 

Table 1. Online consumer shopping types 

2.3 Shopping Types 

In clustering shopping types of users it is important to note that we segment modes rather than people; 

given that a consumer can have multiple shopping modes or types over time - e.g., a consumer can be 

a Browsing Type in one month and a Buying Type in the next month. Based on the theoretical deriva-
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tion of both dimensions from our shopping type framework, we expect the selected off-site 

clickstream metrics (consumer involvement and search behavior) to show the following sign charac-

teristics as presented in Table 2. 

Search

Behavior

Post-Purchase 

Behavior

Channel

Involvement

Frequency

Channel

Involvement

Horizon

Channel

Focus

Conversion

Rate

Basket

Size Return

High/Mid/

Low

Short/Mid/

Long

Navigational/

Informational

High/Mid/

Low

High/Mid/

Low

High/Mid/

Low

Buying Type High Short Navigational High High Low

Searching Type Mid Mid Navigational Mid Mid Mid

Browsing Type Mid Long Informational Mid High Low

Bouncing Type Low Short Informational Low Mid Mid

Shopping

Involvement

Purchase

Behavior

 

Table 2.  Expected Online Shopping and Purchase Pattern 

When visiting the e-commerce store, the “Buying Type” (Directed Search/High Involvement) has a 

specific shopping goal in mind, namely obtaining information regarding a product or the need to pur-

chase it in a relatively short timeframe. Being a “Buying” shopping type is also typified by frequent 

involvement within a rather short time horizon, collecting the most relevant shopping information to 

satisfy the need to make a purchase or non-purchase decision.  

Similar to the aforementioned Buying Type, the “Searching Type” (Directed Search/Low Involve-

ment) is also goal-directed. Not as focused as the Buying Type, the Searching Type is in the process of 

forming a consideration set in order to satisfy his information or shopping need, with the difference in 

the level of involvement. However, the Searching Type is not as focused, being in the process of form-

ing a consideration set to satisfy his information or shopping need, albeit with a different involvement 

level: the Searching Type is involved with a medium frequency during a mid-horizon.  

The “Browsing Type” (Exploratory Search/High Involvement) differs from both previous types in the 

way that Browsing is characterized by an exploratory search behavior. Accordingly, the search behav-

ior is rather unplanned and without a specific utilitarian goal in mind, which can also be called experi-

ential shopping: the online shopping experience by themselves is enjoyment or entertainment. Fur-

thermore, a Browsing Type tends to focus more on informational channels, given that they offer more 

inspiration from a broad set of e-commerce websites.  

The “Bouncing Type” (Exploratory Search/Low Involvement) is exploratory in the way that if en-

gaged in a shopping process it is very much likely that the channels used are unfocused and that his 

involvement level is low. Bouncing translates into a single-visit with no further interaction or returns 

to the e-commerce website. Another explanation for the occurrence of a Bouncing Type is, as the 

name states, consumers that come to the site and leave the site (bounce) right after - this can be due to 

the fact that the consumer didn’t find what he was browsing for. 

2.4 Expected Effects on Transaction-Related Behavior 

Our data set allows us to connect each individual off-site clickstream with the resulting transaction 

events in case of a purchase. Most existing research on advertising effectiveness uses click-through-

rates on advertising campaigns as success variable, our path data allows us to further monitor if, when 

and to which degree advertising appeals lead consumers to convert at the website. Furthermore, we 

analyze post-purchase events in the form of return behavior.  

