
 Method for Evaluating End-User Development Technologies

A Method for Evaluating End-User
Development Technologies

Full Paper

Claudia de O. Melo
University of Brasília
claudiam@unb.br

Jonathan H. M. de Moraes
University of Brasília

jonathanhmaiademoraes@gmail.com

Marcelo Ferreira
University of Brasília

marcelohpf@gmail.com

Rejane C. Figueiredo
University of Brasília

rejane@unb.br

Abstract

End-user development (EUD) is a strategy that can reduce a considerable amount of business demand on
IT departments. Empowering the end-user in the context of software development is only possible
through technologies that allow them to manipulate data and information without the need for deep
programming knowledge. The successful selection of appropriate tools and technologies is highly
dependent on the context in which the end-user is embedded. End-users should be a central piece in any
software package evaluation, being key in the evaluation process in the end-user development context.
However, little research has empirically examined software package evaluation criteria and techniques in
general, and in the end-user development context in particular. This paper aims to provide a method for
technology evaluation in the context of end-user development and to present the evaluation of two
platforms. We conclude our study proposing a set of suggestions for future research.

Keywords

End-user development, EUD, Technology evaluation, Development tools.

Introduction

End-user development (EUD) aims at enabling end-users and non-specialists in application programming
to develop and adapt systems according to their professional, educational or leisure needs (Lieberman,
2006). From the point of view of Software Engineering, EUD means, in general, the ‘active participation
of end users in the software development process’ (Costabile, 2005).

EUD is a strategy that can reduce a considerable amount of business demand on IT departments,
generating multiple benefits (McGill, 2004) as higher customer satisfaction with IT. However,
empowering the end-user in the context of software development is only possible through technologies
that allow them to manipulate data and information without the need for deep programming knowledge
(Fischer, 2004). Failures in software package acquisition are not caused by the technology, but by the
failure in choosing it in the right way (Misra, 2017), without prioritizing the end-user context and their
capabilities.

In the absence of a quality system to evaluate software packages, vendors and users might play their role
without any focus and relevance on the requirement of an IT project (Misra and Mohanty, 2003). The
success and failure of end-user development within an organization ultimately depends on how effective
software packages are used (Montazemi, Cameron, and Gupta, 1996). Therefore, end-users should be a
central piece in any software package evaluation, being key in the evaluation process in the end-user
development context. Little research has empirically examined software package evaluation criteria and
techniques in general, and in the end-user development context in particular (Harnisch, 2014; Jadhav and
Sonar, 2009; Jadhav and Sonar, 2011; Misra and Mohanty, 2003). This paper aims at investigating how to
evaluate EUD technologies. We developed a model to evaluate end-user development software packages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Method for Evaluating End-User Development Technologies

that can be further extended to other types of technologies. We analyze and present the evaluation results
from two platforms using the proposed method. We discuss the evaluation process and results,
limitations, and possible future research paths.

Literature Review

According to Lieberman (2006), EUD has encompassed different fields of research, as Human-Computer
Interaction (HCI), Software Engineering (SE), Corporate Work Supported by Computers (CSCW), and
Artificial Intelligence (AI). We carried out a review of the literature on aspects related to the process of
evaluating technologies for end-user developers. Considering the scope of our study (technology
evaluation), we found during our review that three different areas have important, but partial,
contributions to our research purpose: 1) software package acquisition research; 2) software quality
models & CSCW/HCI research, and 3) technology acceptance research.

Software package acquisition research

There are multiple models available which attempt to increase the level of understanding of general
software package acquisition processes (Jadhav and Sonar, 2009, 2011; Misra, 2017). Jadhav and Sonar,
(2009) presented a systematic review that investigates methodologies for selecting software packages,
software evaluation techniques, software evaluation criteria, and systems that support decision makers in
evaluating software packages. They selected 60 papers published in journals and conference proceedings.
They concluded that there is a lack of a common list of generic software evaluation criteria and its
meaning, and that there is a need to develop a framework comprising of software selection methodology,
evaluation technique, evaluation criteria, and system to assist decision makers in software selection. The
same authors present the framework in a later study (Jadhav and Sonar, 2011).

