
RESEARCH PAPER

On the Value and Challenge of Real-Time Information
in Dynamic Dispatching of Service Vehicles

Marlin W. Ulmer • Leonard Heilig • Stefan Voß

Received: 9 June 2016 / Accepted: 1 February 2017 / Published online: 3 April 2017

� Springer Fachmedien Wiesbaden 2017

Abstract Ubiquitous computing technologies and infor-

mation systems pave the way for real-time planning and

management. In the process of dynamic vehicle dispatch-

ing, the adherent challenge is to develop decision support

systems using real-time information in an appropriate

quality and at the right moment in order to improve their

value creation. As real-time information enables replanning

at any point in time, the question arises when replanning

should be triggered. Frequent replanning may lead to

efficient routing decisions due to vehicles’ diversions from

current routes while less frequent replanning may enable

effective assignments due to gained information. In this

paper, the authors analyze and quantify the impact of the

three main triggers from the literature, exogenous customer

requests, endogenous vehicle statuses, and replanning in

fixed intervals, for a dynamic vehicle routing problem with

stochastic service requests. To this end, the authors gen-

eralize the Markov-model of an established dynamic

routing problem and embed the different replanning trig-

gers in an existing anticipatory assignment and routing

policy. They particularly analyze under which conditions

each trigger is advantageous. The results indicate that fixed

interval triggers are inferior and dispatchers should focus

either on the exogenous customer process or the endoge-

nous vehicle process. It is further shown that the exogenous

trigger is advantageous for widely spread customers with

long travel durations and few dynamic requests while the

endogenous trigger performs best for many dynamic

requests and when customers are accumulated in clusters.

Keywords Dynamic vehicle routing � Dynamic

dispatching process � Stochastic requests � Real-time

information � Replanning trigger

1 Introduction

In the last years, the expectations on logistic and transport

service providers (SPs) have increased. Customers demand

transparent, reliable, inexpensive, fast, and agile services

(see, e.g., Wilding et al. 2012; Gligor and Holcomb 2014;

Lowe et al. 2014). Amongst others, these services com-

prise transportation of parcels (see, e.g., Ulmer et al. 2016),

passenger transportation (see, e.g., Mulley and Nelson

2009), and house visits of physicians or technicians (see,

e.g., Chen et al. 2016). To enhance customer satisfaction,

some SPs allow customers to place and update service

requests at any point in time, e.g., via mobile phones (see,

e.g., DHL 2013). On the operational level, SPs dispatch a

fleet of vehicles to fulfill the requests. Therefore, new

requests need to be dynamically assigned to vehicles con-

sidering the economic and ecologic implications of deci-

sions (see, e.g., Hilpert et al. 2013). Since the competition
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in related markets is often high, effective routing and

assignment decisions may lead to a valuable competitive

advantage with respect to responsiveness and service costs.

In their routing and assignment decisions, dispatchers

nowadays can draw on real-time information about new

requests and the vehicle statuses and locations. Savelsbergh

and Van Woensel (2016) state that ‘‘embedding and

effectively using high-quality information [...] in decision

support (systems)’’ is ‘‘critical, but nontrivial’’. For the

dispatching of vehicles, dispatchers need to determine

suitable times to replan while considering a tradeoff

between efficient routing and effective assignments. Fre-

quent replanning may allow for efficient routing since

vehicles can be instantly diverted from the current desti-

nation. Less frequent replanning may lead to an accumu-

lation of requests and more effective assignment decisions.

The resulting questions are summarized by Speranza

(2016): ‘‘When should a change in the data imply a rerun of

a model? [...] Which changes in the data make the rerun-

ning of a model beneficial?’’ In this paper, we address these

questions by analyzing the impact of the three most com-

monly used triggers for replanning from the literature:

1. Exogenous customer process Replanning is triggered

by a new customer requesting service. This allows a

diversion of current routes leading to efficient routing.

Still, this may lead to premature assignment decisions

and drivers’ inconvenience because they need to

change their destination while en route.

2. Endogenous vehicle process Replanning is triggered

by the vehicle just finished serving a customer. This

allows exploiting the gain in information leading to

effective assignment decisions. Still, it may lead to

inefficient routing and to customers’ inconvenience

because they may need to wait for information.

3. Fixed intervals Replanning is conducted in predefined

time steps. This can be seen as a combination of the

advantages and shortcomings of the first two triggers.

To analyze the impact of the triggers, we generalize an

existing Markov-model of the dynamic vehicle routing

problem with stochastic service requests (VRPSSR) to allow

decision making based on the three triggers. We further

modify an existing assignment and routing approach by

Ulmer et al. (2016) to the new model. We conduct extensive

experimental studies for varying instance settings. Our

analysis provides the following implications:

• Replanning triggered by exogenous and endogenous

processes are generally superior to planning in fixed

intervals.

