
 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 1 

Mob Programming – A Promising Innovation 
in the Agile Toolkit 

Full Paper 

VenuGopal Balijepally 
Oakland University 
balijepa@oakland.edu 

Sumera Chaudhry 
Oakland University 

sichaudh@oakland.edu 
Sridhar Nerur 

University of Texas at Arlington 
snerur@uta.edu 

Abstract 

Mob programming is a new agile practice that is attracting the attention of software community. This 
paper presents an overview of mob programming, its benefits and risks identified by its proponents and 
early adopters and suggests areas for future academic research that could help establish its efficacy and 
theoretical rationale. The paper also presents the results of text analysis done on the extant literature on 
the subject. 

Keywords 

Mob programing, mobbing, eXtreme programming, agile development 

Introduction 

Agile methodologies, which were inspired by the principles outlined in the agile manifesto (AgileAlliance 
2001), have gone mainstream, as evidenced by their current popularity among software organizations 
(Dingsøyr et al. 2012). Scrum and XP are by far the more popular of the agile approaches today, gauging 
from their widespread adoption and appeal. With the increasing maturity of agile processes and methods 
in organizations, software teams have been increasingly customizing and adapting the practices that best 
serve their project contexts and organizational realities. Mob programming is one such novel adaptation 
that seeks to scale and extend the collaborative process underpinning the XP practice of pair 
programming to the whole team.  

Mob programming or ‘mobbing’ is a new agile practice capturing the attention of the software developer 
community. In this approach, the members of a software development team all work together on the same 
computer on the same problem by taking turns at the keyboard (Zuill 2014). Mobbing evolved from the 
personal experiences of Woody Zuill, an agile coach and consultant, when working on software projects at 
Hunter industries (Zuill 2014).  Unlike the eXtreme Programming  (XP) practice of pair programming 
(Beck 2000), where two developers work collaboratively together, mobbing involves the entire software 
team of about 4 to 5 members working together on the same computer at the same time on the software 
task at hand. The initial reports from early adopters of this practice are quite encouraging (Boekhout 
2016; Wilson 2015), which is contributing to its growing appeal.  

While pair programming extended the software development task, traditionally done individually, into a 
collaborative effort involving a pair, mob programming takes it to a completely new level involving the 
entire team. That is, the entire team is encouraged to work collaboratively on the same task using one 
computer and at the same time and place. In other words, the work that was traditionally divided among 
individual developers and performed in parallel is now done sequentially by the whole group, one task at a 
time. This certainly raises questions concerning the efficacy of this practice in terms of software quality, 
throughput, and/or developer productivity achieved. While the initial evidence from reports of early 
adopters attests to the overall benefits of this approach, it needs further empirical validation from both 
software practitioners and academics. Similar to pair programming, we believe mob programming has its 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301372045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 2 

merits to be considered as a standard practice for more widespread adoption in software teams. With 
agile methodologies transforming software development into a socio-technical endeavor, mob 
programming could be a perfect agile innovation that fits the needs of the new ‘socially connected’ 
generation of programmers entering the workplaces. While software developers are experimenting and 
adapting mob programming in their organizations for realizing potential benefits, it behooves the 
academic community to step in and explore this phenomenon in terms of providing theoretical 
underpinnings and establishing its efficacy through rigorous empirical validation. In this research, we 
provide an overview of mob programming and its process, explore its benefits and risks, and identify 
potential areas for academic research. We hope this study will motivate IS researchers to embark on this 
journey to explore this novel phenomenon and its underlying factors to help validate and enhance its 
efficacy.  

The remainder of the paper reads as follows. First, we explain mob programming and its process. Then, 
we explore the benefits and risks highlighted in the current literature, which mainly comprises reports of 
early adopters. Next, we present the results of text analysis done on the available corpus of literature on 
the topic. Further, we identify potential areas concerning mobbing and its efficacy that could benefit from 
academic research. Finally, we present our conclusions. 