Damsgaard and Karlsbjerg, (2010) presents seven principles for selecting software packages. First, when a
given organization buys packaged software, they join its network. Secondly, they recommend
organizations to take a long-term perspective, looking ahead but reasoning back. Then, when choosing
packaged software, there is safety in numbers, but organizations should focus on compatibility and be
wary of false gold. Finally, they recommend choosing a software package with accessible knowledge, with
the right type of standardization, and that all journeys start with a first step. Harnisch, (2014) reviewed
the literature on enterprise-level package software acquisition through the lens of IT governance to assess
the state-of-the-art of software acquisition governance. His research aims at helping decision-makers to
optimize the software procurement processes, governance, and behaviors.

Software quality models & HCI/CSCW research

Software package acquisition methodologies usually compare user requirements with the packages’
capabilities. There are different types of requirements, as managerial, political, and quality requirements
(Franch and Carvallo, 2003). In their systematic review of software package evaluation and selection,
Jadhav and Sonar (2009) found that quality characteristics such as functionality, reliability, usability,
efficiency, maintainability, and portability have been used as evaluation criteria in several studies. They
also found that, among the ISO/IEC standards related to software quality, ISO/IEC 9126-1 specifically
addresses quality model definition and its use as a framework for software evaluation. ISO/IEC 9126 was
replaced by ISO/IEC 25010.

In the context of end-user development technology evaluation, we consider the ISO an important guide to
define characteristics, attributes, and metrics. However, to be able to capture the needs of an end-user
developer, which is not the same as a professional developer nor a final end-user, further refining is
probably required.

In addition, we argue that usability is a central characteristic for any model focusing on evaluating
software packages. We have noticed that both software package acquisition research and software quality
models research did not pay enough attention on investigating better usability evaluation techniques.
There is widely accepted well-documented evaluation method for diagnosing potential usability problems
in user interfaces, such as Nielsen’s heuristic evaluation (Nilsen, 2012). Based on Nielsen’s work, Baker,
Greenberg, and Gutwin, (2002) developed an evaluation method that looks for groupware-specific

 Method for Evaluating End-User Development Technologies

usability problems. Their results suggested that an evaluation using their groupware heuristics can be an
effective and efficient method to identify teamwork problems in shared workspace groupware systems.

Technology acceptance research

In general, technology acceptance research focuses on the perceived usefulness, ease of use, and user
acceptance of Information Technology. Davis (1989) presented a seminal work in this field, the
Technology Acceptance Model (TAM), aimed at explaining user behavior across a broad range of end-user
computing technologies and user populations.

TAM has already evolved into an unified theory of acceptance and use of technology (UTAUT)
(Venkatesh, Morris, Davis, and Davis, 2003). UTAUT has four independent variables as performance and
effort expectancy, social influence, and facilitating Conditions. It is a useful tool for managers to assess the
likelihood of success for new technologies introduced and the drivers of acceptance. Thus, they can design
conditions to facilitate their adoption.

Along the same line as TAM and UTAUT, Doll and Torkzadeh, (1988) developed a model called End-User
Computing Satisfaction (EUCS) to measure the affective attitude from an user while interacting with a
specific computer application. The model contains dimensions such as content, accuracy, format, ease of
use, and timeliness.

Despite the fact that this body of research is extremely valuable for understanding end-users in general,
we argue that end-user developers have a different role when interacting with software packages. They
develop working software through them, so technology acceptance research might not answer what is
needed for an organization to decide which software package is more suitable for end-user developers.

A method for evaluating EUD Technologies

Evaluating and selecting software packages that meet organizational and end-user requirements is a non-
trivial Software Engineering process (Jadhav and Sonar, 2009). To the best of our knowledge, there is no
technology evaluation methodology particularly focused on end-user developers and their context.
Therefore, we propose a method based on a new extended literature review on the three aforementioned
research areas. In addition, we evaluate two platforms to test and refine our method. In the context of
EUD, a technology evaluation model may consider elements from the three research fields we identified in
the literature review: software package acquisition models, software quality models and CSCW/HCI
models, and finally technology acceptance models. Based on our interpretation, the model should have:

• Essential qualities that enable the end-user developer to manipulate the tool and produce useful results
in a certain application domain (from software quality models and CSCW/HCI models);

• General qualities inherent to software packages (from software package acquisition models and
technology acceptance models);

• Essential qualities for management and technological governance (from software package acquisition
models);

• An evaluation method based on already-established and tested techniques, even if they come from a
different context (from all models).

