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Abstract This paper describes a method for using location

data to optimize the routing of pavement data collection

vehicles. In much of the developed world, pavement testing

is performed on a regular basis; the pavement testing data,

in turn, serves as input to Pavement Management Systems.

Currently, in the United States of America, state depart-

ments of transportation plan this data collection work by

providing the list of roads that must be tested and then

leave the routing of the vehicles to the equipment operators

who typically execute the work in an ad hoc manner. This

study presents the processes required to code the list of

roads for testing, select appropriate hotels in the region of

testing, and apply a Traveling Salesman Problem with

Hotel Stops model to derive a route. Applying the pro-

cesses to a case study shows significant cost savings

associated with this method of roadway testing, as opposed

to the current ad hoc methods.

Keywords Optimized data collection � Route
optimization � Pavement management system � Mixed

integer program � Traveling salesman problem with hotel

stops

1 Introduction

State departments of transportation (DOTs) and public

works agencies have been performing road maintenance

planning and operational activities since the 1880s (Dror

2000). It wasn’t until the 1980s, however, that Information

Systems began to play a significant role in the processes of

maintenance and planning. Specifically, a foundational

article, published in 1982 in the journal Interfaces,

describes a Pavement Management System (PMS) devel-

oped by the State of Arizona that integrates management

policy decisions, budgetary policies, environmental factors,

and engineering decisions (Golabi et al. 1982). The authors

claim savings of $14 million as a result of system use. At

the heart of the system is an optimization module that

recommends preservation policies to achieve long-term

and short-term standards for road conditions at the lowest

possible cost. This module relies on pavement condition

data as its input and provides a maintenance and rehabili-

tation (M&R) plan as its output.

Overshadowed by the immense savings that a PMS can

achieve for M&R planning, little attention has been paid to

the development of pavement assessment plans to gather

the input data. Over the years, surveys have shown that

most agencies still rely primarily on field experience rather

than systematic analysis to conduct roadway condition

assessments (Jang 2011). For example, a survey in Min-

nesota showed that only one agency of 414 jurisdictions

used computerized routing software for snow and ice

control (Office of the Legislative Auditor 1995).
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The authors surveyed five state highway agencies

regarding their use of computerized data driven processes

for planning and executing pavement testing. The states of

Alaska, California and Florida have no set process to route

test vehicles during pavement data collection and they base

their routing schemes on their personnel’s experience. The

state of Minnesota responded to our inquiry as follows:

‘‘MnDOT does not have any formal way to route for col-

lecting pavement management data. Data collection is

routed to ensure efficient collection during the times of the

year that the geographic areas of the state are free of frost

effects to the pavement International Roughness Index

(IRI). Routing is also based on the locations to be collected

that season on local county roads. Local road collection is

based on a 3-year cycle’’. Along the same lines, the state of

Wisconsin replied: ‘‘We don’t use any program for routing

our vans for the pavement condition data collection on our

highways. The operator simply uses a map and highlights

the routes. Two colors are used – one to identify the roads

that need data collection in both directions and a different

color for those that just need one direction. The operator

then estimates distances to determine what can be done in a

day. Or, if testing will take longer than a day, then the

operator selects a city to stay in and then breaks up the

areas all around it into subsections that can be tested in a

day’’. This research seeks to illustrate the value of a holistic

system for assimilating roadway data into a procedure for

developing optimized route plans.

The remainder of the paper is organized as follows: a

literature review describes the history of PMSs and the way

that such systems work while highlighting the absence of a

routing component in these systems. The following section,

Sect. 3, then describes the proposed extension to existing

PMS – a method to integrate roadway data with an oper-

ational route planner. In this section we also briefly com-

ment on the algorithmic structure of the route planning

tool. We then present the details of the case study instances

used to validate the proposed system in Sect. 4. These

instances originate from real-world data provided by a

pavement testing firm in the Southwestern United States.

The results of the proposed strategy relative to a manual

solution are described in the second to last section. The

article concludes with directions for future work.

2 Literature Review

Pavement management involves all activities regarding the

planning, design, construction, maintenance, and rehabili-

tation of pavements. Pavement management systems

(PMS) consist of a set of tools or methods to help pavement

managers plan for constructing and maintaining pavements

in a serviceable condition over a given period of time. In

2002, Tsai and Lai formalized the components of a PMS by

putting forward a conceptual IT-based framework (Tsai

and Lai 2002). Their framework relies on an operation

component, a data component, and a decision support

component. The data component is at the heart of the

framework and relies heavily on the input of data from the

operation component – chief among these inputs is pave-

ment condition data. The data component, in turn, feeds the

decision support component that utilizes optimization to

plan multi-year M&R budgets. The decision support

component then feeds back to the operation component in

terms of the M&R plan.

While one of the functionalities of PMSs is to optimize

funding choices via network analysis (Medury and Mada-

nat 2013), current systems do not actually consider the

operational routing of the pavement data collection vehi-

cles. Highway agencies, such as state departments of

transportation (DOTs) or public works agencies, update

their PMSs every 3–5 years by performing data collection

on their network. Depending on the size of the network and

the available budget, the data collection is performed in 1

year or over several years. Furthermore, the highway sys-

tem pavement inventory of the US is monitored as part of

the Highway Performance Monitoring System (HPMS)

program in a partnership between the US federal govern-

ment and the various states.