2.4.1 Purchase Behavior Effects 

Based on purchase decision-making theory several studies argue that there is profound evidence that 

frequent visitors to a store will also eventually make a purchase at some point in time (Laurant and 

Kapferer, 1985; Murray and Häubl, 2007). Janiszewski (1998) renowned works on search behavior 
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theory analyzing store routines also follows this argumentation. Therefore, we argue that the more fo-

cused a consumer’s search process the higher the likelihood to purchase. To map this to our shopping 

types, we would expect the Buying Type to have the highest conversion rate due to having a purchase 

goal in mind when engaging with the website, followed by the Searching Type that is also goal-

directed. The Browsing Type undergoes more exploratory shopping should have a lower conversion 

rate because they do not have a purchasing goal in mind but non-zero due to the occurrence of infre-

quent impulse purchases. In sum, we argue the more directed a shopping type, the higher the conver-

sion propensity. Regarding the size of the basket, in terms of items and order value, the argumentation 

follows consumer shopping involvement theory (see theoretical grounding in typology dimension sec-

tion). We speculate that the higher the level of shopping involvement, the larger the basket size. Buy-

ing and Browsing shopping types should have higher order sizes than the Searching Type. For the 

Browsing Type this is due to the fact that if a purchase occurs as part of the consumer journey, it is 

likely to be an unplanned or impulse purchase (Koufaris et al., 2002). Hedonistic shopping leads to 

increased irrational purchasing, especially for non-utilitarian goods like fashion (Childers et al., 2001).  

2.4.2 Post-Purchase Effects 

Bechwati and Siegal (2005) examine the link between pre-choice process and post-choice product 

returns and find clear evidence that the generation of different thoughts (nature of cognitive responses 

and the type of disconfirming information) at the pre-choice stage result in a different likelihood for 

product returns. Adding to this line of argumentation Kang and Johnson (2009) posit in their study that 

purchases who are not accompanied by a rational in-depth evaluation before making a purchase, called 

impulsive or hedonistic consumption, have a higher likelihood to experience post-purchase regret and 

hence higher return propensities compared to consumers who undergo an extensive evaluation of al-

ternatives before making a purchase or non-purchase. Therefore we argue that consumers who 

undergo a thorough brand and product consideration process – depicted in our study by shopping in-

volvement frequency and horizon – will try to make sure that their purchase decision has been con-

ducted in a sound and systematic way in order to decrease the possible reversal of their buying deci-

sion (Laurant and Kapferer, 1985). In other words, high shopping involvement leads to less frequent 

product returns compared to consumers with low or mediocre shopping involvement. In regards to 

shopping types we would expect the Buying Type to have a lower, and the Searching Type a higher 

average return rate and amount of goods returned. 

3 Data 

This research paper makes use of a large-scale data set covering almost 30 million clickstream-based 

on over 81 million advertising channel clicks provided by our partner firm, a leading European online-

only fashion retailer (context setting). Our research partner utilizes a broad range of available online 

channels – most notably display reach, display retargeting, paid search (SEM), organic search (SEO), 

comparison, affiliate, social networks and e-mail campaign links. 

The unit of analysis of our study are off-site clickstream journeys, which are based on granular cookie 

information and represent the sequence of advertising channel clicks through which consumers visit 

and convert at the firm’s website (Li and Kannan, 2014; Nottorf and Funk, 2013). In other words, off-

site clickstreams represent the chronological sequence of advertising channel choice clicks that lead to 

subsequent visits on the respective website(s) under investigation (for all users, not just existing cus-

tomers). In this context “Off-site” does not mean across-site data - information of users between and 

on other (potentially competitive) sites (Bucklin and Sismeiro, 2009). We define a converting off-site 

clickstream as follows: If the consumer has not yet placed an order within a 30-day timeframe 

(average cookie lifetime and industry-standard), every subsequent visit within this timeframe is an 

extension of the initiated shopping process. If the user journey ultimately leads to a purchase, it forms 

a converting clickstream, as reflected by 5.6% of cases in our sample (not to be mistaken with the 

“standard” conversion rate metric, which is usually based on visits, and should, therefore, be lower). 
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By contrast, if no conversion occurs within a 30-day period (from the first advertising channel click), 

all visits made within this period represent a non-converting clickstream. 