Evaluation criteria, characteristics, sub characteristics, and attributes

To be able to evaluate EUD technologies, we designed a structured quality model (Franch and Carvallo,
2003) that provides a taxonomy of software quality features and metrics to compute their value. Based on
the specific EUD domain and our literature review, we selected appropriate quality characteristics,
determined quality sub characteristics, decomposed them into attributes and finally developed
questions and metrics from different points-of-view.

Points-of-view are particularly important as they indicate who should answer the question, or the most
important stakeholder interested for that question. Moreover, as the model focuses on technology
evaluation, sometimes the software packages are the main subject of the evaluation, and sometimes the
output of the software packages (that is also software) is the main subject.

 Method for Evaluating End-User Development Technologies

All characteristics, sub-characteristics and related attributes were defined after a thorough analysis of the
reviewed literature and a pilot testing where two platforms were evaluated. We also organized the quality
characteristics into 4 criteria presented on the systematic review of Jadhav and Sonar, (2009): 1)
Functional, 2) Cost and benefit, 3) Vendor, and 4) Software quality. Tables 1 and 2 present our evaluation
model, that comprises criteria, characteristics, sub characteristics, literature references, attributes, and
points-of-view. The complete model, also containing the questions and metrics is available at
https://itrac.github.io/eud_technology_evaluation. From our literature review, we selected 11
fundamental characteristics to evaluate EUD technologies, which in turn are refined into 20 sub-
characteristics, and finally 30 attributes. These attributes are measured by 300 questions, all of them
initially collected from already established and tested techniques. We detail the model in the following
sections.

Functional characteristics

Functionality is the capability of the software product to provide functions that meet stated and implied
needs when the software is used under specified conditions. There are many possible related sub-
characteristics that are already covered by our model. So we selected the main target application domain,
that is the functional area(s) for which the software is especially oriented or strong (Jadhav and Sonar,
2009). We used the taxonomy provided by Richardson and Rymer (2016). Collaboration is the ability to
edit documents synchronously (Iacob, 2011). When the tool meets the heuristics, it indicates that there
are few or no usability errors for collaborative development (Baker et al., 2002). Despite that, end-user
developers develop solutions for themselves and less frequently for their peers, and reuse software in an
unplanned fashion. It is also expected that technologies support collaboration between professional
software developers and end-user developers, or among end-user developers (Ko, 2011). Thus, we selected
Collaboration Technology as a sub-characteristic, further derived into 5 attributes to understand to what
extent the technology provides support (Baker et al., 2002; Iacob, 2011): 1) Shareability; 2) Coordination
of actions; 3) Consequential communication; 4) Finding collaborators and establishing contact; and 5)
Concurrent protection.

Data management is the business function of planning for controlling and delivering data and
information assets (Cupoli, Earley, and Henderson, 2009). For the context of end-user development, it is
important to ensure the platform’s data and database capabilities evolve while the application is
developed (Sadalage and Fowler, 2016) and the platform capabilities to send and retrieve data from
external systems and databases (Mika, 2006). Data processing is one of the common tasks performed by
an end-user and the data management should be simplified in technical terms, to ensure simplicity in the
development (Doll and Torkzadeh, 1988).

Cost and benefit & Vendor characteristics

We adopted all cost attributes from the literature review conducted by Jadhav and Sonar, (2009). Benefits
are covered by other characteristics from our model. The selected cost attributes are: 1) License cost of the
product in terms of number of users; 2) Cost of training to users of the system; 3) Cost of installation and
implementation of the product; 4) Maintenance cost of the product; and 5) Cost of upgrading the product
when new version are launched.