• The exogenous trigger is particularly beneficial for

instance settings with widely spread customers and few

dynamic requests.

• The endogenous trigger is particularly beneficial for

instance settings with clustered customers and many

dynamic requests.

Our contributions are as follows. This paper presents the

first structured analysis of how the three major replanning

triggers impact solution quality. To this end, we present a

comprehensive BPMN (Business Process Model and

Notation) model of the dispatching process integrating both

the exogenous customer process and the endogenous

vehicle process. We further generalize both an existing

Markov decision process model and a state-of-the-art

solution method to capture the different decision triggers.

We finally derive guidelines indicating which trigger is

beneficial in which instance characteristics.

The remainder of this paper is structured as follows. In

Sect. 2, we present the BPMN model, define the three

decision triggers, and present a literature classification

based on how the papers approach and model decision

making with respect to these triggers. Section 3 formally

defines the VRPSSR and gives an example of the Markov

decision process model. In Sect. 4, we present the gener-

alization of the assignment and routing approach by Ulmer

et al. (2016). In an extensive computational study, the

approaches are compared in detail for a variety of real-

world sized instances in Sect. 5. The paper concludes with

a summary of the results and directions for future research

in Sect. 6.

2 Vehicle Dispatching

In this section, we present a BPMN model to define the

considered dispatching processes. More specifically, we

depict important activities, information flows between the

individual processes of involved actors (i.e., customers,

dispatchers, and service employees), and the three afore-

mentioned decision triggers. Moreover, this section pre-

sents an overview and analysis of related literature.

2.1 Business Process Model

In this section, we present a vehicle dispatching process

and explain the ways real-time information can be used for

decision making. The business process is highly dependent

on a central information platform and mobile technologies

allowing an ubiquitous connectivity of service employees

and real-time information exchange. In Heilig (2017), a

mobile cloud platform, referred to as port-IO, has been

specifically developed to support such business processes

by implementing interfaces for gathering real-time data

(e.g., position and status of vehicles, traffic data) and

incorporating it into an advanced cloud-based decision

support component used to optimize routes and
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synchronize the results with respective service employees.

For such applications, the analysis of the value of real-time

information and decision making processes is essential for

effective decision making.

As depicted in Fig. 1, the process model represents the

flow of activities and information among customers, dis-

patchers, and service employees using BPMN (for the

latest specifications, the interested reader is referred to

OMG 2013). Before we explain the modes of decision

making in this business process, we describe the main

planning and operational activities.

At any time, customers are able to place and update

service requests. After storing new or updated requests in

the information system of the SP, a process for dis-

patching a fleet of vehicles to fulfill these requests is

triggered. To consider the actual position and status of

service employees (i.e., vehicles), available contextual

data is synchronized between vehicles and the informa-

tion system of the SP. The real-time exchange of infor-

mation is realized through a mobile app executed on the

employees’ mobile device. Moreover, other sources of

information, such as traffic control systems for receiving

current traffic data, may be queried before starting the

planning and optimization of vehicle routes. After

receiving relevant data and running the optimization, the

planned schedules are passed to the respective service

employees via the mobile app. In this regard, two dif-

ferent situations may occur. If a new tour has been

assigned to an available service employee, a new service

process is initiated. Otherwise, in case a current tour

receives updates, the respective process is interrupted to

consider the changes received, allowing an immediate

diversion from the current plan. Note that the updates can

only be received after fulfilling the last service request in

case the employee has already arrived at the respective

customer’s location. Therefore, the process is interrupted

while driving to the next customer or, if the update is

already available, before starting a new trip to the next

customer, as depicted in the BPMN model. After the

service employee has checked new instructions, the

mobile app navigates the service employee to the next

customer according to the new list of requests. Mean-

while, the dispatcher has informed the customer about the

planned completion date and time. These activities are

repeated until all service requests assigned to the vehicle

are fulfilled and the end of the shift is reached.

Fig. 1 BPMN model of the dispatching process
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In the presented business process, three modes of decision

making are possible. We refer to them as exogenous,

endogenous, and interval-based decision making. In the pro-

cessmodel, the associatedprocess events are framed in red.As

we will assess the value of each of those modes in this paper,

we briefly explain the differences in the following.

• X. Exogenous decision making A new or updated

request is immediately handled by the dispatcher. That

means that the dispatcher directly incorporates the new

request by replanning current activities of the fleet.

Once a new plan has been determined, at least one

service employee receives an update of the current plan

to serve additional customers. The main aim of this

mode is to allow an immediate diversion and efficient

routing.

• N. Endogenous decision making Each time the service

employee served a customer (i.e., location specified in

the service request), the dispatcher is informed. In this

moment, the dispatcher checks if new, unassigned

requests exist and, if so, checks whether it is reasonable

to assign them to the service employee. That is, instead

of planning each service request immediately (mode

X), the dispatcher may benefit from a gain of informa-

tion and bundle service requests arrived during the time

the service employee drives to the next customer for

more effective assignments.