In most cases, consultants are contracted by the agencies

for the data collection. Such a task comprises sending one

or more test-vehicles to drive over multiple predefined

sections within the network. The number of test sections

could be as few as a dozen sections in a small town or

thousands of sections in a large city, state or a country.

Nevertheless, routing through these test sections can have

significant cost implications for the testing process.

While not currently recognized in testing, these cost

implications are realized in other pavement management

domains such as snow removal and pavement marking

(Jang 2011; Perrier et al. 2007a, b; Office of the Legislative

Auditor 1995). Problems of snow removal generally

require that snow plows traverse all roadways in a given

network. In contrast, pavement marking problems require

traversal of isolated sections of roadway. In this regard, the

domain of pavement marking is closest to our problem

where specific, possibly disparate, sections within the

network are tested.

In general, several types of testing equipment are typi-

cally used to assess the pavement’s structural and func-

tional performance. Such equipment includes, among

others, falling weight deflectometers (FWDs), road surface

profilers (RSPs), pavement imaging vehicles, friction tes-

ters, and ground penetrating radars (GPRs). The similarity

of test routing to pavement marking is most readily seen

with friction testing as the route is limited by the water tank

123

136 G. Bazi et al.: Integrating Data Collection Optimization…, Bus Inf Syst Eng 59(3):135–146 (2017)



capacity just as a marking vehicle is limited by the paint

tank capacity. The pavement testing route module that we

propose, however, focusses on the majority of testing

equipment that is not limited by additional constraints such

as the water tank capacity in friction testers.

Just as Ralyté et al. (2015) recommend a shift of

Information Systems to Information Services Systems, the

data integration process that we suggest fits well with

existing pavement management information systems.

Currently, PMSs rely on the process of pavement testing to

generate data on pavement conditions. These conditions are

then entered to the pavement condition database. The

condition database interfaces with the maintenance data-

base which in turn feeds the maintenance and rehabilitation

module. The M&R module then produces, through opti-

mization, an M&R plan. The plan is enacted and the

maintenance, as performed, is logged. While this process

works well within the current legislation that requires

condition testing across the full network at fixed intervals,

we believe that the pavement testing activity can be

improved through the addition of a route optimization

module.

Policies governing pavement testing along with avail-

able testing budgets can be used to pull a pavement section

test set from the pavement inventory and condition data-

bases. Once the test sections are selected, the route plan-

ning module informs the decision maker of the optimal

route and the route costs that will be incurred with the

selected road section test set. In this way, the decision

maker may alter the road section test set to meet cost tar-

gets or can solicit bids from pavement testing contractors

that abide by the expected cost levels using the optimized

route provided by the route planning module. Figure 1

illustrates, by means of a cross functional flow chart, how

the route optimization module fits within a general PMS

structure; the new, proposed elements are shaded in grey.

3 Integrating Route Planning in PMS

A PMS typically provides a list of the sections to be tested

that contains the roadway name, starting and ending post

miles or cross streets, length, number of lanes to be tested,

and direction of testing. The latitude and longitude

Fig. 1 Flow chart depicting the Route Optimization Module within the PMS and the steps followed by the Route Optimization Module
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coordinates for the starting and ending points are provided

if the network is geo-referenced.

For some sections, data collection is required in both

directions depending on the functional classification,

number of lanes, or other parameters specific to the agency.

For example, the data is collected on the slow lanes in both

directions if the roadway is a multi-lane divided highway,

and in the slow lane in one specified direction if it is a four

lane undivided highway.

Once the PMS provides the road section test set, the

location data is cleaned and a distance matrix generated.

The distance matrix is fed into an optimization module that

produces a route plan. The route is then presented to the

decision maker in a graphical manner. Figure 1 details,

within a larger PMS structure, the steps by which the

optimization module works. These steps are also described

in the following subsections.

3.1 Data Cleaning and Distance Matrix Generation

The distance matrix generation requires as input a list of the

start and end GPS coordinates for every test section. These

GPS points may be provided directly or generated using the

cross streets or post miles. To obtain the GPS coordinates, if

not provided, the cross streets must be entered into an online

or offline mapping program. As noted by Zandbergen (2008)

modern geocoding software can provide accurate location

results for street networks. To expedite the process of

geocoding the test section start and end points, one may also

use a coded script to lookup sections via a mapping Appli-

cation Program Interface (API) such as the Google� Maps

Geocoding API (Google 2016).

An example of this data processing step is illustrated for

a small area in Los Osos, CA that consists of 17 sections.

The streets to be tested along with their cross street limits

were provided. The first section is Santa Ysabel Avenue

from 2nd Street to South Bay Boulevard. The latitude and

longitude for the Santa Ysabel Avenue and the 2nd Street

starting cross street are 35.330011 and -120.840864,

respectively, whereas the latitude and longitude for the

Santa Ysabel Avenue and the South Bay Boulevard ending

cross street are 35.329901 and -120.823426, respectively.

Table 1 provides a summary of the start and end coordi-

nates of the 17 sections.

The route optimization model requires as input a matrix

of the travel times between the sections and available

hotels as well as the testing times of the sections. The

matrix is a square matrix of order n, where n is equal to the

total number of sections and hotels. The diagonal entries

correspond to the testing time of each section. The matrix

is asymmetric since the travel time from the end of one

section – section ‘‘A’’ – to the start of another section –

section ‘‘B’’ – is not the same as the travel time from the

end of section ‘‘B’’ to the start of section ‘‘A’’. Note if it is

desired that testing commence and return to a depot, the

depot should also be included as a location in the matrix.