The large clickstream data set was obtained from the retailer's web server log file database that directly 

captures each and every click for all web properties of the partner firm. Clickstream data are stored in 

semi-structured website log files and include details such as timestamp of each request, cookie infor-

mation that uniquely identifies the website visitor (e.g., IP information and internet provider), the 

source link with information on the respective advertising type clicked (e.g., keyword information 

from search engine marketing), and the destination URL. The web server information then needs to be 

matched with the respective channel information characteristics. 

The extensive data set consists of a total of 81,412,696 rows of advertising channel clicks resulting in 

29,939,213 off-site clickstream journeys. The observation period covers the full months of March and 

April of 2014, therewith covering the most non-seasonal months of the year (the month March and 

April do typically not hold any large sale or new season stock periods). Since our research partner is 

active in most European countries, our data set is based on advertising consumer clicks from Germa-

ny, Italy, Poland, Sweden and the United Kingdom. 

4 Consumer Journey Metrics and Methodology 

4.1 Categorizing Shopping Behavior 

Because consumers have different reasons for visiting a retail site, it is important to understand and 

account for various patterns in the relationship between visiting and purchasing (Moe and Fader, 

2004). Studies have shown that in many cases, consumers build up to a purchase (Moe, 2001; Putsis 

and Srinivasan, 2014). In other words, consumers will make a series of non-purchase visits before 

making a purchase visit. In order to find patterns in clickstream data, we follow Schellong et al. (2016) 

and define several clickstream metrics to operationalize consumer shopping behavior in order to link 

shopping types of consumers with purchase and post-purchase behavior. 

Table 3 provides a description of the metrics used. 

Metrics Unit Description of Metrics

Involvement Frequency metric

CLICKS in # clicks Total number of channel clicks to the e-commerce website

Involvement Horizon metrics

TOTDURATION in days Time between first and last channel click of customer clickstream journey

CLICKGAP in days Average time of gaps in between each visit of clickstream journey

Channel Focus metrics

NAVISHARE in % Share of navigational channel clicks as part of clickstream journey

INFOSHARE in % Share of informational channel clicks as part of clickstream journey

Channel Variety metric

UNIQUECH in # Number of different channels used during clickstream journey

Conversion metric

CONVERSION in % Indicator variable: "1" if CS ends with a purchase, "0" otherwise

Purchase Behavior metrics

SOLDITEMS in days Number of items purchased per order

GROSSSALES in days Total value purchased per order

Post-Purchase Behavior metrics

RETURN in % Indicator variable: "1" if order contains at least one returned item,"0" otherwise

RETURNEDITEMS in # items Number of items returned per order

GROSSRETURN in € value Total value returned per order

Onsite metric

PURCHASESESSIONDUR in min Session time: Time between purchase channel click and actual purchase time  

Table 3.  Summary of clickstream measures 
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We operationalize shopping involvement via frequency and horizon metrics, therewith providing 

insights in the involvement level of consumers based on the number of clicks and length of each click-

stream. This offers a strong understanding of the individual’s involvement level with the e-commerce 

website for the specific time period. CLICKS reflect the frequency of clicks (or visits) per clickstream, 

independent of the type of channels used. TOTDURATION is the overall length of the clickstream, up 

to 30 days in duration. CLICKGAP another involvement metric represents the average time in be-

tween each click, also called intra-visit times. Taken together the involvement metrics reveal the con-

sumer’s shopping involvement level and information acquisition motivation. The High/Mid/Low scale 

in Table 2 reflects the level of involvement, ranging from high to low. 