• I. Interval-based decision making The dispatching

process is triggered repeatedly after a fixed time

interval. This traditional approach allows to bundle

several service requests which have arrived in the

meantime. The approach neither considers the current

context of the service employees (mode N) nor of

requesting customers (mode X).

In this paper, we focus on the impact of the three replan-

ning triggers and analyze in which environments they are

particularly beneficial. To this end, we focus on a service

employee or a single vehicle, respectively.

2.2 Related Works

In this section, we present related literature on dynamic

dispatching problems with stochastic requests. The work

on dynamic dispatching problems is vast. For an extensive

survey, the interested reader is referred to Ritzinger et al.

(2016), Oyola et al. (2016a, b). The literature is presented

in Table 1. We focus on work with respect to three

dimensions. First, we analyze when replanning is triggered.

We differentiate between fixed intervals (I), the endoge-

nous routing process (N), and the exogenous request pro-

cess (X). We further analyze whether the model allows for

diversion, and whether the solution approach explicitly

incorporates stochastic information to achieve anticipation.

The works differ with respect to the point in time, in

which decisions are triggered. As examples, the approach

in Regan et al. (1996) decides when a new request occurs

analyzing the impact of diversions. In Thomas (2007),

Table 1 Literature

classification
Decision trigger (X, N, I) Diversion Anticipation

Regan et al. (1996) X U

Gendreau et al. (1999) X

Ichoua et al. (2000) X U

Gutenschwager et al. (2003) X, N

Bent and Van Hentenryck (2004) X U

Thomas and White (2004) (N) U U

Chen and Xu (2006) I U

Hvattum et al. (2006) I U

Thomas (2007) N U

Hvattum et al. (2007) I U

Ichoua et al. (2006) N

Angelelli et al. (2009) I U

Ghiani et al. (2009) X U

Branchini et al. (2009) X U

Lorini et al. (2011) X, (N) U

Ghiani et al. (2012) N U

Sheridan et al. (2013) X, N (U) U

Ferrucci and Bock (2015) I U

Ulmer et al. (2016) N U

Our Work X, N, I U U
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decisions are made when the vehicle is located at a cus-

tomer, and in Hvattum et al. (2007), replanning is con-

ducted in intervals of 10 min and 3 h. In Lorini et al.

(2011), the process is usually triggered by new requests

but, since travel times are stochastic, in some cases also by

vehicles’ delay. Gutenschwager et al. (2003) decide

whenever a vehicle idles or when a new customer requests

service.

In many papers, the possibility on diversion is connected

to the decision trigger. Usually, diversion is only possible

in cases where decisions are triggered by new requests or

conducted in fixed intervals. In the special case of Thomas

and White (2004), decision points arise when the vehicle

finishes travel of a street segment. Hence, the decision is

triggered by the endogenous process but diversion is

allowed. Sheridan et al. (2013) consider an assignment

problem for taxis. In this case, replanning is triggered when

a vehicle is free or a new customer request comes in. In

both cases, vehicles may be reassigned. This does not result

in an explicit diversion, indicated by ‘‘ðUÞ’’ in the diver-

sion-field. Ferrucci and Bock (2015) decide about diver-

sions based on the resulting inconvenience of drivers and

customers. Gutenschwager et al. (2003) do not allow

diversion. To avoid inefficient assignments, they develop

strategies for postponing assignments to exploit the gain in

information over time.

Some approaches, such as Gendreau et al. (1999), only

draw on the currently available information in their deci-

sion making without anticipation. Still, anticipation of

future requests improves decision making in many cases.

Anticipation is often achieved by means of approximate

dynamic programming (ADP, Thomas and White 2004;

Thomas 2007; Ghiani et al. 2009, 2012; Ulmer et al.

2016). A multiple scenario approach (MSA) is used to

anticipate requests in Bent and Van Hentenryck (2004);

Hvattum et al. (2006, 2007). The MSA samples a set of

new requests in real-time and evaluates routing plans with

respect to the samples. Ulmer et al. (2016) present an

offline ADP-approach to decide about assignments. Offline

approaches are highly valuable since they conduct the

majority of the calculations before the actual implemen-

tation of the algorithm. This allows an immediate com-

munication either to the drivers or the customers. This is

particularly important to exploit the benefit of diversions.

Hence, we adapt the approach from Ulmer et al. (2016) for

our computational study.

3 Problem Definition: The VRPSSR

In this section, we define the VRPSSR and give an example

of the Markov decision process (MDP) model (Puterman

2014). For the comprehensive MDP model of the VRPSSR,

the interested reader is referred to Sect. A.1 in the

Appendix (available online at http://link.springer.com).