Table 2 shows the travel time and testing time matrix for

the 17 Los Osos, CA sections as generated using the

Google� Maps Distance Matrix API (Google 2015). The

diagonal entries show the testing time for every sec-

tion. For example, the testing time of section ID 01 from

start to end is 2.3 min excluding any equipment set up time.

All other entries correspond to the travel times from the

end of the sections shown in left column to the start of the

Table 1 GPS Coordinates for

Start and End of the 17 Los

Osos Sections

Section ID Combined ID Start latitude, longitude End latitude, longitude

01 01 35.330011, -120.840864 35.329901, -120.823426

02 02 35.320657, -120.835452 35.329968, -120.835382

03 03 35.326836, -120.840804 35.330013, -120.840900

04 04 35.326921, -120.840889 35.326234, -120.829943

05 05 35.322597, -120.839650 35.326216, -120.839808

06 06A 35.316917, -120.833195 35.316499, -120.823404

07 06B 35.316499, -120.823404 35.313408, -120.817069

08 07 35.308884, -120.850654 35.308606, -120.833206

09 08 35.308759, -120.839943 35.312204, -120.839881

10 09 35.308844, -120.843170 35.312543, -120.843121

11 10A 35.299483, -120.863120 35.306641, -120.857797

12 10B 35.306641, -120.857797 35.312704, -120.852019

13 11 35.312090, -120.859145 35.311846, -120.853434

14 12 35.312793, -120.851976 35.318427, -120.852078

15 13 35.318472, -120.851962 35.318483, -120.844911

16 14 35.312730, -120.844814 35.320316, -120.844824

17 15 35.308140, -120.856645 35.300710, -120.847791
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sections shown in the top row. For example, the travel time

from the end of section ID 01 to the start of section ID 02 is

3.2 min.

A setup time of about 1 min is typically added to the

testing time for every section. This time is spent by the

operator to mainly create a new file for the data collection

and to review the route. Whenever sections are combined

for testing in one run, the equipment setup time is reduced

to only one setup. This task is performed automatically in

the optimization model.

For the purpose of comparison to the manual bench-

mark, Table 2 shows which sections are adjacent and can

be combined. For example, the entry of row 06 and column

07 is zero indicating that sections 06 and 07 can be com-

bined to form section 06A/06B (combined IDs 06A and

06B).

3.2 Route Optimization

After a day of work, the pavement testing vehicle operators

must take breaks in a hotel or at the depot. Determining the

least cost order of sections to test while balancing the cost

of staying in a hotel versus returning to the depot adds a

point of synchronization to our model. However, the need

to traverse disparate arcs yields a routing problem similar

to the rural post man problem (RPP) (Eiselt et al. 1995).

The RPP is considered an arc routing problem. However,

given the distance between the arcs that must be traversed,

such routing problems can be reduced to an asymmetric

traveling salesman problem (ATSP) (Srour and van de

Velde 2013). Given this formulation, the problem may be

modeled as a traveling salesperson problem with hotel

selection (TSPHS) (Vansteenwegen et al. 2012; Castro

et al. 2013, 2015). To avoid overwhelming the reader with

notation, the model is described here only in words – the

full mixed integer programming model is shown in Ap-

pendix A (available online at link.springer.com).

The objective of the model is to minimize the total cost

associated with traveling between jobs, hotels, and the

depot, the cost of setting up to test disparate road sections,

the cost of staying in hotels, the cost of paying each day’s

regular wages and the cost of overtime wages. In this

formulation a full day of wages are paid if any testing

occurred on that day. However, if one prefers to charge for

only the time involved in testing or mobilizing on any one

day, this is easily done through a slight modification to the

objective function.

This objective is subject to the following constraint sets:

a set of routing constraints ensuring that all test sections are

visited; the test vehicle must leave the depot at least once;

no test sections may be left untested; arrival times to all test

sections must be consistent in time; test sections must be

served during the day; hotels or the depot can only be

visited at night; following a trip to a hotel or a depot, the

day increments by one.