Mob Programming 

To our knowledge, the term ‘mob programming’ first appeared in the early XP literature (Hohman and 
Slocum 2002). While sharing the experiences of their team transitioning into XP practices, Hohman and 
Slocum (2002)) discuss an approach to code refactoring done in groups involving more than two 
developers. They called it ‘mob programming’, deriving from the term pair programming that was 
becoming popular on the heels of agile manifesto (AgileAlliance 2001) and Kent Beck’s espousal of XP and 
its agile practices (Beck 2000). Inspired by the benefits to pair programming (e.g., cleaner code in less 
time, shared ownership, seamless communication and instant feedback, etc.) reported in early studies 
(Cockburn and Williams 2001),  Hohman and Slocum (2002)) describe how they experimented to develop 
a process and structure to their weekly hour long luncheon sessions of ‘mob programming’, where they 
tried code refactoring. The primary objectives for these sessions included reinforcing the benefits of XP 
principles and practices such as clean code, shared code ownership, improved test coverage, knowledge 
sharing concerning coding standards, programming patterns, design decisions, etc. In terms of the actual 
process, Hohman and Slocum (2002) discuss three roles that they conceived for the persons involved in 
these sessions--drivers, narrators and mob. A driver is the person at the keyboard coding, compiling and 
testing the code, while a narrator is the person who wrote the original code and who initially explains the 
purpose of the code and how it fits with the rest of the application. The remaining members of the team 
constitute the mob that discuss the code and provide feedback. Hohman and Slocum (2002) highlight 
how they continuously tweaked the process and the format of these sessions to help realize their stated 
objectives. Thus, this early form of ‘mob programming’ was a one-hour weekly routine to reinforce the XP 
values of communication, simplicity, feedback and learning (Beck 2000), that involved refactoring a 
sample code in a group setting. However, it was not until Woody Zuill (Zuill 2014) that ‘mob 
programming’ has evolved into its current, well fleshed out process for coding and delivering software by 
an entire group working together all the time.  

In mob programming conceived by Woody Zuill (Zuill 2014), the whole team works on the same task 
together at the same place using one computer, for extended periods, if not all the time. It is left to the 
team to decide if they would like to engage in ‘mobbing’ all the time or some time daily or for a few hours 
once a week. The team not only works together to code, but also to define stories, design, test and deploy 
software, and to work with the customer or the product owner. The mobbing team works in a workshop 
environment with team members seated around a PC with a large monitor or a projected screen, which all 
members could see. Although Zuill suggests certain layouts that could work well for many workplace 
settings, it is up to the teams to improvise and settle on the layout that works best for them. 

Member Roles 

Similar to pair programming, mobbing involves the roles of drivers, navigators and partners. Driver is the 
person performing the software task at the keyboard, whether it is designing, architecting, coding, 
debugging, testing or creating a user story. Other members act as Navigators to do other related tasks 



 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 3 

such as inspecting the code, searching the internet for any information, seeking clarifications on 
requirements from customers, etc. Customers or Product owners are referred to as ‘Partners’ and are 
encouraged to be part of the team on a full time basis or at least be available on a regular basis for shorter 
durations. A Partner, when present during a mobbing session, would not be just another navigating 
member, but also may volunteer to take on the role of a driver for demonstrating specific ideas at the 
keyboard. In fact, the ideas and thoughts of the navigating members are converted into code or other 
artifacts through the hands of the driving member. Thus, drivers function as the “hands of the team” on 
the keyboard (Zuill 2014). A Navigator’s job is to discuss different ideas, design a solution and guide the 
driver to implement his/her code. In addition, a navigator constantly inspects and reviews the code to 
look for errors and to suggest areas where for code improvement. Ideally, Navigators should to do all the 
thinking and free up the driver to concentrate on coding the solution. There should be free 
communication among members so that navigators could clearly communicate their ideas to the driver 
for quick coding/implementation. Each driver may need a different level of navigational support with 
some requiring detailed instructions, while others needing only short and quick guidance (Zuill and 
Meadows 2016).  