3.1 Problem statement

The required notation for the VRPSSR is depicted in

Table 2. The problem is a generalization of Ulmer et al.

(2016). A vehicle serves customers in a service area A
considering a continuous shift T ¼ ½0; tmax�. The tour starts
and ends in a depot D 2 A. A set of known early request

customers (ERCs) is assumed to be given in t ¼ 0 and must

be served. In the beginning of the day, the dispatcher

determines a planned tour h0 visiting all ERCs. A planned

tour consists of the sequence of customers and the related

arrival times. At every point in time during the shift, the

vehicle’s location l is known.

During the shift, new stochastic late request customers

(LRCs) request service. Notably, the LRCs are unknown

until their time of request. All requests follow a spatial

distribution F mapping customers in the service area A.

The deterministic travel duration between two customers

C1;C2 and/or the vehicle’s current location is defined by

dðC1;C2Þ. The overall travel duration of the current tour h
starting in the vehicle’s current location l is �dðl; hÞ. Each
(unknown) LRC C has a request time tC. The request time

tC follows a temporal stochastic distribution tC �T . Ser-

vice times are neglected meaning that a customer is served

upon arrival of the vehicle.

A replanning is triggered when a new customer request

is received (X), the vehicle served a customer (N), or a

specific point in time is reached (see process description in

Fig. 1). This point in time was previously determined by

the dispatcher and models interval decision making (I). The

dispatcher decides about the set of open LRCs, the update

of the current routing plan, and about the next time a

replanning is considered. Assignment decisions determine,

on the one hand, whether to assign or reject a request, and

Table 2 Notation: Problem Statement

Description Notation

Service area A
Shift T ¼ ½0; tmax�
Depot D 2 A
Planned initial tour h0
Current vehicle location l

Spatial request distribution F
Travel duration between C1;C2 dðC1;C2Þ
Travel duration of location l and tour h �dðl; hÞ
Request time of late request customer C tC

Temporal request distribution T
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on the other hand, to postpone the decision about the

request. If the dispatcher decides to assign the request, it is

possible to change the overall tour h accordingly. A tour is

feasible as long as the duration of the new tour does not

violate the time limit meaning that the vehicle is not

allowed to arrive at the depot later than tmax. Waiting at

customer locations is permitted and diversion from the

current destination of the vehicle is possible. Since the

resources are limited, the dispatcher aims at utilizing the

limited resources to maximize the expected number of

assigned (and therefore fulfilled) LRCs over the day.

3.2 Example: Markov Decision Process

In the following, we illustrate the Markov decision problem

by means of an example. We also introduce the notion of a

post-decision state and the free time budget, since these are

utilized by the solution algorithms. Figure 2 depicts a

decision state Sk, a decision x, and a post decision state Sxk.

The current point in time is tk ¼ 120. The left side of Fig. 2

shows the state Sk. The diamond depicts the current loca-

tion of the vehicle, the circles the customers, and the square

the depot. The light circles fC1;C3;C4g indicate assigned

customers, the dark circles open requests fC2;C5;C6g. The
gray circle C0 indicates the vehicle’s origin and is only

depicted for the purpose of presentation. Overall, six cus-

tomers are currently assigned or open. The vehicle cur-

rently travels to customer C1. The current sequence is

C1;C3;C4;D. The according arrival times are not depicted

in Fig. 2, but presented in the following. The vehicle cur-

rently arrives at customer C1 in 145, at customer C3 in 180,

at customer C4 in 200, and at the depot D in 240. Hence,

the current planned tour is ht�1 ¼ ðC1 : 145;C3 : 180;C4 :

200;D : 240Þ. The overall time limit for this example is

tmax ¼ 360.

For the current tour hk�1, the dispatcher has a free time

budget of bk ¼ 360� 240 ¼ 120 min to assign additional

customers. Decision x now assigns customer C5, rejects C6,

and postpones the decision about C2. The reward of the

decision is 1 since one new customer is assigned. Customer

C6 cannot be included efficiently in the current tour and is

therefore rejected for this vehicle. Customer C5 is close to

the current vehicle location, and the vehicle diverts from

the current destination to serve C5. The assignment deci-

sion for customer C2 is postponed as the customer is not

close to the tour; however, this may be the case later since

the vehicle visits the neighborhood of customers C4 and C2

at later points of time in the shift. The dispatcher can wait

for future developments before deciding about C2. The

resulting post-decision state Sx120 is depicted on the right

side of Fig. 2. The new planned tour hk is only a mild

update of hk�1 by including C5 but maintaining the

remaining sequence. The arrival time for C5 is 130. The

arrival times for C1, C3 and C4 are shifted by the insertion

of C1 by 20 minutes. The new arrival times are 165, 200,

and 220, respectively. The vehicle will currently arrive at

the depot at 260. The updated plan is ht ¼ ðC5 : 130;C1 :

165;C3 : 200;C4 : 220;D : 260Þ. The new free budget is

bxk ¼ 360� 260 ¼ 100 minutes. Finally, the dispatcher sets

the next potential decision point to 130. The next realized

decision point occurs either at time 130 or earlier if a new

customer service request occurs.