The heart of this model is based on the well-known TSP,

which depends on subtour elimination constraints and can

take significant amounts of time to solve. As such, three

solution methods are adopted each with different runtimes

and tradeoffs in solution quality. First, a simple nearest-

neighbor greedy heuristic is used to find a feasible solution

quickly (Cormen 2009). This routing strategy begins at the

Table 2 Los Osos travel time/testing time matrix in minutes

Sect. ID 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

01 2.3 3.2 3.5 3.5 4.0 3.1 1.4 7.4 6.1 6.4 8.2 6.9 7.9 5.8 6.9 5.1 6.5

02 0.8 1.8 2.0 2.1 2.5 3.1 3.1 7.4 6.1 6.5 8.2 6.9 7.9 5.9 5.3 4.9 6.6

03 0.0 2.8 0.7 1.1 2.0 4.2 4.0 7.9 7.2 7.3 8.7 7.4 8.4 6.3 5.8 5.4 7.0

04 2.5 2.4 2.7 2.1 3.1 2.4 3.1 7.4 6.1 6.4 8.2 6.9 7.9 5.8 5.9 5.1 6.5

05 1.3 1.8 0.4 0.4 0.9 3.2 4.6 6.5 6.1 5.9 7.3 6.0 7.0 4.9 4.4 4.0 5.6

06 3.9 2.7 5.0 5.0 3.8 2.1 0.0 6.0 4.6 5.0 6.7 5.4 6.5 4.4 5.7 3.7 5.1

07 5.6 4.4 6.7 6.6 5.4 3.3 1.0 7.8 6.4 6.8 8.5 7.2 8.3 6.2 7.5 5.5 6.9

08 6.1 3.3 5.6 5.5 4.4 2.8 3.3 2.6 1.4 2.0 5.8 4.5 5.5 3.5 4.7 2.8 4.2

09 6.2 3.3 5.4 5.3 4.1 2.9 3.3 3.2 0.7 1.9 3.8 2.5 3.6 1.5 2.8 0.8 2.2

10 5.8 3.6 5.0 4.9 3.8 3.2 3.6 2.6 1.9 0.6 3.5 2.2 3.2 1.2 2.4 0.5 1.9

11 7.4 5.5 6.6 6.6 5.4 5.1 5.6 3.7 3.9 3.7 1.5 0.0 3.0 1.3 2.6 2.1 0.4

12 6.3 4.3 5.5 5.4 4.2 4.0 4.4 2.5 2.7 2.6 2.4 1.1 2.1 0.1 1.4 0.9 0.7

13 6.6 4.7 5.8 5.8 4.6 4.4 4.8 2.9 3.1 3.0 2.4 1.1 0.7 0.6 1.8 1.4 0.8

14 5.8 3.9 5.0 4.8 3.8 5.3 5.7 3.8 4.1 3.9 3.8 2.5 3.0 1.1 0.0 2.3 2.1

15 4.2 2.3 3.4 3.3 2.2 3.7 5.2 4.0 3.5 3.4 4.7 3.4 4.5 2.4 1.1 1.5 3.1

16 3.5 1.5 2.7 2.5 1.5 3.0 4.8 4.2 3.8 3.6 5.0 3.7 4.7 2.7 2.1 1.5 3.4

17 9.3 7.3 8.5 8.4 7.3 7.0 7.4 5.5 5.8 5.6 4.1 2.8 4.8 3.2 4.4 4.0 2.1
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depot and continues adding the closest section to the end of

the route until approaching the working day’s time limit.

At that point, the nearest hotel is inserted. This process

continues until all sections are accommodated and the

return to the depot is added

Second, the heuristic suite included in Chad Hurwitz’s

GNU TSP Solver is applied along with a set of swapping

and 4-opt improvement schemes (Hurwitz 1994). Specifi-

cally, the heuristics included in the suite relevant for the

asymmetric TSP are: a nearest addition tour finder, a far-

thest insertion tour finder, a dispersion strategy, two

strategies for patching the solution of the assignment

problem into one tour, and a loss heuristic. Within the

tsp_solve package, a tool called ‘‘heurbest’’ finds the best

heuristic within the suite for the given problem. The

solution is returned as a simple ordering of the jobs with no

regard for which hotels should be used and when. A post-

processing step is undertaken to place the nearest hotel on

the route once each day’s time limit is near.

Finally, the Gurobi v6.0 (Gurobi Optimization 2015)

exact branch-and-bound solver is applied to the model

formulation to derive an optimal solution. Since the prob-

lem is fundamentally a TSP, we provide the exact solver

with a ‘‘warm-start’’ solution as input, which in our case, is

the tsp_solve solution. At any time the exact solver is

stopped and a solution is returned, that solution is known to

be the best solution found up to that point in time

Given these three solution strategies, the user can make

important decisions about the tradeoffs between solution

time and solution quality. Such tradeoffs are apparent in

Sect. 5 where the results of the case studies are presented.

3.3 Presentation of Resulting Route Plan

The optimization model then yields a list indicating the

order in which the test sections should be traversed. The

GPS coordinates of the sections or combined sections can

then be exported to a mapping software for routing during

data collection. The map waypoints for the tested sections

are deleted at the end of the testing or end of the day. In

this way, the operator can immediately see only those

sections requiring testing; not those that are complete.

Simultaneously, the pavement condition data that was

collected can populate the data component of the PMS.

4 Validation Instances

To illustrate the capabilities of the proposed routing opti-

mization, two instances based on real-world data were

tested. The optimal routes were benchmarked against the

routes generated using the manual process of the firm that

collected the data.

The first instance is small and consists of the 17 Los

Osos, CA sections. The total combined time to test all of

the sections (excluding the drive time) is 23.9 min, which is

equal to the sum of the diagonal entries from Table 2. The

longest section requires 2.6 min of testing while the

shortest section requires 0.6 min. Given the proximity of

the sections to each other (the longest inter-section drive

time is 9.3 min), all sections may be tested within 1 or 2 h,

on one tour from the depot, without hotel stays. The scale

of this instance allows for easy verification of the opti-

mization solution.

The second instance is significantly larger, with 349 test

sections. These sections were selected out of a larger

project that consisted of 936 sections in California’s

Monterey, Santa Barbara, San Benito, Santa Cruz and San

Luis Obispo Counties. A subset of 349 sections were

selected for the purpose of this case as they are located in

the same geographical area and were tested over 20 con-

secutive days. Therefore, this subset also serves to provide

a manual benchmark for comparison. The total combined

time to test all of the sections (excluding the drive time) is

1939 min or 32.3 h. The longest section requires about 1.7

h of testing while the shortest section requires about 3 s.