Role Rotation 

Team members need to rotate and take turns at the keyboard at regular intervals, say between 5 and 15 
minutes, as decided by the team. Shorter intervals are preferable so that the navigators remain focused 
and alert to quickly step into the driver role. To enforce timely rotation, teams could use timers that beep 
at set intervals, as long as it is not distracting or irritating to other teams in the vicinity. To discourage 
members from attempting that one last thing they would like before turning over the keyboard, anytime a 
driver hits upon a new idea while working at the keyboard, it is best for the member to give up driving and 
help navigate another member to test out the idea at the keyboard []. 

Core Team Values 

Extreme Programming underscores communication, simplicity, feedback, courage and respect as values 
that help foster agility in software teams (Beck 2000). Drawing from those values that relate to 
interpersonal dynamics (i.e., communication, feedback, and respect), mob programming emphasizes the 
importance of developers treating each other with kindness, consideration and respect (Zuill 2014). As 
conversations during mob programming typically involve five, six or more people, the number of 
interactions quickly escalate. If teams are engaged in mobbing all day, it is not difficult to see how things 
could quickly turn unpleasant if members do not follow these principles in each of their interactions. 
Consciously reminding oneself to be kind and considerate to others ensures that other members will voice 
their opinions and thoughts with a sense of security and freedom. In any discussion, if people are 
considerate and respectful to each other then it is see each other’s point of view knowing that each 
member is genuinely trying to help the team. It also becomes less difficult to let others win. Mob 
programming makes it easy to try out competing ideas swiftly to see which one makes more sense so that 
no member feels excluded (Zuill and Meadows 2016). This also reduces the costs for taking a wrong turn 
or for pursuing a dead end and thus increases the teams’ appetite for experimentation and discovery.   

Benefits and Risks of Mob Programming  

Potential Benefits of Mob Programming 

One the face of it, mobbing appears highly resource intensive and wasteful with, say, five members of a 
group working on the same software task instead of the five members working independently on five 
different tasks. What are some possible benefits that these early adopters see which inspires them to keep 
doing it every day and at all times? Zuill and Meadows (2016) argue that a better way to appreciate the 
productivity benefits of mob programming is to understand how mobbing teams mitigate the productivity 
destroyers ubiquitous in non-mobbing teams. 

Less managerial overhead – In teams where developers work independently there is always some extra 
burden that they carry to coordinate the activities of multiple developers. Such managerial overhead 
includes activities such as emails, meetings, follow-ups, presentations, code mergers, work schedules, 



 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 4 

code reviews, performance reviews, etc. When the team members are talking and coding together, there is 
less need for emails, meetings, performance monitoring, etc. As every piece of code created by the team 
goes through the live scrutiny of the entire ‘mob’, it greatly reduced the need for any code mergers or code 
reviews. Zuill (2014) admits that he and his team at Hunter Industries did not set out to identify and solve 
the various issues that hamper productivity, but instead were quite observant and tried to accentuate 
whatever was working. In the process, they saw great reduction in the managerial overhead.  

Less Communication bottlenecks – A developer’s actual coding work is often hampered when some 
information or clarification is needed on a user story or a requirement. The ‘question queue time’—the 
wait time to get an answer to a question blocking a developer—could vary widely for different questions. 
When the queue times are aggregated for all questions that arise in a typical day for a developer and 
across all team members, the resulting loss of productivity at the project level could be staggering. When 
blocked from moving further, to stay busy developers typically take up a new task from the pending 
inventory of work. Such inventory of unfinished jobs are productivity busters, as stakeholders receive no 
value until each of them is completed and released for use. As and when developers receive answer to 
their original question, they incur cognitive switching costs to go back and get up to speed on that task. In 
mobbing teams, the question queue times are drastically reduced if another member of the team has the 
answer to the question. If the team’s Partners (i.e., product owners) show up to mobbing sessions even for 
few hours every day and are readily accessible to the team for the rest of the day through phone calls, 
screen sharing or instant messaging, it would drastically reduce question queue times. The work gets 
completed and delivered faster instead of ending up in the inventory of unfinished work. (Zuill and 
Meadows 2016).   

