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Abstract 

The electrical power industry is undergoing radical change due to the push for renewable energy that makes 
energy supply less predictable. Smart meters along with analytics software can grant insights into customer-
specific consumption and thereby enable a better match between the demand and supply side for an electric 
utility. However, the vast amount of allocatable smart metering data and complexity of analytics pose chal-
lenges to database system. We address the implementation of an analytics approach to optimize customer 
portfolios, eventually preventing excess energy procurement. Using real-world and simulated data, we test 
the suitability of big data approaches as well as traditional relational database technology. Furthermore, we 
present solutions based on big data platforms and demonstrate their cost effectiveness and performance. 
Our findings suggest economic feasibility of big data solutions for large utilities. Small and medium-sized 
utilities are advised to invest in more cost-effective solutions such as cluster-based systems. 
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Introduction 

The energy sector is transitioning into an ‘Internet of Energy’. This forthcoming network system is expected 
to connect increasingly decentralized energy supply and heterogeneous consumers. Electricity generation 
is diversifying from thermal power plants to renewables and distributed energy resources (DER), frequently 
owned on residential level. The weather-determined and fluctuating behavior of the supply side translates 
into uncertainty in the market and subsequently to inefficient measures to cope with mismatches of demand 
and supply. Miscalculated market equilibria force grid operators to use their operation reserve. This gener-
ation capacity consists of mostly non-renewable power plants which can be activated in case of underesti-
mated demand. Minimizing such ex post balancing measures requires precise energy procurement on the 
side of the electric utilities and thus a comprehensive knowledge regarding end-consumers’ demand. The 
forthcoming rollout of smart meters will allow the utilization of 15-minute granularity smart meter readings 
for the examination of customer characteristics and behavioral patterns. The obtained information may 
improve energy procurement by developing dynamic and individualized customer contracts. Processing 
these tasks requires a high performance and resilient ICT infrastructure, incorporating modern quantitative 
tools. Concurrently, the relevance of data management and analytics is increasing alongside technological 
innovation. Big data solutions enable utilities to store and process raw metering data, forecast develop-
ments and develop appropriate market strategies. Professionals are now faced with the challenge to choose 
and implement suitable processing technologies depending on the needs of their respective companies. 

In this paper, we address the question how electrical power utilities can efficiently implement a cost-of-
service segmentation to optimize their portfolio for procurement on electricity markets. We build on top of 
the work in Albert and Rajagopal (2014) and Albrecht et al. (2017), which address the algorithmic questions 
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of cost-of-service segmentation. Building on Fritz (2016) this work focusses on efficiency of respective pro-
cessing platforms and paradigms suitable for implementing the algorithms. Our main contributions are: (1) 
We investigate to which degree traditional databases can cope with the requirements of performing cost-
of-service segmentation; (2) We present a scalable and efficient solution for cost-of-service segmentation 
with big data technologies; (3) We quantify the performance benefits of big data technologies over tradi-
tional databases for the targeted use case; (4) We provide insights into the resource requirements for im-
plementing cost-of-service segmentation and demonstrate saving potential with big data technologies. 

For our research, we follow a design science approach (Crnkovic 2010), developing design artifacts in the 
form of a distributable implementation concept for cost-of-service segmentation and the combination with 
suitable processing platforms. We evaluate our solution against the requirements of electrical power utili-
ties using real-world smart meter data. The remainder of the paper is structured as follows: In the next 
section, we provide the necessary background on electrical power markets, the specifics of cost-of-service 
segmentation and big data technology. Subsequently, we describe our scalable implementation of cost-of-
service segmentation and describe the options for processing platforms. Next, we present the experiments 
for evaluating the implementation options and discuss the resulting implications on the implementation at 
utilities. Finally, we review related work and conclude our insights. 