The longest drive time is almost 5 h, which corresponds to

the drive time from the depot (location of the equipment) in

Ventura, CA to a test section in Santa Cruz, CA.

The 349 sections cannot be tested in one day and the

operator needs to stay at hotels during testing. Thirteen

potential hotels were selected in all counties with an

assumed rate of $100 per night. The selection was based on

where the operator typically stays during testing. Out of the

13 potential hotels, 8 were used during actual testing, and

some of them were used up to 4 nights.

In this second, larger instance two scenarios were con-

sidered – one in which overtime is not allowed and one

which allows for overtime. In the scenario without over-

time, the daily testing for the optimal route was limited to a

maximum of 8 h per day at a wage rate of $85 per hour; for

a daily rate of $680. In the overtime scenario, the operator

can work up to 12 h per day at a wage rate of $85 for the

first 8 h followed by a rate of $127.5 per hour for time

worked between 8 and 12 h. The $127.5 per hour overtime

rate is one and a half the $85 regular rate.

5 Results

In this section, we compare the results of the manual

benchmark from actual practice, the greedy heuristic, the

tsp_solve heuristic, and the optimal route obtained using

the model with the tsp_solve heuristic as a warm-start. In

order to compare the routes on the basis of cost, a testing

rate of $180 per hour and a mobilization rate of $110 per
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hour were used, in addition to the operator wage rate. Note,

that given the size of the instance, hotel stays were not

necessary for the first instance, and thus the operator’s

wages were not charged daily, but were based on a pro-

rated hourly wage of $85 per hour. Adjacent sections

avoided an additional setup cost if the end of the first

section is within 0.5 min of the start of the second sec-

tion. The setup time at the beginning of every section or

combined section was set to 1 min.

5.1 Instance One (17 Sections)

During the data collection, the operator selected Section 01

as the starting test section and then proceeded, regionally,

through to Section 05, before moving to subsequent sec-

tions as shown in Fig. 2. The consecutive nature of labeling

reflects the order of testing. The route resulting from the

manual process placed the test sections in the following

order: 01, 02, 03, 04, 05, 06A/06B, 07, 08, 09, 10A/10B,

11, 12, 13, 14 and 15.

In contrast, on a 64-bit server with an Intel Xeon 2.40

GHz processor and 128 GB RAM, both heuristic methods

and the exact solver required less than 1 s to yield a route

sequence. Given the small size of this instance, there was

no depot. Thus, two open (as opposed to closed tour) routes

were generated using the optimization – one in which the

route must start at S01 (as in the manual solution) and one

in which the route may begin at any of the sections; each

may end without returning to the initial segment. The

optimal route with a forced start at S01 places the test

sections in the following order: 01, 11, 15, 10A, 10B, 12,

13, 07, 08, 09, 14, 02, 05, 03, 04, 06A and 06B. If the

testing is not forced to start at Section 01, then the optimal

route places the test sections in the following order: 11, 15,

10A, 10B, 12, 13, 07, 08, 09, 14, 05, 03, 01, 02, 04, 06A

and 06B. The heuristic solutions, both greedy and that

found using tsp_solve, follow nearly the same testing order

with only a few permutations. Specifically, the greedy

solution places section 15 between 10A and 10B in both

the fixed and open start scenarios. The tsp_solve solution

matches the optimal solution for the open start but per-

mutes, at no additional cost, the single digit sections for the

fixed start scenario.

The manual benchmark route required a total time of

73.55 min as shown in Table 3. The optimal solution for

the 17 sections, starting at Section 01, required a total time

of 63.45 min, for a total savings of 13–14% in both time

and cost relative to the Manual Benchmark route. The

optimal solution for the same instance when the start is not

constrained to Section 01 had a total time of 56.25 min for

a total savings of 20–23% in both time and cost relative to

the Manual Benchmark. The heuristic solutions outper-

formed the manual solution, but in the case of the greedy

heuristic was more costly than the optimal solution, for

both the open and fixed start scenarios

Furthermore, in practice, the data obtained from the field

for this instance indicates that testing, using the Manual

Benchmark route, started at 13:38 and ended at 15:25 for

total testing window of 1 h and 47 min. If the actual testing

time of 23.87 min, the calculated mobilization time

between the sections of 34.68 min, and the assumed setup

time of 15 min are subtracted from 1 h and 47 min, then a

Fig. 2 Test Sections in Los Osos, CA numbered in actual testing order – the manual benchmark
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total of about 33 ‘‘unaccounted for’’ minutes remains. This

represents 31% of the testing window that was consumed

in determining the route sequence, performing additional

setup tasks, taking breaks, having longer mobilization

times, or on other unknown factors. When the optimal

route is pre-determined, there is no longer a need to spend

time in the field determining where the test operator should

go next. As such, these 33 min would be reduced repre-

senting greater data collection efficiency.

While savings of more than 20% is impressive, in such a

small instance it represents only a $62.06 savings in

absolute terms. Thus, illustrating the capabilities of the

optimized routing solution on a larger instance is

necessary.