Less Decision-making – Software teams are required to make several decisions during the course of 
project. Making people accountable to their decisions is a common strategy used in organizations, which 
is well intentioned and on the face of it quite appealing too. However, developers are often called to make 
decisions with incomplete or imperfect information. Amidst a culture of accountability people become 
reluctant to make such decisions, which leads to dysfunctions and project delays. When decisions made in 
good faith end up looking not so good later, people feel compelled to defend and pursue them with vigor 
until things become defenseless. Thus, a well-intentioned commitment to accountability in decision 
making often leads to resource waste and costly project delays benefiting no one. Mob programming seeks 
to avoid such dysfunctions surrounding decision making by practicing ‘just-in-time’ decision-making—
i.e., making decisions concerning only the current task. The underlying assumption is that mobbing teams 
do not need to make decisions ahead of time, but only when actually working on the task involved in the 
decision. As work is done incrementally, any bad decisions could easily be undone, thereby containing 
potential damage. With each member contributing to the work as well as to all the decisions involved 
therein, the fear of accountability that hampers decision making quickly gives way to courage and a 
culture of experimentation (Zuill and Meadows 2016).  

Less waste and doing only what is barely sufficient – Simplicity in design and emphasis on minimizing 
feature creep and even test bloat is a core agile principle underpinning all agile methods. When mob 
programming, many such issues quickly fade away without any conscious effort. For instance, the ‘one-
piece flow’ pattern of workflow (i.e., the entire team working on a feature till its completion and delivery 
to the customer before moving to the next one) ensures that the utility of a just completed feature could be 
instantly judged from the live feedback received from the mob. This helps steer the team into the next 
useful feature to work on. The process continues until the team senses the diminishing value of adding 
additional features and moves on to work on a different product or module. Thus, the team smoothly 
grows into the ‘barely sufficient’ zone, thus avoiding wasteful effort (Zuill and Meadows 2016).  

Less technical debt – Technical debt refers to the short cuts and quick fixes that are sometimes done 
during coding for expediency rather than taking the time to code the best solution possible. When 
technical debt is allowed to grow, it becomes increasingly difficult to make changes or debug the code. 
Refactoring the code at regular intervals helps repay it. In mob programming, the continuous code 
inspection and review done by the navigators encourages the team to stick to coding standards and create 
cleaner code in the first place, thus minimizing technical debt (Zuill and Meadows 2016).  

Less thrashing issues in teams – Thrashing refers to the distractions and interruptions that developers 
face from their work when disturbed by others for help, or called upon to attend meetings, etc. Thrashing 
makes them less effective in accomplishing their current work. In a mob programming setting, thrashing 



 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 5 

fades away as the team gets to decide how to deal with the interruptions. Depending upon the nature of 
issue involved, either one member takes care of it while the rest continue with the work at hand, or if 
urgent, the team drops everything and swiftly addresses the issue. Due to the ‘group memory’ of mobbing 
teams, disturbances to the team’s flow of work from thrashing episodes is much less compared to 
independently working developers (Zuill and Meadows 2016).  

Less politics – In teams where developers code independently, the incentive structures typically favor 
individual productivity, leaving people in a bind concerning the extent of help they could provide others 
who may be seeking it, particularly when facing pressures to get their own work done. In mob 
programming, with the team tasked to collectively deliver the work, the individual developers freed from 
the pressures of individual accountability, would be more than willing to help others seeking their help 
(Zuill and Meadows 2016). Answering a question would not be a distraction but an act of kindness that 
builds social capital and generates future benefits to the individual.    

Less need for meetings – As mob programming is done in a conference format, it is like having an all-day 
meeting where work is getting done while all related issues are continuously being discussed and resolved 
at the same time. It is not difficult to see how this diminishes the need for other formal meetings and 
follow ups that would have been necessary to resolve various issues (Zuill and Meadows 2016). 

Continuous learning – Given the right environment, mob programming could amplify learning for all the 
team members concerned, irrespective of their skill levels or coding experience. When developers are 
working on a task together, with each bringing their skills, ideas and approaches to play in trying to find a 
solution, it creates boundless possibilities for learning from each other. Such learning could include 
coding solutions, design patterns, tool usage, keyboard shortcuts, testing and debugging skills, among 
others. (Zuill and Meadows 2016). 