Background 

The steadily increasing share of renewable energies (currently 30 percent in Germany (BMWi 2015, 2016)), 
is causing high fluctuations on the supply side. Accordingly, electricity markets are subject to high levels of 
uncertainty. Electric energy is generally being traded in two major ways: Long-term procurement is done 
on futures markets while short-term buying is executed on spot markets. Although the former has the 
greater share of the total trade, the spot market exchange volume is increasing steadily (Simon 2012). For 
this paper, we focus on the optimization of short-term energy procurement and thus the trading on the 
EPEX Spot, the most relevant short-term energy exchange in Europe. Participants trade two major products 
in two different modes: Auction trade (or ‘day-ahead’) is being finalized on the day before the physical ful-
fillment (12 noon), whereas continuous trade (or ‘intraday’) allows for trading and fulfillment one the same 
day (EEX 2016; Konstantin 2013). While the share of renewable energy resources like photovoltaics and 
wind energy is increasing, power generation becomes more fluctuate and thus uncertain. The ability to 
transfer, process, store and analyze data on a large scale enables a utility to gain valuable information on 
their customer base and respective consumption behavior patterns. The insights obtained by big data ana-
lytics will allow for the segmentation and identification of load profiles. This is the foundation for an indi-
vidualized and uncertainty-minimizing procurement on power spot markets. For the customer segmenta-
tion, it is crucial to obtain information on the actual energy consumption of given customers. Currently, the 
regular billing process in Germany is still based on local, annual meter readings and subsequent averaging 
of household load profiles, to obtain a handful of standard load profiles. However, a comprehensive and 
differential analysis of individual load profiles and subsequently normative actions are only feasible using 
smart meter technology. The last amendment of the German energy act (EnWG 2016), adopted the EU 
proposal for a wide-scale smart roll out. Smart meters further the evolution of conventional energy markets 
to smart markets as a foundation for dynamic prices and incentive-based load management by acting as an 
enabler and accelerator for the integration of DER. Those will provide high-granularity data, allowing for 
the identification of deferrable loads during costly time slices within flexible tariffs and a more efficient load 
control by the provider due to bi-directionality of smart meter signals (Aichele and Doleski 2013). Given 
the application of 15-minute smart meter readings, every smart meter will provide 35,000 load data points 
annually, an increase amounting to more than three million percent, compared to the current analogous 
meters. Identifying anomalous customers may enable a utility to better forecast the energy demand, and to 
differentiate among procurement strategies. In this manner, efficient consumption patterns can be incen-
tivized by providing consumers with specific products suited for their demand.  

Related Work 

This work addresses the use of big data technologies to perform cost-of-service segmentation with smart 
meter data. The term big data has been around for more than a decade. A widely known early definition 
focusses on the so-called three V’s: Volume, Velocity and Variety (Laney 2001). The V’s describe data prop-
erties that are of particular relevance in big data applications and pose challenges to traditional database 
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systems. These and other new requirements have driven the development of alternative approaches and 
architectural designs for data processing and storage (Stonebraker et al. 2007). Paradigms such as MapRe-
duce have emerged (Dean and Ghemawat 2004) and new architecture styles have been proposed, such as 
the lambda architecture (Marz and Warren 2015). By now, numerous solutions facilitate big data applica-
tions in various aspects. Hadoop (White 2012), Hive (The Apache Software Foundation 2016), Impala 
(Kornacker et al. 2015) and Spark (Zaharia et al. 2010) are just examples of software solutions supporting 
big data paradigms. The advent of such continuously maturing solutions promises to solve diverse data 
challenges that are anticipated for utilities (Diamantoulakis et al. 2015). For the analysis in this paper, we 
tap into smart meters as a data source by utilizing readings from an Irish research project (accessed via the 
Irish Social Science Data Archive (2009) - www.ucd.ie/issda). The associated large amounts of measure-
ments result in challenges that relate to big data problems. Hence, we base our solution concept on big data 
technologies. The experiments in the later section illustrate the need for this technological choice by facing 
traditional database technologies.  