Notably, the MDP allows decision making for all three

triggers. This generalization is necessary to apply all

approaches to the same problem model. Still, the three

approaches only consider one trigger each. This means that

in the MDP-context, decision points of ‘‘wrong’’ triggers

are ignored by postponing all requests and maintaining the

planned tour.

Fig. 2 Example: state, decision,

and post-decision state
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4 Solution Approach

In this section, we present the applied solution approaches.

We focus on the assignment decisions, since Ulmer et al.

(2016) show that the impact of assignments for a similar

dynamic routing problem is significantly higher than the

impact of the routing decisions. We define the assignment

policy ATB (Anticipatory Time Budget) by Ulmer et al.

(2016) in Sect. 4.1. For routing, we draw on the cheapest

insertion heuristic (CI; Rosenkrantz et al. 1974). Newly

assigned requests are included in hk�1 via CI. To this end,

CI maintains the sequence of hk�1 and subsequently inserts

the requests cheapest to integrate in this sequence. If all

assigned customers are served and some free time is still

left, the vehicle idles at its current location either until a

new request is assigned or it returns to the depot. The

solution approaches vary in the point in time, in which a

replanning is triggered. Therefore, we modify ATB to

consider different replanning triggers.

4.1 Assignments: Anticipatory Time Budget

In this section, we recall ATB by Ulmer et al. (2016). We

apply the same procedure for all three triggers differing in

the time of the decision. At a respective decision point, the

power set of the accumulated open requests is generated.

Each subset of open requests is first checked for feasibility

and then evaluated by its potential of serving future cus-

tomers. The customers of the best subset are assigned. All

the remaining open requests are rejected. We do not con-

sider postponements, because they lead to an exponential

increase of the decision space due to the subset selection

(see Powell 2011). Since decisions need to be derived in

real-time, rejections limit the decision space and allow

derivation of decisions within reasonable runtimes. In the

following, we describe how ATB determines the subset to

assign by means of approximate dynamic programming.

The objective of the VRPSSR is to find a decision policy

p 2 P maximizing the expected number of assignments. A

policy is a function mapping a state Sk to a decision

Xp� ðSkÞ. A decision determines the subset of requests to

assign and the update of the routing. In a particular deci-

sion state Sk, the optimal policy p� 2 P fulfills the Bellman

Equation:

Xp� ðSkÞ ¼ argmax
x2XðSkÞ

RðSk; xÞ þ VðSxkÞ
� �

: ð1Þ

Here the value VðSxkÞ represents the expected number of

assignments starting from post-decision state Sxk following

policy p�. Hence, if we have access to the value of each

post-decision state, we would achieve an optimal policy.

Still, the exact values cannot be derived due to the ‘‘Curses

of Dimensionality’’ describing the exponential increase in

model-complexity in state-space, decision-space, and

transition-space (see Powell 2011). Hence, ATB approxi-

mates the values by means of simulation.

To this end, ATB aggregates post-decision states to

vectors of the current point in time tk and the related free

time budget bxk. The lower the point in time, the more

customers will request service in the future and the more

can be assigned. The higher the time budget, the more

customers can be assigned to the vehicle in the future. ATB

uses an aggregation function A : Sxk ! v mapping a post-

decision state to a two-dimensional vector v ¼ ðt; bxt Þ:
ATB approximates the values V̂ðvÞ for each vector v by

means of approximate value iteration (AVI; Powell,

2011, pp. 391ff). First, AVI assigns initial values V̂0ðvÞ to
every vector v. These values induce a policy p0 with

respect to the Bellman Equation as depicted in Eq. (2) for

i ¼ 0,

XpiðSkÞ ¼ argmax
x2XðSkÞ

RðSk; xÞ þ V̂iðAðSxkÞÞ
� �

: ð2Þ

AVI subsequently simulates realizations x1; . . .;xm 2 X.
Within the simulation of realization xi, the current policy

pi�1 is applied according to Eq. (2). After each simulation

run, the observed values are updated according to the

realized values V̂xi
within the simulation run as shown in

Eq. (3):

V̂iðvÞ ¼ ð1� aÞV̂i�1ðvÞ þ V̂xi
ðAðSxkÞÞ: ð3Þ

Parameter a defines the stepsize of the approximation

process. With the number of observations of v, NðvÞ[ 0,

ATB draws on a ¼ 1
NðvÞ, i.e., the running average over all

observed values for v. For approximation, we run simula-

tions for 1 million realizations. To enforce the approxi-

mation process, we apply the dynamic lookup

table proposed by Ulmer et al. (2016), dynamically parti-

tioning the vector space.