Next to the level of shopping involvement, we depict search behavior based upon the user’s shopping 

goal via the respective choice of advertising channel, thus enabling us to identify directed vs. explora-

tory shopping types. While our research partner uses 11 different advertising channels (including di-

rect type-in), using each channel as a separate variable would make the calculations complex and the 

number of attribute variables (columns) would grow exponentially (course of dimensionality). Based 

on Anderl et al. (2016) recent work we consider and control for most existing channel-categorizations 

that have been used in multi-channel advertising research include contact origin, separating between 

customer- and firm-initiated channels (Haan et al., 2013; Li and Kannan, 2014), and branded vs. ge-

neric channels (Jansen et al., 2011; Rutz and Bucklin, 2012). However, we rely on the classification 

logic developed in information retrieval research on user intention and purchase decision-making theo-

ry by Broder (2002). Seeking to understand the underlying goal of search, he proposes to categorize 

web search according to navigational and informational queries. Applying this approach to our data set 

to deduce users’ goals, we define a channel interlink with search goal affiliation – classifying every 

advertising channel as navigational or informational. 

Table 4 provides an overview of the online advertising channels and respective goal categorization. 

Shopping Goal

Categorization

Channel

Navigational vs.

Informational

CRM (E-Mail, etc.), Display - Retarget, DTI (Direct Type-In), SEM Branded, SEO Branded, Social Media Owned Navigational

Affiliate, Comparison, Display - Reach, SEM Non-Branded, SEO Non-Branded Informational

Note. No Offline Channels (such as TV or Print) included  

Table 4. Goal categorization of online marketing channels 

The share of advertising channel clicks that are navigational or informational per clickstream is re-

flected by the metrics NAVISHARE for navigational clicks and INFOSHARE for informational 

clicks, describing the degree of goal-direction in terms of website choice per clickstream. If the con-

sumer is certain about his website choice as part of his shopping process, NAVISHARE should be 

higher, whereas INFOSHARE should be higher if the consumer has a broad consideration set rather 

than a clear website goal in mind. 

In order to validate the link of off-site clickstreams with purchase behavior, we were able to collect 

information if an actual CONVERSION occurred within the respective time period. Further, if a pur-

chase has been made we have all the information regarding the amount of items sold (SOLDITEMS) 

and value (GROSSSALES) per order. To see how our shopping type clusters relate to post-purchase, 

specifically return behavior, we know if any item of an order has been returned (RETURN), how 

many items (RETURNEDITEMS) and for how much value (GROSSRETURN). 

Table 5 shows the descriptive statistics for each selected clickstream metric. 
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Metrics Unit Mean SD Min Max

Involvement Frequency metric

CLICKS in # clicks 2.770 4.870 1.000 8954.000

Involvement Horizn metrics

TOTDURATION in days 4.727 8.746 0.000 30.000

CLICKGAP in days 1.136 2.408 0.000 15.000

Channel Focus metrics

NAVISHARE in % 0.511 0.469 0.000 1.000

INFOSHARE in % 0.364 0.449 0.000 1.000

Channel Variety metric

UNIQUECH in # 1.488 0.928 1.000 12.000

Conversion metric

CONVERSION in % 0.057 0.232 0.000 1.000

Purchase Behavior metrics

SOLDITEMS in # items 1.000 0.932 0.000 17.929

GROSSSALES in € value 1.000 0.950 0.000 34.079

Post-Purchase Behavior metrics

RETURN in % 1.000 0.866 0.000 1.749

RETURNEDITEMS in # items 1.000 1.403 0.000 28.345

GROSSRETURN in € value 1.000 1.427 0.000 57.582

Onsite measures

PURCHASESESSIONDUR in min 26.739 332.139 0.000 42927.700

Note: Full dataset comprises 29,392,629 clickstreams based on a total of 81,412,696 clicks from March and April of 2014.

For the clustering procedure all non-binary involvement and channel metrics have been winsorized (5% of outliers on both ends 

have been replaced with the value of the 95%-quantiles respectively). All purchase and return behavior metrics have been 

indexed with the mean value (=1) for each variable respectively.  