To our knowledge, there exists no analysis on how to efficiently determine scalable cost-of-service segmen-
tations. Hence, closest related work can be found in analyses of different big data problems within the smart 
grid domain: Diamantoulakis et al. (2015) discuss big data challenges in the context of the smart grid. They 
elaborate on analytics approaches with a focus on load classification and forecasting problems. For the im-
plementation of analytics, they briefly touch upon grid computing and cloud computing. However, in con-
trast to this paper, they do not provide insights on the performance of specific big data technologies for 
concrete tasks. Patel et al. (2013) model the segmentation of customers in price-groups as a nonlinear prob-
lem, solving it with integer programming. The authors focus on their optimization technique and the end-
results while this very paper puts the emphasis on the dynamic scalability of the approach and the choice 
of processing platforms. Leonardi et al. (2016) use big data technologies to analyze smart home data re-
garding data quality. They use some of the technologies addressed in our work, namely Hadoop Distributed 
File System (HDFS) as underlying storage, Impala, and PostgreSQL. However, they focus their work on the 
findings on data quality in smart home data and do not report on the performance details of the data pro-
cessing. Furthermore, the presented analytics mainly concern descriptive statistics of the smart home data. 
In contrast, our work gives insights into the processing of the more complex analytics task of cost-of-service 
segmentation. Ziekow et al. (2013) present a solution for real-time load forecasting with smart home data. 
They present performance measures for their solution based on the lambda architecture for big data pro-
cessing and the Esper complex event processing engine. However, they focus on the continuous processing 
of continuous streams of energy measurements. They do not address scalable batch processing and the 
corresponding technologies we analyze. Furthermore, they focus on different energy analytics problems, 
like short-term load forecast with machine learning techniques. Liu et al. (2015) benchmark analytics tasks 
on smart meter data with several analytics platforms. However, they analyze a different set of processing 
platforms and address different analytics problems (no cost-of-service segmentation). In summary, this 
paper differs from related work in two main aspects. First, it provides detailed insights into the performance 
of different candidate platforms within the energy analytics domain. Second, it details the scalable imple-
mentation and related performance for the problem of cost-of-service segmentation.  

Implementation of the Cost-of-Service Segmentation 

This section describes the model for a cost-of-service segmentation. We base our approach on the work in 
Albert and Rajagopal (2014), and extend their model to factor in seasonality and deviations on the energy 
market by integrating real market data as described in Albrecht et al. (2017). The model is based on the 
newsvendor model where a perishable product is traded on a short-term market. The problem is to deter-
mine the optimal amount of this good to purchase in advance based on past observations. As proposed in 
Albert and Rajagopal (2014) and Albrecht et al. (2017), we utilize a simplified market model, allowing en-
ergy procurement on either the day-ahead spot market or on a real-time market. Buying energy on the day-
ahead market is generally cheaper, but comes with uncertainty, since customer-specific consumption is only 
revealed in real-time. The optimum purchase 𝑧𝑡

∗ for a customer is determined by equation 1.  

𝐹𝐿(𝑧𝑡
∗) =  

𝑝𝑟𝑒𝑑(𝑞, 𝑡) − 𝑝𝑡

𝑝𝑟𝑒𝑑(𝑞, 𝑡)
 (1) 
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Here, 𝑞 represents the cost on the real-time market and 𝑝𝑡  the cost of day-ahead procurement at time 𝑡. 
Thus, we require a forecasting mechanism to determine real-time market prices, since purchases are made 
(in this model exactly) 24 hours in advance on the day-ahead market, on which 𝑝𝑡  is known. Hence, we use 
𝑝𝑟𝑒𝑑(𝑞, 𝑡) to represent the forecasted value for real-time prices at 𝑡. For this work, we instantiate 𝑝𝑟𝑒𝑑(𝑞, 𝑡) 
by averaging the real-time prices over the last seven weekdays for the time slice 𝑠. 𝐹𝐿 is the cumulative dis-
tribution function (CDF) for the consumption of an arbitrary customer for a given time frame. Albert and 
Rajagopal (2014) build the CDF on past observations for each customer. We use the extended model sug-
gested in Albrecht et al. (2017) and focus on different time intervals, like seasonality distinguishing week-
days and weekends, which is reflected in equation 2. Here, 𝐿𝑆 is the consumption time series for a given 
customer at time slice 𝑠, which acts as a filter for timed consumption data (e.g. all records for Fridays at 
1pm) and I is the indicator function.  