Higher Developer Satisfaction – After some initial adjustment period, developers report very high 
satisfaction with the overall experience of doing mob programming. Each task completed by the mob 
team helps reinforce the effectiveness of the approach to the team members (Zuill and Meadows 2016). 

Higher Software Quality – Once a team stabilizes into the mobbing routine, they can see substantial 
improvements in the quality of code produced. As multiple eyes are inspecting and reviewing the code 
under development, mobbing teams can easily spot and fix several bugs and errors in the code before 
releasing for testing or deployment. The resultant code should not only have less bugs, but should also be 
cleaner and hence more maintainable due to better adherence to coding standards possible during 
mobbing (Zuill and Meadows 2016).  

Possible Risks of Mob Programming 

While the experience of early adopters’ highlights several benefits to mob programming outlined above 
(Arsenovski 2016; Boekhout 2016; Kerney 2015; Kolchier 2009; Wilson 2015; Zuill 2014), some potential 
risks could negate these benefits and thus need to be managed for achieving sustainable results (Zuill and 
Meadows 2016).  

Organizational culture – If an organization has rigid top-down decision-making culture, mob 
programming may not be a useful approach, as mobbing teams need to be self-organizing. They need the 
latitude to make most decisions within the team to be effective at delivering working code on a daily basis. 
If a mobbing team of four or five developers face regular disruptions waiting for decisions or answers 
from stakeholders external to the team, it will be quite wasteful seriously affecting the productivity of the 
team.  

Familiarity with Agile Development – If an organization is not already using agile methods, it will be 
difficult to realize expected productivity benefits from mob programming. On the other hand, if a software 
team is already agile and has experience with pair programming, then getting into mob programming 
would be a minor cognitive leap for the concerned people that drastically reduces overall risk for the team.  

Dominant Personalities – If there are some dominant personalities within mob teams and if they are the 
ones doing most of the talking and are steering the whole team into their ideas and solutions, then others 
may find the whole team atmosphere less conducive to their own personal development. They may slowly 
switch off and even dump mobbing altogether to go back to their independent work routines. As signing 



 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 6 

up for mobbing should generally be a voluntary undertaking, it is incumbent on all the members to create 
a hospitable environment for everybody to be able to contribute and feel valued. Treating each other with 
kindness, consideration and respect in all their daily interactions becomes central to keeping them all 
together. 

Developer Safety and Fatigue – If mob teams have to work together all day, having the right workplace 
setup becomes essential. Having the right equipment (e.g., comfortable chairs, large monitor or 
projector/screen, multiple keyboards, whiteboards, speakerphones, hand sanitizers, etc.), and right office 
space where teams can talk aloud without disturbing other teams, private work areas for developers when 
not engaged in mobbing, etc. all become critical enablers for creating a safe and productive workspace for 
mobbing. As mob programming could be quite intensive, developers could experience exhaustion and 
fatigue when mobbing for extended periods, or for the whole day. Keeping a manageable work schedule 
with periodic breaks and letting members tend to their personal or other official chores (e.g., filling 
expense reports or time sheets, attending other meetings, catching up on emails/IMs, etc.) while the rest 
are mobbing, etc. helps create a sustainable work environment for the developers.  

Text Analysis of Mob Programming Articles  

In order to get a sense of the dominant themes and keywords underlying the phenomenon of mob 
programming, we performed text mining on the sparse literature on mobbing. This included seven articles 
and a seminal book on Mob Programming by Zuill and Meadows (2016). The following steps were 
followed in performing text analysis: 

a) Articles and the book were available in PDF format, so they were converted to text. 

b) The text obtained from step (a) was then preprocessed. This included: 

i. converting text to lowercase; 

ii. removing common English stopwords (e.g., is, of, the, a) as well as other words (e.g., 
finally, conclusion, based) that come in the way of interpreting the results; and 

iii. removing digits and punctuation. 

c) The parsed files were then used to generate a word cloud (see Figure 1), to obtain relationships of 
words based on their co-occurrence frequency (Figure 2), and to extract key themes latent in the 
text (see Table 1).  