4.2 Replanning Trigger

To compare the previously defined decision triggers, we

define three policies, ATBX, ATBN, ATBI differing in the

decision points at which the assignment decision is con-

ducted and the routing is updated, accordingly. Policy

ATBX decides at each point in time a new customer request

occurs. Except in the rare case of two customers requesting

at the same time, ATBX only considers two possible post-

decision states. One post-decision state results from the

potential assignment of the new request. The other results

from the rejection. Policy ATBX exploits the potential of

diversion and efficient routing since the vehicle may be on

the road at time of the new request.
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Policy ATBN decides in every point in time, the vehicle

is located at a customer. In some cases, the set of accu-

mulated open requests may therefore be empty resulting in

only one potential post-decision state. In other cases, the

cardinality of the set is high and the number of post-deci-

sion states and potential decisions is vast. Policy ATBN

therefore exploits the information gain of accumulated

requests allowing effective assignments. Still, ATBN is not

able to divert the vehicle.

Finally, ATBI decides in fixed intervals of time and can

be seen as a compromise between ATBX and ATBN. As

ATBN, ATBI accumulates requests over the interval and

achieves a gain in information. As ATBX, ATBI decides

when the vehicle is on the road and therefore enables

diversions. In our computational study, we analyze inter-

vals of 5, 10, 15, 20, and 30 min.

4.3 Benchmark: Myopic Policy

We assume that the benefit of both diversion and the gain

in information depends on the assignment policy. To verify

this assumption, we compare the ATB policies with the

myopic equivalent. In every active decision point, the

myopic policy maximizes the immediate reward assuming

post-decision state values of zero. In cases, where several

decisions Xmax ¼ fx1; . . .; xmg lead to the same immediate

reward, the myopic policies select the decision x 2 Xmax

maximizing the remaining free time budget.

5 Computational Experiments

In this section, we motivate and define the test instances

and test measures. Then, we present the solution quality of

the different policies. Finally, we analyze the policies’

performance with respect to the instances’ dimensions. The

algorithms are implemented in Java. We run the tests on

Windows Server 2008 R2, 64 bit, with an Intel-Xeon E7-

4830@2.13GHz, 64 cores, and 128GB RAM. We omit

further details on implementation and runtime aspects

because the simulations are conducted offline. The run-

times in the online execution of the algorithms are gener-

ally less than one millisecond per decision point.

5.1 Instances

In the following, we define the instance settings. To ana-

lyze the impact of the different triggers in different set-

tings, we define instances varying in the number of

requesting customers and the travel durations between

customers. To this end, we vary the overall expected

number of requests as well as the percentage of dynamic

requests, the degree of dynamism (DOD). We further

analyze three different customer distributions and three

differently sized service areas.

We vary the expected number of customers between

n ¼ 20; 30; 40; 60 for a DOD of 0.25, 0.5, 0.75. An

expected number of customers n ¼ 40 and a DOD of 0.75

results in an expected ERC number of n0 ¼ 40� ð1�
0:75Þ ¼ 10 and an expected LRC number of nþ ¼ 40�
0:75 ¼ 30.

We define a small service area A10 with a size of

10 km � 10 km, a medium-sized A15, and a large service

area A20, with sizes of 15 km� 15 km and 20 km� 20 km,

respectively. Finally, we define three spatial customer

request distributions F . We test the policies for uniformly

distributed requests (U) as well as for requests in two (2C)

and three clusters (3C). In the following, we define the

clustered distributions for A20. For the other service areas,

the parameters are multiplied by 1
2
and 3

4
. For 2C, the cluster

centers are (5, 5) and (15, 15). For 3C, the cluster centers

are (5, 5), (5, 15), and (15, 10). Within the clusters, the

request probability is normally distributed with standard

deviation of 1km.

The remaining parameters are defined as follows. The

overall time limit is tlimit ¼ 360 minutes. The temporal

distribution of requests T follows a Poisson process. The

depot D is located in the center of the service area and the

vehicle travels with a constant speed of 15 km/h. The

combination leads to an overall set of 108 different

instance settings I . We run 10,000 test runs per instance

setting i 2 I .