General vendor characterization Jadhav and Sonar, (2009) found a number of vendor attributes, some of
them are already covered in our method (e.g., user manual and tutorial are covered by the usability
characteristic). We thus selected three essential attributes for characterizing a vendor: 1) Experience of
vendor about development of the software product, 2) Popularity of vendor product in the market, and 3)
Number of installations of the software package. Vendor dependency/Switching costs are a consequence
of buyer switching between alternative suppliers of essentially the same product. Large switching costs
can make buyers reluctant to switch suppliers (Greenstein, 1997). The more dependent on a vendor, the
higher is the probability to incur into large switching costs. Long terms and being dependent imply more
cost and less ability to innovate through Information Technology as the company is locked-in with a
specific IT supplier. We argue that anticipating the vendor dependency analysis will increase an

 Method for Evaluating End-User Development Technologies

organizations’ ability to understand possible future switching costs and reflect on the trade-offs that
dependency brings to a company innovativeness.

Software quality characteristics

Compatibility is the degree with which two or more systems or components can exchange information
and/or perform their required functions while sharing the same hardware or software environment
(ISO/IEC 25023, 2011). Four compatibility attributes were considered: 1) Technical knowledge
requirement; 2) Data exchangeability; 3) Connectivity with external component/system; and 4)
Reusability. Maintainability is the capability of the software product to be modified. Modifications may
include corrections, improvements or adaptation of the software to changes in the environment, and in
requirements and functional specifications (ISO/IEC 25023, 2011). Two main attributes were considered:
1) Modifiability and 2) Reusability.

Usability is the capability of the software product to be understood, learned, used, and being enticing to
the user when used under specific conditions (ISO/IEC 25023, 2011). Fifteen attributes were considered
in terms of usability: 1) Visibility of system status; 2) Match between system and the real world; 3) User
control and freedom; 4) Consistency and Standards; 5) Help for users to recognize, diagnose, and recover
from errors; 6) Error prevention; 7) Recognition rather than recall; 8) Flexibility and minimalist design;
9) Aesthetic and minimalist design; 10) Help and documentation; 11) Skills; 12) Pleasurable and
respectful interaction with the user; 13) Privacy; 14) Accessibility; and 15) Localization.

Reliability is the capability of the software product to maintain a specified level of performance when used
under specified conditions (ISO/IEC 25023, 2011). Two reliability attributes were considered: 1)
Availability; and 2) Vendor support. Performance Efficiency is the capability of the software product to
provide appropriate performance, relative to the amount of resources used, under stated conditions
(ISO/IEC 25023, 2011). Two attributes were considered: 1) Response time; and 2) Turnaround time.
Security is the capability of the software product to protect information and data so that persons or other
products or systems have the degree of data access appropriate to their types and levels of authorization
(ISO/IEC 25023, 2011). Six security attributes were considered: 1) Access behaviors; 2) Security
behaviors; 3) Update behaviors; 4) File upload Security, 5) Report behaviors; and 6) Security algorithms.

Points-of-view

We defined two variables to define the points-of-view: stakeholder and technology. From a stakeholder
perspective, our model has questions related to end-user developers and to the organization’s governance
team. From a technology perspective, the questions focus on the software package being evaluated
(platform) or on its output (the application generated).

Evaluating two platforms with the proposed method: Results and
Discussion

We applied our technology evaluation method for analyzing two platforms. The research team has a
Software Engineering background, both in academia and industry. To report the overall steps, we
structure the stages using the sequence proposed by Jadhav and Sonar, (2009). We explain how we
conducted each step in the EUD context. The last two stages proposed - negotiating a contract and
purchasing and implementing the software package - are outside the scope of this study.

Determining the need, including high-level investigation of software features and
capabilities provided by vendors Literature and market research helped to obtain the available EUD
technologies. The first criterion to form a list of candidate tools was market analysis. Reports such as the
one provided by Richardson and Rymer, (2016) help to get an overall picture of the market and of the
needs to be updated, as the software market is always changing. Between August/2016 and October/2016
we carried out a literature review and contacted the leaders of public and private organizations to build a
general list of tools. The literature review on tools was comprehensive, iterative, and incremental. We
looked for technologies associated with the following search strings:

 Method for Evaluating End-User Development Technologies

“EUAD” OR “EUD” OR “citizen development” OR “end-user development” OR “end-user software
engineering” OR “Low code” OR “Shadow IT” OR “User-centric” OR “RAD” OR “customer-facing
applications” OR “End-user computing” OR “End-user programming”.