𝐹𝐿(𝑙, 𝑠) = ∑
I (𝑣 ≤ 𝑙)

|𝐿𝑠|
𝑣∈𝐿𝑠

 (2) 

The filter returns consumption data for an interval featuring similar consumption behavior. The specific 
criteria may depend on exogenous factors like geography or climate. We focus on the hour of the day, the 
season and a distinction between weekdays and weekends. This is formally denoted by equation 3 below. 

𝐿𝑠 =  {

𝑙 ∈ 𝑇 | ℎ𝑜𝑢𝑟_𝑜𝑓_𝑑𝑎𝑦(𝑙) = ℎ𝑜𝑢𝑟_𝑜𝑓_𝑑𝑎𝑦(𝑠)

∧ 𝑠𝑒𝑎𝑠𝑜𝑛(𝑙) = 𝑠𝑒𝑎𝑠𝑜𝑛(𝑠)

∧ 𝑖𝑠_𝑤𝑒𝑒𝑘𝑑𝑎𝑦(𝑙) =  𝑖𝑠_𝑤𝑒𝑒𝑘𝑑𝑎𝑦(𝑠)

} (3) 

The steps required to implement the specified model can be depicted as a sequence of multiple steps (Figure 
1). First, we need to select similar time frames (Equation 3). Our experiment requires two distinct time 
ranges – one to build the model and another to apply it on. By reflecting seasonal characteristics, we assume 
a good fit between the two-time ranges. Subsequently, we calculate the consumer-invariant part of the anal-
ysis (Equation 1). Next, we solve Equation 1 for each point in time 𝑡 using 𝑝𝑟𝑒𝑑(𝑞, 𝑡) and 𝑝𝑡  which is known 
at 𝑡. This value is invariant for all consumers. We then build the CDF for each customer and each time slice 
𝑠 based on past observations and solve it by determining the highest consumption in the order of the CDF 
which is equal or less than the result of Equation 1. This is formally described in Equation 2. The result is 
the amount of the optimum purchase on the day-ahead market for each customer at time 𝑡 called 𝑧𝑡

∗. 

 

Figure 1. High-level overview of the processing chain 

Using 𝑧𝑡
∗, we can now simulate the procurement on the day-ahead market by multiplying it with 𝑝𝑡. If the 

actual consumption at 𝑡 exceeds 𝑧𝑡
∗, the excess amount will be procured on the real-time market. Since 

solving Equations 1 and 2 can result in an optimum purchase amount of a negative or zero value, it is nec-
essary to bridge the gaps by purchasing the actual consumption for each customer on the real-time market. 
Finally, we combine the results to achieve the costs for each customer at each time slice.  

Processing Platforms for the Execution of the Analysis 

This section describes the technical solutions as possible instantiations of the described distribution strat-
egies. We limited our observations to four software solutions: PostgreSQL, Hive, Impala and Spark. The 
latter three solutions are software solutions most widely used in a big data context, whereas PostgreSQL is 
considered a classical relational database management system (RDBMS). PostgreSQL is an instantiation of 
a RDBMS which persists data based on the relational model introduced by Codd (1970), i.e. the data is 
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represented in tuples and grouped together in relations. PostgreSQL is an open-source endeavor and sup-
ports the use of window functions to execute row-relational calculations. This is required for the realization 
of our experiment. The performance of RDBMS can be tuned by indexing the most frequently used data in 
the set. This improves the lookup speed and is thus an advantage for combining/joining relations. Depend-
ing on the installation of PostgreSQL, it can either run distributed when partitioning the tables or on a single 
node. Hive is an open-source solution for data warehousing based on Apache Hadoop. Hive uses a deriva-
tive of SQL called HiveQL, which currently supports DDL and DML operations. Queries are optimized and 
compiled to MapReduce jobs on Hadoop. (Dean and Ghemawat 2004) primarily presented MapReduce as 
a paradigm for data processing on clusters. The performance of Hive relates on an extensive use of I/O 
operations on the hard disk, i.e. temporary files are written, read and finally deleted. Impala is an open-
source distributed and massively parallel processing SQL-Engine based on a Hadoop cluster. Currently, it 
is an Apache Incubator project submitted by Cloudera. Impala is implemented in C++ and Java from 
scratch. The underlying architecture of Impala allows a distributed and parallel execution of operations on 
each data node and an aggregation of the results at the end. Spark is a platform for distributed computation 
based on a cluster implementing the Hadoop-API. It provides interfaces for Python, Scala, Java and R. 
Spark defines resilient distributed datasets (RDDs), which is a collection of objects stored distributed in 
memory. This enables Spark to achieve a fast access time on these RDDs. Furthermore, Spark offers sound 
extensions for data analytic operations, i.e. machine learning. 