Table 5.  Descriptive statistics of clickstream, purchase and return behavior 

4.2 Methodology 

We conduct a data-driven analysis of the customer online journey by understanding the role advertis-

ing channel choice plays in e-commerce purchase behavior. The goal of this paper is to identify and 

analyze online consumer shopping type patterns and their effects on transaction behavior based on 

search behavior and involvement metrics. To address this, we decided not to apply a predictive model-

ing or data mining approach to our clickstream data set, since framework and metric development are 

an important step by itself. Hence, we decided to use cluster analysis for our research, in particular, we 

use k-means clustering algorithm for our large clickstream data set. We selected clustering for several 

reasons: a) clustering methodology is frequently used in marketing research, in particular in the field 

of segmentation and behavioral studies (Wedel and Kamakura, 2000) and remains a useful tool in 

online consumer behavior research – especially in the field of clickstream research (e.g., Moe 2003; 

Dias and Vermunt 2007), b) k-means partitioning based clustering works especially well for large data 

sets (Wedel and Kamakura, 2000), and c) we address the call from practitioners as well as marketing 

research to develop new and rather simple methods to analyze online data for direct implementation 

(Lilien, 2011). Most importantly, we build on and extend the proven concept initially developed by 

Moe (2003), who has developed an approach using clustering to segment onsite behavior patterns. 

Based on our large data set (almost 30 million clickstreams), we apply k-means partitioning-based 

cluster analysis to segment shopping types based on advertising channel choice metrics. Cluster meth-

odology segments search types based on a set of specified clickstream variables – in our case 

CLICKS, TOTDURATION, CLICKGAP, NAVISHARE, INFOSHARE, and UNIQUECH. All values 

are winsorized to set all outliers to the 95%-percentile in order to correct for both ends of the data but 

keep the values in the data set. Furthermore, all non-binary variables are standardized for the cluster-

ing procedure using z-scores, in order to have similar significance in the clustering procedure. We ob-

served no multicollinearity issues between the variables (no correlation larger than 0.6). The full corre-

lation and covariance tables are available upon request. 
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K-means, being an a priori clustering method needs a pre-defined number of clusters before running 

the segmentation (Ter Hofstede et al., 2002). For the segmentation process, we use the clustering algo-

rithm developed by Hartigan and Wong (1979). To come up with the most optimal number of clusters 

we run the algorithm 20 times for a range of realistic number of cluster solutions and compare the lo-

cal minima values of the sum of squared distance errors (SSE), and keep the solution providing the 

best fit to the data (Wedel and Kamakura, 2000). We plot the values and look for the “elbow” criteri-

on—number of clusters at which the SSE decreases abruptly—indicating the optimal number of clus-

ters (Wedel and Kamakura, 2000). Figure 2 visualizes the individual results per number of clusters, 

which nicely shows the trend of SSE over a different number of clusters, providing the graphical basis 

for the selection of the 4-cluster solution. 

 

Figure 2. Plot of within cluster variance of cluster solutions 

In order to research the link with transaction-related variables we calculate the mean values per cluster 

of the final cluster solution and compare the differences (incl. robustness checks) – this process is 

called profiling (Wedel and Kamakura, 2000). For the clustering procedure, we use the statistics soft-

ware R Version 3.0.2 (via RStudio Version 0.99.486) and run the calculations in a AWS EC2 cloud-

based instance set-up, as available computational resources locally were not enough in running the 

statistical calculations on our big data click-stream data set in an efficient manner. 

5 Results 

Table 6 shows the optimal 4 cluster solution. 

Cluster Unit

1

BUYING

2

SEARCHING

3

BROWSING

4

BOUNCING

in CS 2,942,244 3,936,826 3,318,507 19,195,052

in % 10.0% 13.4% 11.3% 65.3%

Involvement Frequency metric

CLICKS in # clicks 7.941 3.248 3.176 1.196 ***

Involvement Horizn metrics

TOTDURATION in days 19.851 2.476 19.656 0.160 ***

CLICKGAP in days 2.187 0.746 5.622 0.066 ***

Channel Focus metrics

NAVISHARE in % 0.710 0.596 0.597 0.449 ***

INFOSHARE in % 0.287 0.393 0.362 0.370 ***

Channel Variety metric

UNIQUECH in # 2.690 2.142 1.813 1.000 ***

Kruskal-Wallis-

Test*
N

Note. N = 29,392,629. All shopping involvement and channel metrics were used for the k-means clustering procedures. All non-binary 