5.2 Measures

To allow an analysis of the results, we define two mea-

sures, namely solution quality Q and improvement D.
These measures reflect the solution quality of individual

policies but also allow comparison between two approa-

ches. In the following, we define the measures for the

analysis of the results. Let Rðp; iÞ be the average number

of served requests for policy p and instance setting i 2 I .
Further, let nþðiÞ denote the overall number of expected

LRCs for instance setting i. We define the solution quality

Qðp; iÞ of a policy p for an instance setting i as the average

percentage of served requests as depicted in Eq. (4),

Qðp; iÞ ¼ Rðp; iÞ
nþðiÞ

; ð4Þ

Qðp; IÞ is then defined as the average solution quality over

all instances i 2 I � I . QðpÞ denotes the average solution

quality over all instance settings I . We further define the

improvement Dðp1; p2; iÞ of policy p1 over policy p2 given
instance setting i 2 I as the percentual improvement of
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solution quality Qðp1; iÞ compared to Qðp2; iÞ as depicted

in Eq. (5),

Dðp1; p2; iÞ ¼
Qðp1; iÞ � Qðp2; iÞ

Qðp2; iÞ
: ð5Þ

The improvement Dðp1; p2Þ denotes the average of the

individual improvements over all instance settings I .

5.3 Results

In this section, we compare the results of the different

policies. We focus on general statements with respect to the

instance setting’s dimensions. For the individual results, we

refer to Sect. A.2 of the Appendix (available online at http://

link.springer.com). The average solution quality over all

instance settings for the different policies is shown in

Fig. 3a. The best results are achieved by ATBX with

QðATBXÞ ¼ 58:3% assignments, followed by ATBN with

QðATBNÞ ¼ 58:2% assignments. The policies ATBI per-

form inferior. We observe a decreasing solution quality with

increasing interval durations. Further, anticipation improves

the myopic equivalent by an equal amount per policy. This

also manifests in the average improvement D of ATBX

compared to ATBN and ATBI as well as for the myopic

equivalents shown in Fig. 3b. The average improvement of

ATBX over ATBN is DðATBX;ATBNÞ ¼ 0:66%. The

improvement compared to ATBI ranges between 0.8 and

4:6% and increases with the interval durations.

Looking at the individual 108 instance settings, ATBX

provides the best results in 60 cases, ATBN in 45, and

ATBI in only one case. In two cases, all policies provide

the same results. In essence, the best results are either

achieved by ATBX following the exogenous trigger of a

new request or by ATBN following the endogenous trigger

when the vehicle finished service. Planning in fixed inter-

vals is generally inferior. In the following subsection, we

therefore compare the exogenous and the endogenous

trigger in detail.

5.4 Exogenous vs. Endogenous Trigger

Finally, we analyze which instance settings reinforce the

benefit of the exogenous and endogenous triggers, respec-

tively. To this end, we analyze the improvement

DðATBX;ATBNÞ of exogenously triggered decision mak-

ing ATBX over endogenously triggered decision making

ATBN with respect to the instances’ dimensions.

Figure 4 shows the improvement with respect to the

DOD and the request distribution. The results are the

average over the different numbers of customers and the

service area sizes. On the x-axis, the three distributions and

the three different DOD for every distribution are depicted.

The y-axis shows the improvement. We first analyze the

improvement with respect to the customer distributions.

The distributions vary in the customer spread starting with

widely spread customers given the uniform distribution

(U) and ending with customers accumulated only in two

clusters (2C). We observe a correlation of the improvement

and the spread. Given widely spread customers, travel

durations between customers are high and diversion is

highly beneficial leading to efficient routing. If the spread

is low, travel distances are low, too, and diversion does not

provide significant benefits. The same behavior can be

observed for the three individual service area sizes (not

depicted in Fig. 4). On average, the improvement for the

large service area is 0:99%, for the medium-sized service

area 0:90%, and for the small service area �0:16%. Again,

this can be explained by the different travel durations

between the customers.

We also observe a significant impact of the DOD. Given

a low DOD of 0.25, ATBX outperforms ATBN. For a high

DOD, we observe an opposed behavior. This can be

explained by the different information gain between the

visits of two customers. Given a high DOD, many requests

may accumulate and this information gain allows for

effective assignments. If the DOD is low, the expected

number of requests is low, too. Hence, the information gain

cannot compensate the loss in routing efficiency.
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6 Conclusion

Real-time information enables replanning at every point in

time and the challenge arises to determine suitable replan-

ning times. In this paper, we have analyzed and quantified

the impact of the three most common replanning triggers

for dynamic dispatching of vehicles. We have presented a

BPMN model of the dispatching process and have identi-

fied customer requests and the vehicle status as main pro-

cess triggers for replanning. Additionally, we have

identified replanning in fixed intervals as another common

practice of planning. In an extensive computational anal-

ysis, we could observe that a suitable trigger depends on

the instances’ characteristics. Replanning triggered by

customer requests is beneficial in cases where customers

are widely spread and travel durations are large as well as

in cases where the number of requests is low. In these

cases, diversion enabled by real-time information allows

efficient routing. Replanning based on the vehicle status is

beneficial given shorter travel durations and a higher

request frequency. This allows an information gain and

more effective assignments.