Evaluation of Solution Options 

In this section, we describe the experimental approach to evaluate the introduced technical solutions. That 
is, we describe the setup of the experiment and how it will be performed. The aim of the experiment is to 
measure the runtime, hard disk and RAM utilization of the extended cost-of-service segmentation approach 
for a steadily increasing number of customers. Subsequently, we will present and discuss the results. We 
base the experiment on the publicly available Commission for Energy Regulation data set (Irish Social 
Science Data Archives 2009). This data set contains smart meter reads in a 30-minute interval for 4,225 
households in Ireland for the timescale of mid-July 2009 until the end of 2010. After filtering out anoma-
lous sensors, we end up with 3,608 sensors. Due to different consumption behavior patterns on weekends 
and holidays, we solely focus on weekdays. The price data is retrieved from the EPEX Spot, which is a short-
term energy exchange. The regarded markets include central Europe, i.e. Germany, France, Austria, Swit-
zerland and Luxembourg. Price from the EPEX intraday market will be used as an approximation of the 
real-time market for the implementation of the cost-of-service segmentation, since purchases can be made 
30 minutes prior to the actual delivery (EPEX Spot 2016). This data set contains smart meter reads in a 30-
minute interval for 4,225 households in Ireland for the timescale of mid-July 2009 until the end of 2010. 
After filtering out anomalous sensors, we end up with 3,608 sensors. Due to different consumption behavior 
patterns on weekends and holidays, we solely focus on weekdays. The price data is retrieved from the EPEX 
Spot, which is a short-term energy exchange. The regarded markets include central Europe, i.e. Germany, 
France, Austria, Switzerland and Luxembourg. Price from the EPEX intraday market will be used as an 
approximation of the real-time market for the implementation of the cost-of-service segmentation, since 
purchases can be made 30 minutes prior to the actual delivery. 

Experimental Setup 

The experiment is based on a sequential execution of predefined actions. The order of these actions is de-
scribed on an abstract level below to preserve generality for all technical solutions. For the experimental 
setup, we implemented four steps: 

1. Data Generation. In this step, we create a data generator based on the given 3,608 customers. This 
generator simulates artificial customers based on the smart meter reads of the existing ones, plus adding 
some noise to the consumption data. The noise depends on the standard deviation of each customer for 
each time slice, so the resulting consumption could be considered as realistic to a certain degree. For each 
run 10,824 (= 3 * 3,608) synthetic customers will be added to the data set.  

2. Storage Optimization. The introduced technologies use different approaches to optimize a given data 
set. Relational DBMS generally use the concept of indices on frequently used columns, which are set at this 
point (if not set yet). When adding data to a table in a PostgreSQL database with existing indices, it main-
tains its structure, thus resetting an index is not required. Indices are set on the columns id, days, time 
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individually and grouped. The investigated NoSQL solutions use statistics to optimize the query execution. 
Those are stored in the metadata and contain information regarding table size or number of rows and thus 
result in a better performance i.e. when joining tables due to the precise estimates of the required resources.  

3. Query Execution. We create a query that can be executed by each of the introduced technical solutions. 
This query uses window functions which extend the existing SQL standard. The respective output is stored 
in the underlying database. After five executions, the median runtime will be regarded as the most realistic 
value. During the execution, the utilization of the RAM and HDD will be measured every 60 seconds.  