The word cloud shown in figure 1 captures many of the key words that have been used to describe mob 
programming. Words such as “learning”, “driver”, “whole”, “retrospective”, “defect”, “idea”, “keyboard”, 
“rotation” and “whole” capture the essence of the phenomenon under discussion. 

VosViewer, an excellent software package from Leiden University in the Netherlands, was used to 
visualize words and their proximities based on co-occurrence frequency (Van Eck and Waltman 2011). 
Figure 2 highlights the prominent words in the mob programming literature.  

 



 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 7 

 

Figure 1. Word Map showing dominant words 

 

Figure 2. Word Relationships  

Finally, we used MALLET (Machine Learning for Language Toolkit) from the University of Massachusetts 
at Amherst, to extract eight topics (as many as the number of documents being examined). Specifically, 
the tool uses a popular algorithm called Latent Dirichlet Allocation (LDA) to identify topics and their 
associated words (McCallum 2002). Table 1 shows the key topics and the most prominent words that 
define each topic. Evident in these topics are issues related to process (e.g., role, meeting, keyboard, 



 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 8 

group), practices (e.g., Test Driven Development), people (e.g., trust, kindness), and benefits (e.g., 
learning, enjoyable). 

 

Table 1. Topics and Keywords resulting from the Textual Analysis of Mob Programming 
Articles 

Potential Areas for Future IS Research  

As indicated earlier, mob programming is a relatively new agile practice that is catching the attention of 
the software developers. The book authored by Zuill and Meadows (2016), is the main source for 
understanding mob programming and how to get started on it. In addition, some early adopters have 
shared experiences reports that appear in some agile conference proceedings [e.g., (Arsenovski 2016; 
Wilson 2015)]. The empirical evidence concerning its effectiveness is based on the reports of Woody Zuill 
and his team members who have more than four years of experience working on it.  It is quite noteworthy 
that all the early adapters are seeing great value and attesting to its benefits. However, it is important that 
academic community also steps-in to validate its efficacy and explore its theoretical rationale for the 
benefit of software practice. Towards this end, we identify some research areas relating to mob 
programming that could benefit from academic inquiry. 

Theoretical Rationale – Innovations in software development methods and practices routinely happen in 
the trenches of software practice, which are then put to rigorous theoretical and empirical scrutiny by the 
academic community to assure the practitioner world of its efficacy and to caution against potential risks. 
As Jacobson and Spence (2009) suggest, sound theoretical underpinnings help identify the core ‘truths’ of 
software development that are independent of any methodology or framework. As mobbing involves 
group work, theoretical perspectives from social psychology that explore group processes and relative 
productivity of groups versus individuals [e.g., (Hill 1982)] when working on various tasks would be a 
good starting point. It is also important not to lose sight of group dysfunctions such as groupthink, social 
loafing [e.g., (Harkins 1987)] that could hamper mob team productivity. The holographic principles of 
organizational design (Morgan and Ramirez 1984) is another theoretical perspective that could help 
understand the effectiveness of mobbing practices and procedures.  

Empirical Validation – While the initial evidence for the effectiveness of mob programming by its 
proponents and early adapters is quite encouraging, it still requires validation through rigorously 
designed controlled experiments, so that more organizations could adopt it fully understanding the 
conditions that accentuate its benefits and minimize potential risks. Conducting such controlled 
experiments and establishing the statistical significance of resultant findings falls squarely within the 
expertise of the academic community. If academics could collaborate with software practitioners in this 
endeavor, it could help establish mob programming as a viable agile practice and speed up its adoption 
and diffusion beyond its early prospectors.   



 Mob Programming & Agile development 
  

 Twenty-third Americas Conference on Information Systems, Boston, 2017 9 

Other Research Topics – There are several factors concerning mob programming that could impact its 
efficacy. Such factors, which need further investigation, include the following: team size; team 
composition in terms of abilities, personality factors and gender; project characteristics such as size, 
complexity and novelty; organization culture; and collocated versus distributed teams. For instance, we 
believe mob programming could fit in with the working styles of new socially connected generation of 
IS/Computer Science graduates entering IT workforce. Thus, it will be interesting to see how age, 
experience, and social connectedness of developers contributes to the effectiveness of mob programming. 
The factors and issues identified above are just illustrative and are by means comprehensive. 