5.2 Instance Two (349 Sections)

The results of the routing strategies on the instance with

349 sections are shown in Table 4. Due to the size of this

instance, the solutions provided by the exact solver are not

provably optimal. Yet, they are the best known solutions

found after seeding the Gurobi branch-and-bound solver

with the tsp_solve solution and allowing for 1 h of runtime.

Since the route planning optimization module will be used

for planning purposes rather than dynamic routing advice,

it is acceptable to allow the optimization to run for 1 h It is

infeasible to show the details of the routes given the size of

this instance.

In contrast to the smaller instance, the costs in Instance

Two include hotel costs and therefore require a slightly

different wage structure for the purpose of studying the

impact of overtime on costs. As such, a testing rate of $180

per hour and a mobilization rate of $110 per hour were

used. Any day in which testing occurred, no matter how

much or little, a cost of $680 is incurred as wages. Any

testing and mobilization that ran beyond the standard 8 h

was charged at a pro-rated cost of $127.5 per hour. As in

the first instance, adjacent sections avoided an additional

Table 3 Summary of time and cost required to execute the manual and optimal routes in test instance one – 17 Sections

Scenario Testing Mobilization Setup Total

Time (min) Cost ($) Time (min) Cost ($) Time (min) Cost ($) Time (min) Cost ($)

Manual Benchmark 23.87 105.41 34.68 112.72 15.00 66.25 73.55 284.38

Greedy (S01 Start) 23.87 105.41 34.52 112.18 13.00 57.42 71.38 275.01

tsp_solve (S01 Start) 23.87 105.41 33.20 107.90 12.00 53.00 69.07 266.31

Optimal Route (S01 Start) 23.87 105.41 28.58 92.90 11.00 48.58 63.45 246.89

Savings Opt v. Manual (%) 0.0 0.0 17.6 17.6 26.7 26.7 13.7 13.2

Greedy (Open Start) 23.87 105.41 24.52 79.68 11.00 79.68 59.38 233.67

tsp_solve (Open Start) 23.87 105.41 22.38 72.75 10.00 44.17 56.25 222.32

Optimal Route (Open Start) 23.87 105.41 22.38 72.75 10.00 44.17 56.25 222.32

Savings Opt v. Manual (%) 0.0 0.0 35.5 35.5 33.3 33.3 23.5 21.8

Table 4 Summary of Time and Cost Required to Execute the Manual and Optimal Routes in Test Instance Two – 349 Sections

Scenario Mobilization Setup Hotel Stays Wages Total

Time

(min)

Cost

($)

Time

(min)

Cost

($)

# of

Nights

Cost

($)

Time

(hrs)

Cost

($)

Prod. Time

(hrs)

Cost

($)

Manual Benchmark 3778 6926 251 753 19 1900 160 13,600 99.5 28,996

Greedy, No OT 3443 6313 289 867 12 1200 104 8840 94.5 23,240

tsp_solve, No OT 2488 4562 247 741 10 1000 88 7480 77.9 19,600

Gurobi, No OT 2454 4499 234 702 10 1000 88 7480 77.1 19,498

Savings Gurobi v Manual

(%)

35.0 35.0 6.8 6.8 47.4 47.4 45.0 45.0 22.5 32.8

Greedy, OT 3760 6893 287 1268 8 800 72 6120 99.8 38,888

tsp_solve, OT 2543 4663 248 744 7 700 64 5440 78.8 19,803

Gurobi, OT 2523 4626 240 720 7 700 64 5440 78.3 19,136

Savings Gurobi v Manual

(%)

33.2 33.2 4.4 4.4 63.2 63.2 60.0 60.0 21.3 34.0

For all scenarios the testing time is 1939 min at a cost of $5817
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setup cost if the end of the first section is within 0.5 min of

the start of the second section. The setup time at the

beginning of every section or combined section was set to 1

min.

Just as in the smaller, 17-section instance, the cost

savings are remarkable: more than 30% in both time and

cost. Of note is the fact that both of the heuristic solutions

with overtime performed worse, in terms of total costs,

than their no overtime counterparts. This is due to the

myopic placement of hotel stays which tend to force too

much overtime relative to any potential savings in hotel

costs. The Gruobi improved route with overtime, however,

yields a nearly 2% improvement in total costs relative to

the no overtime case

Furthermore, there are significant gains relative to pro-

ductive time. Specifically in the Manual Benchmark, the

labor paid for was 160 h, while the total mobilization and

testing time amounted only to approximately 100 h. Thus,

the employees were only engaged in productive work about

63% of the time. In contrast, in the Best Route with No

Overtime the employees were paid for 88 h of work and

were productive for 77.1 h or 88% of that time. When

allowing overtime, the employees were paid for 78 h of

work (64 regular and 14 overtime hours) and were pro-

ductive for 78 h or 100% of that time.