Future work may consider potential customers’ and

drivers’ inconveniences resulting from delayed communi-

cation and diversions. Further, since replanning is

increasingly outsourced to cloud providers, frequent

replanning results in increasing cloud provisioning costs.

Future work may consider this tradeoff between replanning

costs and effective and efficient decision making. For the

problem under consideration, future work may focus on

identifying suitable replanning times based on current

problem states. As an example, the replanning trigger may

depend on the current vehicle’s location. This may allow to

avoid premature assignments when the vehicle traverses

areas without potential requests. In these cases, diversion

does not provide any benefit and decision making should

be postponed until the vehicle reaches areas with more

frequent requests. Further, request assignments may be

made for individual requests, such as postponing assign-

ment decisions for requests demanding service in areas the

vehicle will visit only later in the day. The considered

problem may be transferred to multi-vehicle settings. In

these cases, the trigger selection may become more com-

plex. Finally, the analysis could be extended by consider-

ing the impact of service times on the triggers’ suitability.
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Gutenschwager K, Böse J, Voß S (2003) Effiziente Prozesse im

kombinierten Verkehr-ein neuer Lösungsansatz zur Disposition

von Portalkränen. Logist Manag 5(1):62–73

Heilig L, Voß S, Lalla-Ruiz E (2017) port-io: an integrative mobile

cloud platform for real-time inter-terminal truck routing opti-

mization. Flex Serv Manuf. doi:10.1007/s10696-017-9280-z

Hilpert H, Kranz J, Schumann M (2013) Leveraging green IS in

logistics. Bus Inf Syst Eng 5(5):315–325

Hvattum LM, Løkketangen A, Laporte G (2006) Solving a dynamic

and stochastic vehicle routing problem with a sample scenario

hedging heuristic. Transp Sci 40(4):421–438

Hvattum LM, Løkketangen A, Laporte G (2007) A branch-and-regret

heuristic for stochastic and dynamic vehicle routing problems.

Networks 49(4):330–340

Ichoua S, Gendreau M, Potvin JY (2000) Diversion issues in real-time

vehicle dispatching. Transp Sci 34(4):426–438

Ichoua S, Gendreau M, Potvin JY (2006) Exploiting knowledge about

future demands for real-time vehicle dispatching. Transp Sci

40(2):211–225

Lorini S, Potvin JY, Zufferey N (2011) Online vehicle routing and

scheduling with dynamic travel times. Comput Oper Res

38(7):1086–1090

Lowe J, Khan AA, Bhatale B (2014) Same-day delivery: surviving

and thriving in a world where instant gratification rules.

Whitepaper Cognizant 20-20 Insights, Cognizant

Mulley C, Nelson JD (2009) Flexible transport services: a new market

opportunity for public transport. Res Transp Econ 25(1):39–45

OMG (2013) Business process model and notation (BPMN). Tech.

Rep., Open Management Group (OMG). http://www.omg.org/

spec/BPMN/. Accessed 25 Aug 2015

Oyola J, Arntzen H, Woodruff DL (2016a) The stochastic vehicle

routing problem, a literature review, part I: models. EURO J

Transp Logist, pp 1–29

Oyola J, Arntzen H, Woodruff DL (2016b) The stochastic vehicle

routing problem, a literature review, part II: solution methods.

EURO J Transp Logist, pp 1–40

Powell WB (2011) Approximate dynamic programming: solving the

curses of dimensionality. Wiley Series in Probability and

Statistics, vol 842. Wiley, New York

Puterman ML (2014) Markov decision processes: discrete stochastic

dynamic programming. Wiley, New York

Regan A, Mahmassani H, Jaillet P (1996) Dynamic decision making

for commercial fleet operations using real-time information.

Transp Res Rec J Transp Res Board 1537:91–97

Ritzinger U, Puchinger J, Hartl RF (2016) A survey on dynamic and

stochastic vehicle routing problems. Int J Prod Res 54:215–231

Rosenkrantz DJ, Stearns RE, Lewis PM (1974) Approximate

algorithms for the traveling salesperson problem. In: Ieee

conference record of 15th annual symposium on switching and

automata theory, IEEE, pp 33–42

Savelsbergh M, Van Woensel T (2016) City logistics: challenges and

opportunities. Transp Sci 50(2):579–590

Sheridan PK, Gluck E, Guan Q, Pickles T, Balcıog B, Benhabib B

et al (2013) The dynamic nearest neighbor policy for the multi-

vehicle pick-up and delivery problem. Transp Res Part A Policy

Pract 49:178–194

Speranza MG (2016) Trends in transportation and logistics. Europ J

Oper Res (in press)
Thomas BW (2007) Waiting strategies for anticipating service

requests from known customer locations. Transp Sci

41(3):319–331

Thomas BW, White CC III (2004) Anticipatory route selection.

Transp Sci 38(4):473–487
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