4. Infrastructure Restoration. Spark, Hive and parts of Impala are implemented in Java, which allo-
cates and frees memory automatically when required. The used memory space will be purged implicitly by 
the Java garbage collection (GC). Currently, there are several strategies on how to clean memory imple-
mented in the GC. Since all of them require further computation, the results of this experiment could be 
affected by them. Therefore, after each test series for a specific number of customers, we restart all services 
on the cluster nodes to free the memory explicitly. 

For this experiment, we scale the number of customers from 10,824 to 205,656 in steps of 10,824 customers 
and execute the process for each technical solution separately. The setup for PostgreSQL is version 9.3 on 
a single node (Intel Xeon E5-2660 v3 (10 x 2.6 GHz), 64 GB RAM, 512 GB SSD), running on Ubuntu 14.04. 
Spark, Impala and Hive are installed on a 7-node cluster (1 master node, 6 data nodes). Each node consists 
of an AMD FX-6300 CPU (6 x 3.5 GHz), 16 GB RAM, 2 TB HDD with 7,200 RPM and Ubuntu 14.04. The 
big data software solutions are installed through Cloudera CDH 5.8.0. This also installs tools to manage 
and monitor the hardware and software infrastructure. It installs Hive in version 1.1.0, Impala 2.6.0 and 
Spark 1.6.0. We use the prebuilt package for Spark on YARN (Yet Another Resource Negotiator) distributed 
by Cloudera Manager, whereas the other solutions don’t use a resource manager. All further settings for the 
technical solutions were left to default, except for the maximum RAM allocation threshold for Impala, since 
the implementation of the cost-of-service segmentation couldn’t be executed with default settings. 

Experimental Results 

 

Figure 2. Comparison of the runtime behavior 

The results regarding the execution time in dependence of the number of analyzed customers are depicted 
in Figure 2. PostgreSQL exhibits the poorest performance. After about 150k customers, we ran out of suffi-
cient storage space because of the huge number of indices set to improve querying performance. Albeit, we 
expect an even worse runtime without any indices set, because of the huge amount of data and the resulting 
lookup time. Therefore, it is advisable to include indices to the actual data to be processed in the calculation. 
The big data solutions tend to scale better with the increasing amount of data. At the beginning, Hive has a 
poorer performance than PostgreSQL. At around 54k customer, Hive and PostgreSQL are roughly on par, 
whereas after that, Hive behaves better than PostgreSQL regarding the runtime. Spark and Impala are char-
acterized by an even better performance, whereas the latter seems to have an advantage with an increasing 
amount of data to be processed. Regarding the variance of the five runtime measurements per round, the 
values are very close to each other with a relative standard deviation (RSD) of 7% for PostgreSQL runs. Hive 
has a similar RSD of about 6%, which is only surpassed by Impala with an RSD of 3%. Spark on the other 
hand has an RSD of about 34%, which can be traced back to one outlier at a specific run for 184k customers. 
relative standard deviation (RSD) of 7% for PostgreSQL runs. Hive has a similar RSD of about 6%, which is 
only surpassed by Impala with an RSD of 3%. Spark on the other hand has an RSD of about 34%, which can 
be traced back to one outlier at a specific run for 184k customers. Concerning the amount of data written to 
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the storage, we observe that big data systems save way more data on the storage (Figure 3). Though it needs 
to be reflected, that the data is generally stored with a replication factor, which is defined as three by the 
installation of Cloudera CDH. Furthermore, the data may be stored temporarily and can be deleted during 
or after the actual execution. We also observe the total amount of data stored across all 6 data nodes as well 
as metadata stored on the master node. 

 

 

Figure 3. Comparison of written Throughput in GB on Hard Disks on all Hosts 

Regardless of the technical specifications, we observe some patterns during the execution. Hive tends to 
optimize the amount of data written to the storage (Figure 3b), i.e. no linear gradient can be denoted. It 
seems like Spark (Figure 3d) behaves somewhat similar to Hive, but further experiments with more data 
must prove this claim. Impala uses the storage almost exclusively to save the final results, therefore a rea-
sonable gradient can be observed (Figure 3c). For PostgreSQL, the throughput values appear to be constant. 
The values measured during the experiment are very contiguous, yielding a stable result. For PostgreSQL, 
we observe small deviations which appear to be negligible to the observed extend. 