measures have been winsorized (5% of outliers on both ends have been replaced with the value of the 95%-quantiles respectively). For the 

clustering procedures all metrics have also been scaled (centering variables and creating respective z-scores) in order to guarantee 

standardized variable distances for the clustering algorithm.

* = p < .05, ** = p < .01, *** = p < .001  

Table 6. Result of Cluster Solution 
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With the cluster solution we can answer the key research question if there are distinct search character-

istics that can be found in advertising channel choice data indicating the predominant shopping type. 

These findings build initial evidence that off-site clickstream data can greatly contribute to the under-

standing of individual consumer behavior online. Findings on distinct search characteristics are also 

significant enough to assume that off-site clickstream data are an excellent source for real-time user 

goal identification. The shopping types and respective patterns do overall validate our framework pre-

sented in Table 1. 

The Cluster 1 “Buying Type” shows the highest number of clicks (7.9) and the highest share of navi-

gational channels (71%), with average clickstream duration of almost 20 days. This is in line with our 

expected pattern except for the shopping involvement horizon which was estimated to be comparably 

lower since a directed shopping type has a clear goal in mind and wants to satisfy his need in a rather 

short timeframe. A possible explanation for this could be that most Buying Types are frequent cus-

tomers who are loyal to the website and continuously fill their wish list until they at some point 

convert on the website on a regular basis (19.4% conversion rate – see Table 7 for all purchase ef-

fects). 

The Cluster 2 “Searching Type” utilizes on average 3.2 advertising channels as part of their click-

stream journey during a timeframe of 2.4 days. With a utilitarian task in mind gathering information to 

narrow the consideration set process with more navigational (0.6) than informational channels (0.4).  

The Cluster 3 “Browsing Type” being an exploratory shopping mode with a rather long average click-

stream time period (19.6), converting or not converting on an average number of 3.1 visits. The 

Browsing and Searching Types are quite similar aside from the length of the clickstream (19.6 Brows-

ing compared to 2.4 days for the Searching Type). This points to a possible explanation that the classi-

fication between the two is more of a continuum rather than a binary decision. 

The Cluster 4 “Bouncing Type” which covers almost two-thirds of all clickstreams of our study 

(65.3%) has the lowest level of involvement (frequency and duration) compared to the other Types as 

well as the lowest navigational share (0.4) and by far the lowest share of converting clickstreams 

(2.6%). This cluster shows similar characteristics as an “Others” cluster and most likely entails users 

that regularly delete cookies which makes it impossible to track journeys or consumers. 

To check for the robustness of the cluster solution we run a non-parametric Kruskal-Wallis-Test (Hol-

lander and Wolfe, 1973) for each variable with the result of no indication of non-significance. After 

evaluating the results of the cluster solution we analyze the effects of the four shopping types in re-

gards to transaction-related variables by profiling the cluster solution with the respective purchase and 

post-purchase metrics. Table 7 shows the cluster results for the shopping types by transaction-related 

variables. 

Cluster Unit

1

BUYING

2

SEARCHING

3

BROWSING

4

BOUNCING

in CS 571,370 490,694 387,419 222,301

in % 34.2% 29.4% 23.2% 13.3%

Conversion metric

CONVERSION in % 0.194 0.098 0.067 0.026 ***

Purchase Behavior metrics

SOLDITEMS in # items 1.044 0.932 1.107 0.954 ***

GROSSSALES in € value 1.048 0.950 1.076 0.949 ***

Post-Purchase Behavior metrics

RETURN in % 1.026 0.957 1.070 0.971 ***

RETURNEDITEMS in # items 1.069 0.901 1.158 0.927 ***

GROSSRETURN in € value 1.083 0.920 1.117 0.914 ***

Onsite measures

PURCHASESESSIONDUR in min 0.851 0.921 1.079 1.200 ***

Kruskal-Wallis-

Test*
N (CONVERSION = 1)

Note. N = 1,671,784. All purchase and return behavior metrics have been indexed with the mean value (=1) for each variable respectively.