Criteria Characteristic Sub characteristic References Attributes Point-of-View

Functional Functionality Main target (Richardson and
Rymer, 2016)

Application domain
(6 items)

Governance/platform

Functional Collaboration Collaboration (Andriessen, 2012) Shareability (1 item) End-user

 Technology (Baker, Greenberg,
and Gutwin, 2002)

Coordination of
actions (1 item)

developer/platform

 Consequential
communication

 (5 items)
 Finding collaborators

and establishing
contact (4 items)

 Concurrent
protection (2 items)

Functional Data Data Management (Sadalage and Data management
process (2

End-user

 Management Fowler, 2016)
(Mika,

process (2 items) developer/platform

 2006) Data input and
output (3 items)

Governance/platform

 Required technical
knowledge (3 items)

Cost and
benefit

Cost Cost (Jadhav and Sonar, License cost (5 items) Governance/platform

 2009) Maintenance cost (1
item)

Vendor Vendor Vendor
Characterization

(Greenstein, 1997)

Vendor length of
experience (1 item)

Governance/platform

 Vendor Dependency/
Switching costs

(Lichtenstein,
2004)

Product history (1
item)

Governance/application

 Number of product
installations (1
item)

 Contract
dependency (2
items)

 Technology
dependency (2

 items)

Table 1: Criteria related to functional, cost & benefits, and vendor characteristics

After a high-level investigation of the results, we narrowed the search space to software packages. This is
because there are is wide variety of solutions available to support the end-user and thus a large
combination of analytical methods needed to evaluate them.

Short listing candidate packages and eliminating the candidate packages that do
not have the required feature. In this stage, we decided to consider only the most solid market
offers. We thus selected two tools based on the market leadership scenario (Richardson and Rymer,
2016): Oracle Apex (Oracle Application Express) and OutSystems (Outsystems Platform).

Using the proposed evaluation technique to evaluate remaining packages and
obtain a score We applied our technology evaluation method to the two selected platforms. Table 3
describes a summary of the evaluation results obtained. We present in this study only the results
consolidated by each attribute. Figure 1 illustrates the usability evaluation results separately, since it has
15 attributes. A complete evaluation can be found at https://itrac.github.io/eud_technology_evaluation.
We chose the heuristic evaluation to perform this analysis and used four scenarios that consist basically of
creating an application, either using the platform’s predefined templates or not.

To perform a heuristic evaluation, 3 evaluators should inspect the interface separately, so 3 members of
our research team participated. Only after completing their evaluations, they communicated and
aggregated their findings. This procedure is important to ensure independent and unbiased evaluations

 Method for Evaluating End-User Development Technologies

(Nielsen and Mack, 1994). During the evaluation session, the evaluator went through the interface several
times, inspected the many dialogue elements and compared them with the list of questions from our
model.

Criteria Characteristic Sub characteristic References Attributes Point-of-View

Software Compatibility Interoperability (Sherman, 2016) Technical knowledge End-user

quality (Srivastava, Sridhar, requirement (1 item) developer/application

 and Dehwal, 2012) Data exchangeability (1 item) generated

 (ISO/IEC 25023, Connectivity with external
 2011) component/system (3 items)
 Reusability (1 items)

Software Maintainability Modifiability (ISO/IEC 25023, Modifiability (3 items) End-user
quality Reusability 2011) Reusability (3 items) developer/application

 generated

 End-user

 developer/platform

Software Usability Appropriateness (ISO/IEC 25023, Visibility of System Status (20 End-user
quality recognizability 2011) items) developer/platform

 Learnability (Weiss, 1994) Match Between System and the
 Operability (Nielsen and Mack, Real World (12 items)
 User error protection 1994) User Control and Freedom (19
 User interface (Pierotti, 2004) items)
 aesthetics (IBM Corporation, Consistency and Standards (26
 Accessibility 2016A) items)
 (IBM Corporation, Help Users Recognize,
 2016B) Diagnose, and Recover from
 (Localization Testing Errors (16 items)
 Checklist - A Handy Error Prevention (8 items)
 Guide for Recognition Rather Than Recall
 Localization Testing) (25 items)
 Flexibility and Minimalist
 Design (9 items)
 Aesthetic and Minimalist
 Design (10 items)
 Help and Documentation (18
 items)
 Skills (11 items)
 Pleasurable and Respectful
 Interaction with the User (6
 items)
 Privacy (5 items)
 Accessibility (12 items)
 Localization (15 items)