5.3 Solution Quality Versus Solve Time

As the primary goal of this pavement testing route planner

is to provide useable routes with less cost than current

practice, the solution method should not require a long

runtime. To gain more insight into the trade-off between

the problem size, the solve time, and the solution quality, a

set of six test instances were designed by randomly

selecting test sections from the largest instance of 349

sections. These instances were then solved using both the

tsp_solve strategy and Gurobi seeded with the tsp_solve

solution. The solution strategies were each allowed to run

for 1 h (although tsp_solve yields a solution much sooner)

at which point the best solution was returned. This solution

was subsequently compared to two benchmarks – the

lowest bound established by solving an assignment prob-

lem (AP) version of the underlying ATSP and the best

known solution. Table 5 presents the results of these tests

As shown in Table 5, the heuristic solution found by

using the tsp_solve package does tremendously well

achieving a solution over which Gurobi yields only mod-

erate improvements, ranging from 0 to 18%, after 1 h of

solve time. The gains found by applying Gruobi can be

seen in the gap relative to the AP solution – ranging from

an improvement of 27% over the gap found with the

heuristic solution for the problem with 25 jobs to a more

modest improvement of 0% in the smallest problem with

20 jobs. Interestingly, the gap relative to the AP solution is

not strictly monotonic with regards to problem size; how-

ever, there is a generally increasing trend. Thus, as

expected, the larger the problem, the larger the gap relative

to the AP lower bound and the longer the solve time – for

both strategies. Nevertheless, the heuristic strategy shows

good results and can be used to gain reasonable solutions to

this problem within reasonable times in practice

6 Discussion and Future Work

In this paper, a method for extending PMSs to include the

design of pavement testing routes is presented. The pro-

posed optimization model requires, as input, the cross

street or mile post designations for the start and end points

of each segment in the test set. This data is already con-

tained in the data component of PMSs. For more advanced

PMSs, the GPS coordinates may also be available. These

data points along with a set of viable hotels serve as the

input to the optimization. This method, based on the TSP,

yields solutions that are around 33% better than solutions

generated applying the best-practices currently used in the

field.

Table 5 Sensitivity analysis of solution quality and solve time relative to problem size

Instance Benchmarks tsp_solve tsp_solve ? Gurobi, 1 h

Jobs Hotels AP Best Soln. % AP % Best Time (s) Soln. %AP % Best Time to best (s)

20 0 194 225* 225 16 0 0.01 225 16 0 0

25 1 267 396 467 75 18 0.00 396 48 0 19

30 1 332 436 437 32 0.23 0.01 436 31 0 112

40 2 413 535 543 31 1 0.02 535 30 0 126

80 4 630 840 936 49 11 0.24 840 33 0 462

160 6 949 1335 1415 49 6 4.68 1335 41 0 3132

Solutions reported expressed in time and include only setup and mobilization times

* Optimal solution
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The proposed model can be easily used by any highway

agency or consulting firm to estimate the costs associated

with pavement data collection. By standardizing the route

selection with the proposed model, the differences in pro-

ject costs during the bidding phase will be mainly depen-

dent on the consulting firms’ rates. Furthermore, the

proposed model in contrast to the current strategy allows

the ‘‘unaccounted for’’ time to become ‘‘accounted for’’.

Specifically, the agency can now assume that the unac-

counted time is not associated with the process of finding

routes on-the-fly in the field, but is rather attributable to

rest stops, setting-up equipment, and maintaining

equipment.

Future work includes properly integrating the proposed

route planning module into the decision support component

of an existing PMS. Specifically, relying on the network

analysis modules already included in most PMSs, a set of

eligible test sections could be automatically identified and

fed to the route planning module. These data services could

all occur within the decision support component of the

PMS framework as specified by Tsai and Lai (2002). The

route planning module could then provide its output – the

optimized route plan – to the operation component. The

operation component, once the route had been executed,

would then automatically feed its data back to the historical

pavement condition data module.

In order for this integration to work smoothly, the route

optimization module must be able to handle all problem

sizes efficiently. Typical pavement data collection projects

include as many as one or two thousand sections that are

spread throughout the network. The largest instance that

was solved using an off-the-shelf branch-and-bound algo-

rithm seeded with a heuristic solution involved 349 sec-

tions and produced a good, but not necessarily optimal

solution. Future work includes further developing the

heuristics used here to warm start the exact solver with the

goal of producing good solutions to the larger instances

more efficiently. Given the improvement over the current

practice seen in this work, the need for an optimal solution

is not as critical as the need for rapidly arriving at a good

solution. Rapid solution generation becomes even more

important when the real-time dynamics of roadway con-

gestion are considered.

The driving time matrix between the sections, the depot,

and the hotels was populated using the Google� Maps

distance matrix API. The generated matrix excludes any

delays based on current traffic conditions or weather rela-

ted events. During real-time data collection, traffic condi-

tions could have a significant effect on the route selection

and the overall project costs. As such, future work includes

the development of a dynamic optimization technique that

can be used during data collection as a means to incorpo-

rate real-time traffic updates.

Finally, certain pavement data collection equipment,

such as the friction testers, require water refill after a cer-

tain number of test points or tested lane miles depending on

whether the testing is discrete or continuous. The water

refill locations are typically located at the DOT’s mainte-

nance yards. For other projects, a water tanker follows the

friction tester or waits nearby the testing location for refill.

In this regard, future work requires an extension of the

model to simultaneously capture the need to visit fixed

water refill locations based on the capacity of the friction

testers and the need to select hotel stops based on hours of

service.

Appendix A: Mathematical Formulation of Route

Optimization Problem

In the language of graph theory, the authors define a graph

G comprised of arcs, A, vertices V, and edges E. The arcs

must be traversed, while the edges may, optionally, be used

as necessary to travel between non-adjacent arcs. This

relatively straight forward problem is complicated by the

fact that drivers are bound by hours-of-service regulations

that require a rest period after a period of 8 h of work. If

overtime work is allowed, then rest is permitted after a

minimum of 8 h and before a maximum of 12 h. Then, the

drivers may either use a hotel or return to the home city of

the testing agency to rest for the evening. Determining the

tours through all arcs that minimize costs, which are a

combination of drive time and hotel stays, is the objective

of this problem.