* = p < .05, ** = p < .01, *** = p < .001  

Table 7. Result of cluster solution profiling 
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We can confirm our assumption regarding the positive correlation between goal-directed search be-

havior and conversion propensity, which is in line with Moe (2003). The directed shopping types Buy-

ing and Searching show higher conversion rates (19.4% and 9.8% respectively) compared to the ex-

ploratory shopping type Browsing (6.7%). In regards to the basket metrics, number of items and value 

of order, we argue that the higher the level of involvement the larger the average shopping cart of cus-

tomers. We find the same pattern in the results: Buying and Browsing show higher order values 

compared to the Searching and Bouncing Types. 

Regarding post-purchase behavior, the data rejects our argumentation based on findings from Bechwa-

ti and Siegal (2005) and Kang and Johnson (2009) – the higher the level of involvement per shopping 

type the lower the return probability of consumers. Based on our results the Browsing Type has the 

highest percentage of returns (1.07 – values indexed), followed by the Buying (1.03) and Searching 

Type (0.96), therewith opposing our initial assumption based on shopping involvement theory. We 

argue that the findings can potentially be attributed to the effect that impulse purchases satisfying he-

donic needs quickly lose their value after receiving the order, and eventually be returned to retailers 

(Kang and Johnson, 2009; Rook, 1987). 

6 Implications and Discussion 

This paper delivers valuable input for academia and practice and adds to the fields with at least three 

contributions: First, our results offer e-commerce firms consumer behavior insights to better manage 

customer journeys as well as increase online marketing effectiveness. We are the first study using off-

site clickstream data outside of advertising effectiveness and attribution studies. Therewith serving as 

an initial application example and building a starting point for further research on optimizing consum-

er journey touch points. 

Second, we extend the existing literature on diverging effects on purchasing behavior depending on 

the visiting pattern (Moe and Fader, 2004; Montgomery et al., 2004; Sismeiro and Bucklin, 2004) by 

presenting our empirical results: We find that shoppers with directed search behavior show higher pur-

chasing propensities, the same is true for shopping types with higher level of shopping involvement. 

Our results further reveal, surprisingly, that shopping types with a high level of involvement show 

higher levels of returns compared to the other shopping types. 

Third, despite the potential clickstream data analysis holds for research and practice in marketing, 

these data are almost surely being underutilized (Bucklin and Sismeiro, 2009; Kauffman et al., 2012). 

We show that advertising channel choice behavior is a valid and unexplored source to generate con-

sumer insights – this should stimulate more research with consumer journey data. Furthermore, we 

contribute to the request in marketing research to develop new and rather simple methods to analyze 

online data for direct practicability – therewith convincing practitioners without in-depth statistical 

knowledge to implement the methods and actually apply the insights (Lilien, 2011). 

As our work is based on a single-company research approach, studies using data from different com-

panies, industries or customer groups would be of high interest. Enhancing the understanding of the 

consumer journey would further be the opportunity to investigate clickstream activities by product 

characteristics (e.g., search or experience goods) or product price. Furthermore, understanding if there 

are cross-cultural effects in online advertising click behavior would help multi-national companies in 

forming their international online marketing strategies. After having identified shopping types of con-

sumers and understanding the link with transaction-related behavior, a logical next step for e-

commerce companies would be to run A/B tests to find out which marketing activities work best for 

each type and adjust their automated marketing systems (e.g., online marketing real-time bidding sys-

tems) and dynamic website systems accordingly. 
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