Software Reliability Availability (Banerjee, Srikanth, Availability (2 items) Governance/platform
quality and Cukic, 2010) Vendor support (5 items)
 (Gray and Siewiorek,
 1991)
 (Lehman, Perry, and
 Ramil, 1998)
Software Performance Time behavior (ISO/IEC 25023, Response time (2 items) End-user
quality efficiency 2011) Turnaround time (4 items) developer/platform

Software Security Integrity (Stanton, Stam, Access behaviors (5 items) End-user
quality Confidentiality Mastrangelo, and Security behaviors (2 items) developer/application

 Jolton, 2005) Update behaviors (2 items) generated

 (Hausawi, 2016) File Upload Security (2 items) End-user

 (ISO/IEC 25023, Report behaviors (1 item) developer/platform

 2011) Security algorithms (3 items) Governance/platform

Table 2: Criteria related to software quality characteristics

From the evaluation results, it is possible to contrast characteristics of both platforms and, depending on
the organization’s priorities, to rank them. Without any prioritization, we can interpret that Outsystems
has the best chance to fulfil an end-user developers’ requirements as it scored better than Oracle Apex.

 Method for Evaluating End-User Development Technologies

Pilot testing the tool in an appropriate environment We performed this stage in parallel
with the previous stage as we used four scenarios to create applications across platforms, simulating the
behavior of an end-user developer. This stage was fundamental to refine the model proposed, and to
remove, rewrite, and add questions/metrics to it. The evaluation model and the platform evaluation
results presented in this work are already the result from a second evaluation iteration. The successful
selection of tools and technologies for end-user developers is highly dependent on the context in which
the end-user is embedded, such as business domain characteristics, the organization’s culture, and the
end-user motivation to apply or develop technical skills (Fischer, 2004). One limitation in our study is
that we did not evaluate the platforms in a real world scenario. To address this limitation, we developed
four common scenarios of simple information systems that enable create, read, update, and delete
information (CRUD scenarios).

Characteristic Attributes Oracle Apex OutSystems

Functionality Application domain Database General-purpose

 data analysis; graphics
generation; employer’s control;
calendar; data mining; spatial
database; responsive interfaces

Process-based development; Web
and mobile applications; Library
with more than 100 base interfaces;
Deploy control tool

Compatibility Technical knowledge requirement Advanced Advanced

 Data exchangeability N/A 100%

 Connectivity with external
component/system

RPC; Service Oriented
Integration; Messaging

RPC call; Messaging passing;
Software service

 Reusability 100% 100%

Maintainability Modifiability 100% 100%

 Reusability Possible Possible

Reliability Availability N/A N/A

 Vendor support Avg time for new release: 179,58 Avg time for new release: 20.30

 Avg fixes in each release: 73.46 Avg fixes in each release: 8.76

Performance
efficiency

Response time 100% 100%

Turnaround time 50% 100%

Security Access behaviors 80% 60%

 Security behaviors 100% 100%

 Update behaviors 100% 50%

 File Upload Security 100% 100%

 Report behaviors 100% 100%

 Security algorithms 67% 100%

Cost License cost $ 164,839.00 $ 2,072,601.74

 Maintenance cost N/A N/A

Vendor Contract dependency 100% 100%

 Technology dependency 100% 0%

Collaboration Shareability 100% 100%

 Coordination of actions 100% 100%

 Consequential communication 60% 60%

 Finding collaborators and
establishing contact

75% 0%

 Concurrent protection 0% 50%

Data
Management

Data input and output input: TXT, XML, CSV, SQL, REST,
SOAP. output: CSV, REST.