    

    

Figure 4. Comparison of total RAM used averaged over the runtime on all Hosts 

Lastly, we observe the usage of the RAM during the execution of the experiment (Figure 4). For PostgreSQL, 
the usage of RAM increases in a linear manner with an increasing number of customers (Figure 4a), whereas 
the gradient for Hive tends to flatten while increasing the data size (Figure 4b). The measurements for these 
solutions are stable considering the error indicator. For Impala and Spark, it isn’t possible to state a clear 
statement regarding the RAM usage. While for Impala, the distribution of the RAM usage is considerably 
large. Spark on the other hand has a similarly divergent RAM usage, though it seems to stabilize during the 
execution of the experiment for later series. 
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Discussion of the Results 

Given the runtime of our extended cost-of-service segmentation, classical RDBMS on a single powerful 
node are not practicable for big data approaches. The analysis took almost three hours for about 150k cus-
tomers. Additional to the smart meter data, one must also consider metadata like indices, requiring great 
amounts of disk space. The increase of the RAM utilization is considered moderate, i.e. the performance of 
PostgreSQL is more likely to be contingent on hard disk usage. Hive on the other hand started off with a 
longer runtime than PostgreSQL, but scales better with an increasing amount of data. This claim is sup-
ported by the stepwise improvement of writes on the hard disk. Supposedly, fewer or bigger (temporary) 
files are saved on the disk. Further, the RAM usage tends towards a limiting value around 40 GB of potential 
most 96 GB. All measured values for Hive are solid and located close to the other measurements. Yet, the 
analysis requires an hour-odd to complete for 200k customers and is thus not practical. Spark provides the 
result of the analysis slightly faster, in about 50 minutes for 200k customers. While the reads on the hard 
disk also seem to improve with an increasing amount of data, the RAM usage is unpredictable and charac-
terized by a regular variation during the experiment. Furthermore, it requires potentially more RAM than 
Hive does, with slightly below 60 GB maximum. The best performance regarding the runtime was achieved 
with Impala. Applying our approach to the cost-of-service segmentation on 205,656 customers took less 
than 15 minutes, making it not only the fastest solution but also scaling best out of the examined solutions. 
Compared to Spark, Impala is about 70% faster for 200k customers, which is a considerable advantage. 
Writes on the disk are stable and proceed in an exponential manner. Yet, RAM usage follows no clear struc-
ture and results in huge variations (Figure 4c). A first analysis concerning a caching strategy, which may 
occur before restarting the services in the last step of the experimental setup, did not give new insights due 
to the few number of runs. Due to the architecture of Impala, the processed data will be stored in memory 
during the execution. If the data size becomes too large to store in memory, it may be swapped to the hard 
disk which causes different performance measurements, i.e. runtime and hard disk usage.  

Implication on System Operations for Utilities 

As shown in Albert and Rajagopal (2014) and Albrecht et al. (2017), cost-of-service analytics can provide 
insights for utilities’ portfolio optimization. However, the underlying data processing is far from trivial as 
shown in our experiments. In this section, we discuss the implications in regards to utilities’ ICT systems. 

Implications on Resource Requirements  

The experiments suggest a linearly increasing resource allocation with an increasing number of customers 
for all tested solutions. However, computation time for the traditional database (PostgreSQL) grows signif-
icantly faster than for big data solutions, despite the fact PostgreSQL ran on more expensive hardware (i.e. 
a 6,907 € server) than the big data solutions (i.e. 3,780 € in total for seven commodity PCs). The difference 
in hardware cost is a consequence of the underlying design principles of traditional databases and big data 
solutions. The latter are, by design, built to scale out across multiple machines, while traditional databases 
are designed to run on a single machine. That is, relational databases favor scale-up as scaling strategy while 
big data solutions inherently support scale-out strategies. As the results show, the processing time for ana-
lyzing a moderate number of customer (i.e. approx. 150k) over a limited amount of time (i.e. 1 season model 
building and 1 season for testing) amounts to several hours with PostgreSQL, despite the use of powerful 
20 CPU core server and options to further scale up. Hence, the economic feasibility of using such a database 
for larger utilities and for analysis of longer time-frames is questionable. Comparably, the best performing 
big data solutions finished the analysis for about 200k customers in 14.76 minutes – a runtime improve-
ment of factor 11.3 compared to PostgreSQL latest test series. Furthermore, scaling out by adding more low-
cost computing resources is well supported, if the analysis must cover more customers or longer 
timeframes. In summary, our experiments show that the big data solutions outperform the tested database 
with regards to technical properties. When using a query-based approach to analyze (an increasing amount 
of) time-dependent data, the big data solutions used in our experiment clearly outperform classical RDBMS. 
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Implications on System Operations 