To achieve this, the arcs (the sections that must be tes-

ted) are reduced to nodes. A node for the depot and nodes

for the hotels that may be used within the route are also

specified. Multiple copies of the depot and hotel nodes may

be included in the model to allow for multiple trips to/from

the depot and multiple stays at a specific hotel. Then the

problem is formulated as a routing problem in which the

goal is to construct a set of least cost cycles passing

through all nodes. Given this problem description, the

following notation for the parameters is designated.

D the set of depot copies included to permit as many

trips home as necessary

H the set of hotels (including copies of hotels as

necessary)

J the set of jobs (i.e. sections for testing)

N the set of all nodes, which is: D [ H [ J

tij the time required to travel from node i to node j

F the set of sections that are farther than a set threshold,

h, away. Mathematically, F ¼ ði; jÞjtij � h
� �

.

Section pairs that are more than h units apart require

additional equipment setup time upon arrival
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sj the time required to setup the equipment to test a

section j 2 J

ch the cost of staying in hotel h 2 H

l the cost of mobilization – that is the cost per unit time

to travel to a node in the test equipment, excluding

operator wages

s the cost of testing – that is the cost per unit time to

setup or test a segment, excluding operator wages

x the operator’s wages per unit time when not in

overtime

X the operator’s wages per unit time when in overtime

W the length of the working day; in our case, 8 h or 480

min

r the allowable amount of overtime; may be 0

(indicating no overtime allowed) up to 4 h

M a large number set to be W þ 2 �maxi;jfdijg

Given the problem of interest, the following three

variables are specified:

xij a binary variable indicating whether arc (i, j) is used

in the final routing; i; j 2 N

di a continuous variable designating the time of arrival at

the location of node i 2 N

gi an integer variable designating the day on which a

node i 2 N is used

Using the notation described above, a MIP is formulated

as follows:

min l
X

i2N

X
j2N tijxij þ s

X
ði;jÞ2F sjxij þ

X
i2J

X
h2H chxih

þ xW
X

i2J

X
j2D[H xij þ X

X
i2D[Hðdi �WÞ

ð1Þ

such that
X

j2N
xij ¼ 1; 8i 2 N ð2Þ

X

i2N
xij ¼ 1; 8j 2 N ð3Þ

X

i2J
x0i ¼ 1; where 0 represents the first depot node

ð4Þ
X

i2J
xii ¼ 0 ð5Þ

X

j2N
tijxij � dj; 8i 2 D [ H ð6Þ

dj � ðdi þ dii þ dijÞ �Mxij

� �M; 8i 2 J; j 2 N excluding i; j 2 F
ð7Þ

dj � ðdi þ dii þ dij � sjÞ �Mxij � �M; 8ði; jÞ 2 F ð8Þ

0� dj �W þ r� djj; 8j 2 J ð9Þ

W � di �W þ r; 8i 2 H [ D ð10Þ

gi � gj þMxij �M; 8i 2 N; j 2 J ð11Þ

gi � gj þ 1þMxij �M; 8i 2 J; j 2 H [ D n 0 ð12Þ

gi � gj þMxij �M; 8i 2 H [ D n 0; j 2 H [ D n 0
ð13Þ

di 2 Rþ; 8i 2 N ð14Þ

gi 2 Rþ; 8i 2 N ð15Þ

xij 2 0; 1f g; 8i; j 2 N ð16Þ

In words, the objective of this model, in Eq. (1), is to

minimize the total cost associated with traveling between

jobs, hotels, and the depot, the cost of setting up to test

disparate road sections, the cost of staying in hotels, the

cost of paying each day’s regular wages and the cost of

overtime wages. In this formulation a full day of wages are

paid if any testing occurred on that day. However, if one

prefers to charge for only the time involved testing or

mobilizing on any one day, the term xW may be replaced

by xtij within the fourth summation of the objective. This

objective is subject to the following constraints:

Equation (2) Each job and hotel/depot node must have

one and only one arc leaving.

Equation (3) Each job and hotel/depot node must have

one and only one arc entering.

Equation (4) The first copy of the depot node must have

one route departing from it to a job. (All other copies of

the depot node may be left unused.)

Equation (5) No jobs can be rejected.

Equation (6) If node j is the first node assigned following

a stay in hotel/depot i, then the arrival time to j (dj) must

be later than the time required to travel from the hotel/

depot to the starting location of demand j.

Equation (7)–(8) If node j follows job i then the arrival

time to node j must be later than the arrival time to job

i plus the time required to serve job i plus the time

required to travel between job i and node j; if, however,

xij ¼ 0, then the arrival time to job j is unconstrained.

Furthermore, if the sections are within h of each other,

then the setup time may be ignored.

Equation (9) The arrival time to job j must be during

the working day and at least before the time that

serving job j would no longer be feasible with

allowable overtime of r
Equation (10) The arrival time at a hotel or back at the

depot must be after the end of the working day and

before a point where it would be considered overtime.
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Equations (11)–(13) The day increases by one when a

hotel or depot is used.

Equation (14) di is a positive real number.

Equation (15) gi is a positive real number.

Equation (16) xij is binary.
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