input: CSV, TXT, XML, XLS, JSON,
SQL, SOAP, REST. output: CSV,
REST

 Required technical knowledge 33% 33%

Table 3: Summary of Oracle Apex and OutSystems evaluation results

Conclusion and Future Work

We propose a method for evaluating end-user development (EUD) technologies here, based on an
extensive work of literature research. We also presented the evaluation of two platforms using four
scenarios. The evaluations have improved and refined the model. This paper sheds light on under-
researched questions related to the end-user development context in general, and in the EUD technology

 Method for Evaluating End-User Development Technologies

evaluation in particular. The major original contributions of this paper are (1) a detailed method for
evaluating EUD technologies

Figure 1: Usability analysis result of the two platforms

that comprises 11 characteristics, 20 sub-characteristics, 30 attributes, and 300 questions/metrics, and
(2) examples of two evaluations using our method against leading EUD platforms in the market.

This work points to the need for some interesting future studies. The next step is to refine the method
through real-world scenarios, and to evolve the model to assist decision makers with the evaluation and
selection of software packages, using evaluation techniques such as analytic hierarchy process or weighted
scoring method (Jadhav and Sonar, 2011). There is an avenue for exploring evaluation automation, for
instance with the use of dynamic application security testing tools to support security characteristics’
evaluation. We also plan to explore existing research on user requirements determination to improve end-
user developer acceptance, their success, and consequently the success of the software package
acquisition. In addition, and given the proliferation of technologies, we defined that, in the context of a
first analysis of tools, it would be appropriate to select tools with a higher degree of maturity. The higher
the maturity, the lower the risk of a given technology. Emerging technologies, however, are riskier and
potentially more innovative. Researchers could look at them in future studies.

REFERENCES

Andriessen, J. (2012). Working with Groupware: Understanding and Evaluating Collaboration Technology. Computer
Supported Cooperative Work. Springer-Verlag London.

Baker, K., Greenberg, S., and Gutwin, C. (2002). “Empirical development of a heuristic evaluation methodology for
shared workspace groupware.” Proceedings of the 2002 ACM conference on Computer Supported Cooperative
Work, CSCW ’02. ACM Press, USA, 96.

Banerjee, S., Srikanth, H., and Cukic, B. (2010). “Log-Based Reliability Analysis of Software as a Service (SaaS).”
IEEE 21st International Symposium on Software Reliability Engineering. IEEE, 239–248.

Costabile, M. F. et al. (2005). “A Meta-Design Approach to End-User Development.” Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing (VLHCC '05), pp. 308-310.

Cupoli, P., Earley, S., and Henderson, D. (2009). DAMA - Data Management Book of Knowledge. 1st ed. Technics
Publications, LLC, Post Office Box 161 Bradley Beach, NJ 07720.

Damsgaard, J. and Karlsbjerg, J. (2010). “Seven Principles for Selecting Software Packages.” Communications of the
ACM 53.8, 55–62.

Davis, F. D. (1989). “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology.”
MIS Quarterly 13.3, 319.

Doll, W. J. and Torkzadeh, G. (1988). “The Measurement of End-User Computing Satisfaction.” MIS Quarterly 12.2,
259–274.

Fischer, G. et al. (2004). “Meta-design.” Communications of the ACM 47.9, 33.

 Method for Evaluating End-User Development Technologies

Franch, X. and Carvallo, J. P. (2003). “Using Quality Models in Software Package Selection.” IEEE Software 20.1,
34–41.

Golota, H. Localization Testing Checklist - A Handy Guide for Localization Testing. URL:
https://www.globalme.net/blog/localization-testing-checklist (visited on 03/01/2017).

Gray, J. and Siewiorek, D. (1991). “High-availability computer systems.” Computer 24.9, 39–48.
Greenstein, S. M. (1997). “Lock-in and the Costs of Switching Mainframe Computer Vendors: What Do Buyers

See?”Industrial and Corporate Change 6.2, 247.
Harnisch, S. (2014). “Enterprise-level Packaged Software Acquisition: a Structured Literature Review Through the

Lens of IT Governance.” European Conference on Information Systems (ECIS) 2014.
Hausawi, Y. M. (2016). “Current Trend of End-Users’ Behaviours Towards Security Mechanisms.” Springer, Cham,