Our experiments show that a cost efficient and scalable solution for cost-of-service segmentation is hard to 
achieve with traditional relational database technology. In contrast, implementation on top of the tested 
big data platforms shows out-of-the-box good performance on overall cheaper hardware. This implies that 
big data platforms are a superior technology choice for this use case. However, additional factors may im-
pact the technology selection for utilities. Small and medium-sized utilities with small IT departments may 
not have the required expertise in-house to operate a big data platform. In many cases, staff is more expe-
rienced with existing solutions set up on relational database technology. To exploit the benefits of a big data 
platform, cloud-based solutions can help to clear obstacles, by taking away the burden of operating a big 
data cluster in-house. This concept has been embraced for instance in the PeerEnergyCloud project 
(Oberdorf 2012) with a cloud-enabled complex analysis of energy data, without burdening the IT depart-
ment of the corresponding utility. A similar solution for cost-of-service segmentation can be a viable option 
for utilities that lack big data expertise in-house. Due to the faster processing of the experiments, using 
NoSQL solutions on a cloud-based environment tend to be more cost-effective than using classical RDBMS. 

Conclusion 

In this research paper, we investigated how electric utilities may implement a cost-of-service segmentation 
to optimize procurement on spot markets with big data solutions. More precise procurement strategies 
eventually help preventing excess energy generation like the activation of the operation reserve. For this 
purpose, we created database queries to be executed by PostgreSQL, Hive, Impala and Spark. The latter 
three solutions ran on a cluster consisting of low cost commodity hardware, whilst PostgreSQL was running 
on a single powerful – albeit more expensive - computing node. We utilized smart meter data and spot 
market prices to instantiate our model. Said model was applied on a steadily increasing number of custom-
ers. In particular, we created synthetic households based on actual smart meter data, ranging from 10,824 
to 205,656 customers in different test series. Thereby we measured the runtime of the cost-of-service seg-
mentation for a varying number of consumers as the main criterion for further evaluations.  

The result indicates that classical RDBMS systems like PostgreSQL are not well suited for realizing a cost-
of-service approach due to the runtime of the query. Big data solutions like Impala or Spark, exhibit shorter 
runtimes due to the underlying data parallelism paradigm implemented in the software architecture. Con-
sequently, the cost-of-service segmentation for about 200k customers can be executed in less than 15 
minutes using Impala. The usage of the hard disk is stable for all technical solutions, whereas the RAM 
usage tends to variate quite significantly for Spark and Impala. The experiment was executed on four pro-
cessing platforms at default settings. Modifying settings might yield differing results of the experiment. For 
instance, Spark and Impala were tested with different resource managers. Quantifying the effect of tuning 
the settings is subject to future work. Regarding future projects, we aim to field test our approach within 
the infrastructure of a small or utility. Further, we aim to quantify the impact of the streamlined procure-
ment on market-specific CO2 savings. This research suggests a significant potential for big data solution as 
an environment for business analytics in the forthcoming digitalized energy sector by demonstrating the 
use case of cost-of-service segmentation. Along this case, we quantify the benefits of big data solutions over 
traditional databases and thereby provide a reference for big data in energy informatics. Large utilities, 
expected to manage extensive amounts of data, are advised to invest in the implementation of big data 
solutions like Spark or Impala. However, small and medium-sized utilities, recognizing the necessary inno-
vation but still reluctant to undertake major investments in big data technology, may consider the imple-
mentation of a cloud-based solution as a first step towards a digitalized utility.  
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