Conclusion 

Software development approaches have undergone major changes in recent times. While there is little 
doubt that Agile Methodologies are dominant in industry, practices employed by organizations can vary 
considerably. Most of these practices have been evolved to ensure that: a) there are no communication 
breakdowns; b) the entire team is on the same page and all the information needed to solve the problem is 
readily available; c) a truly collaborative environment that fosters a climate of creativity exists; and d) the 
entire team collectively senses and responds to challenges that emerge. Mob programming is an outcome 
of the efforts of organizations to achieve the aforementioned objectives. 

In this study, we provide an overview of mob programming, outlining the motivation for the practice and 
the benefits it confers. Furthermore, our paper, drawing on past empirical evidence, articulates the 
challenges that have to be overcome to make mob programming efficacious. Our review opens up avenues 
for empirical research on the practice of mob programming.   

REFERENCES 

AgileAlliance. 2001. "Manifesto for Agile Software Development."   Retrieved Jun 1, 2013, from 

http://www.agilemanifesto.org 

Arsenovski, D. 2016. "Swarm - Beyond Pair, Beyond Scrum," Agile 2016 Conference, Atlanta, GA. 

Beck, K. 2000. Extreme Programming Explained: Embrace Change. Reading, MA: Addison Wesley. 

Boekhout, K. 2016. "Mob Programming: Find Fun Faster," 17th International Conference on Agile Software 

Development, XP 2016, H. Sharp and T. Hall (eds.), Edinburgh, UK: Springer, pp. 185-192. 

Cockburn, A., and Williams, L. 2001. "The Costs and Benefits of Pair Programming," in Extreme Programming 

Examined, G. Succi and M. Marchesi (eds.). Boston, MA: Addison Wesley, pp. 223-243. 

Dingsøyr, T., Nerur, S., Balijepally, V., and Moe, N.B. 2012. "A Decade of Agile Methodologies: Towards 

Explaining Agile Software Development," Journal of Systems & Software (85:6), pp. 1213-1221. 

Harkins, S.G. 1987. "Social Loafing and Social Facilitation," Journal of Experimental Social Psychology (23:11), 

pp. 1-18. 

Hill, G.W. 1982. "Group Versus Individual Performance: Are N + 1 Heads Better Than One?," Psychological 

Bulletin (91:3), pp. 517-539. 

Hohman, M.M., and Slocum, A.C. 2002. "Mob Programming and the Transition to Xp," in Extreme Programming 

Perspectives, G. Succi (ed.). Boston, MA: Addison-Wesley, pp. 323-334. 

Jacobson, I., and Spence, I. 2009. "Why We Need a Theory for Software Engineering," in: Dr. Dobb's Journal. 

Kerney, R.J. 2015. "Mob Programming - My First Team." 

Kolchier, K. 2009. "Exploring Synergistic Impact through Adventures in Group Pairing," Agile Conference, 2009. 

AGILE'09.: IEEE, pp. 265-270. 

McCallum, A.K. 2002. "Mallet: A Machine Learning for Language Toolkit." from http://mallet.cs.umass.edu 

Morgan, G., and Ramirez, R. 1984. "Action Learning: A Holographic Metaphor for Guiding Social Change," 

Human Relations (37:1), January 1, 1984, pp. 1-27. 

Van Eck, N.J., and Waltman, L. 2011. "Text Mining and Visualization Using Vosviewer," ISSI Newsletter (7:3), pp. 

50-54. 

Wilson, A. 2015. "Mob Programming-What Works, What Doesn’t," International Conference on Agile Software 

Development: Springer, pp. 319-325. 

Zuill, W. 2014. "Mob Programming–a Whole Team Approach," Agile 2014 Conference, Orlando, Florida. 

Zuill, W., and Meadows, K. 2016. Mob Programming: A Whole Team Approach. Leabpub. 