140–151.
Iacob, C. (2011). “Design Patterns in the Design of Systems for Creative Collaborative Processes.” Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 359–362.
IBM Corporation (2016B). IBM Accessibility Checklist for Software.
IBM Corporation (2016A). IBM Accessibility Checklist for Web and Web-Based Documentation.
ISO/IEC 25023 (2011). Systems and software engineering – Systems and software Quality Requirements and

Evaluation (SQuaRE) – Measurement of system and software product quality. Technical Report.
Jadhav, A. S. and Sonar, R. M. (2009). “Evaluating and Selecting Software Packages: A Review.” Information and

Software Technology 51.3, 555–563.
Jadhav, A. S. and Sonar, R. M. (2011). “Framework for Evaluation and Selection of the Software Packages: A Hybrid

Knowledge Based System Approach.” The Journal of Systems and Software 84.8, 1394–1407.
Ko, A. J. et al. (2011). “The State of the Art in End-user Software Engineering.” ACM Computing Surveys (CSUR)

43.3,21:1–21:44.
Lehman, M., Perry, D., and Ramil, J. (1998). “Implications of evolution metrics on software maintenance.”

Proceedings. International Conference on Software Maintenance (Cat. No. 98CB36272), 208–217.
Lichtenstein, Y. (2004). “Puzzles in Software Development Contracting.” Communications of ACM 47.2, 61–65.
Lieberman, H., Paterno, F., Klann, M. and Wulf, V. (2006). End-user development: An emerging paradigm. End User

Development. (2006), 1–8.
McGill, T. (2004). Advanced Topics in End User Computing. Vol. 3. IGI Global.
Mika, S. (2006). Five Steps to Database Integration. URL: http://www.government-

fleet.com/article/story/2006/03/five-steps-to-database-integration.aspx (visited on 12/12/2016).
Misra, H. (2017). “Managing User Capabilities in Information Systems Life Cycle: Conceptual Modelling.”

International Journal of Information Science and Management 15.1, 39–58.
Misra, H. and Mohanty, B. (2003). The IT-acquisition models and user’s perspective: a review. Tech. rep.
Montazemi, A. R., Cameron, D. A., and Gupta, K. M. (1996). “An Empirical Study of Factors Affecting Software

Package Selection.” Journal of Management Information Systems 13.1, 89–105.
Nielsen, J. and Mack, R. L. (1994). Usability inspection methods. Wiley. Nilsen, J. (2012). Usability 101: Introduction

to Usability.
Oracle. Oracle Application Express. URL: https://apex.oracle.com/en (visited on 03/01/2017).
Outsystems. Outsystems Platform. URL: https://www.outsystems.com (visited on 03/01/2017).
Pierotti, D. (2004). Heuristic Evaluation - A System Checklist. URL: ftp://ftp.cs.uregina.ca/pub

/class/305/lab2/example-he.html (visited on 03/01/2017).
Richardson, C. and Rymer, J. R. (2016). The Forrester Wave ™: Low-Code Development Platforms. URL:

http://agilepoint.com/wp-content/uploads/Q2-2016-Forrester-Low-Code.pdf(visited on 12/2016).
Sadalage, P. and Fowler, M. (2016). Evolutionary Database Design. URL: https://martinfowler.com/articles/evodb.

html (visited on 02/20/2017).
Sherman, R. (2016). How to evaluate the features of data integration products. URL:

http://searchdatamanagement.techtarget.com/feature/How-to-evaluate-the-features-of-a-data integration-
product (visited on 10/24/2016).

Srivastava, K., Sridhar, P. S.V. S., and Dehwal, A. (2012). “Data Integration Challenges and Solutions: A Study.”
International Journal of Advanced Research in Computer Science and Software Engineering 2.7, 34–37.

Stanton, J. M., Stam, K. R., Mastrangelo, P., and Jolton, J. (2005). “Analysis of end user security behaviors.”
Computers & Security 24.2, 124–133.

Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). “User Acceptance of Information Technology:
Toward a Unified View.” MIS Quarterly 27.3, 425–478.

Weiss, E. (1994). Making Computers People-Literate. 1st. Jossey-Bass Inc., Publishers.

