
Towards a Software Product Line Architecture to Build M-Learning
Applications for the Teaching of Programming

Anderson S. Marcolino, Ellen F. Barbosa
Institute of Mathematics and Computer Science – University of São Paulo (ICMC–USP)

São Carlos (SP), Brazil
email: andersonmarcolino@gmail.com, francine@icmc.usp.br

Abstract—Software Product Line (SPL) is con-
cerned with the sharing of common features within a
family of products. It offers benefits, proven in several
industry success cases. Regardless of its success, such
a reuse-based development methodology has not been
well explored in educational fields yet, as mobile plat-
forms. In a different but related perspective, several
initiatives have been undertaken as an attempt to im-
prove the teaching of programming; however, no reuse
approaches have been considered. In this paper we
discuss the most significant approaches and method-
ologies for the conception of an SPL architecture
according to the specificities of mobile devices and the
teaching of programming. As main contributions, we
highlight the identification of a set of approaches that
support the conduction of the initial SPL processes,
the design of a conceptual architecture model, and its
qualitative evaluation with stakeholders.

Keywords-Mobile learning; software architecture;
software product line engineering; teaching of pro-
gramming.

I. Introduction

The reduction of costs of information and communi-
cation technologies (ICTs) have allowed the widespread
use of these ICTs in social and economic sectors.

In the educational field, the increasing adoption of
ICTs has contributed to the appearance of new learn-
ing modalities, such as electronic learning (e-learning),
digital television based learning (t-learning) and mobile
learning (m-learning) [19]. Consequently, the develop-
ment of software and applications for educational pur-
pose has been promoted as well [9].

Regarding the development of educational software,
the inclusion of pedagogical and didactic issues for at-
tending specific disciplines, as the teaching of program-
ming, has required the adoption of methods and ap-
proaches for a better process at lower costs and time, and
reduced efforts. Besides that, learning how to program
is not an easy task and many problems can emerge in
this domain, making it difficult to develop single software
solutions capable of mitigating these problems [22].

Additionally, the number of features to be included in
different ICT-based environments has expanded and led
to a rise in threats to software quality aspects, since such

features have not been well encapsulated for a better
reuse [9].

Different reuse-based approaches have been adopted
for improving and to mitigating problems in the devel-
opment of educational solutions, as the Software Product
Line (SPL) approach. SPL concerns the sharing features
within a family of products, addressing business, archi-
tecture, processes and organizational aspects [3, 14]. SPL
also provides mechanisms for the evolution of products,
since new features may arise from stakeholders’ needs.
The addition of new features and their impact on ar-
chitectural artifacts require either plenty of attention
from the development team, or the automation of the
updating task. The creation of new products requires
technical support, which hinders and constrains the SPL
adoption for development of educational applications [3].

Other issue regards the difficulty in selecting method-
ologies in the SPL initial phases to allow the conception
of software products in the SPL life cycle. Since a wrong
decision may lead to extra costs in SPL advanced phases,
an appropriate selection is required and should be con-
ducted according to the literature. However, there is a
lack in the conducted works, which do not well describe
the decisions to build SPL of educational purpose [15].

This paper deals with the establishment of project
and design decisions for an SPL architecture designed
for the development of m-learning applications for the
teaching of programming. Our research encompasses the
SPL domain engineering process and three of its sub-
processes. The question raised regards the methodologies
adopted for the development of educational SPLs and
the viability of a proposal of an SPL architecture for
mobile applications for the teaching of programming.

As main contributions, we aim at investigating the
issues involved in a technological perspective of SPL,
considering educational concepts and the inclusion of
features from other modalities, as e-learning and t-
learning, for m-learning. Firstly, we discuss each selected
approach for allowing the conduction of the first phases
of the SPL methodology. Secondly, we present the SPL
architecture model, the results from its qualitative evalu-
ation and the limitations to be overcome in future works.

6264

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41922
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301371574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Both contributions bring benefits: (i) for educational
community, since the products can be developed with
more quality; and (ii) for developers and software engi-
neers, since they can benefit with respect to the support
and to the easiness for the choice of approaches for the
adoption of an SPL methodology.

The paper is organized as follows: Section II presents
the concepts of SPL, m-learning, teaching of program-
ming and the opened challenges that encompass all of
them. Section III addresses three sub-processes con-
ducted towards the SPL architecture and the methodol-
ogy adopted for the selection of each approach. Section
IV proposes an architecture for the SPL m-learning
applications and reports the evaluation results. Section
V provides our conclusions and future work.

II. Background

A. Software Product Line Approaches

SPL has proven to be a methodology for the de-
velopment of software products at lower costs, shorter
time, and with higher quality [18, 21]. In SPL, different
artifacts used in different products must be sufficiently
adaptable to fit the different systems produced. There
are two classifications for the SPL features, namely
commonalities and variabilities, both stored in the core
asset – the repository of all reusable artifacts [3].

The selection of the features and their representations
in the SPL architecture must be precise; therefore, sev-
eral variability managements and SPL approaches have
been developed for the management of variabilities and
facilitation of the design and creation of an SPL [1].

Among such approaches there are KorbA
(Komponentebasierte Anwendungsentwicklung) and
FORM (Feature-Oriented Reuse Method for SPL)
[1], PLUS method (Product Line UML-Based
Software Engineering)[14], FODA (Feature-Oriented
Domain Analysis)[10] and SMarty (Stereotype-based
Management of Variability) [14, 17].

All such approaches can be integrated in SPL frame-
works or methods, as SPLE and PLUS. The SPLE
(Software Product Line Engineering) framework [18]
covers all Software Engineering Institute (SEI) process
to concept and manage an SPL, i.e., development of
core assets, product development and management [21].
Figure 1 shows the SPLE framework.

It is composed of two life-cycles, namely domain engi-
neering and application engineering. Those life-cycles are
composed of nine sub-processes, of which eight form four
pairs, namely requirements engineering, design, realisa-
tion and testing. The engineering sub-process domain
results in common assets used in their application engi-
neering counterparts for the creation of products. The
ninth sub-process (product management) is part of the

SPLE Framework

A
p

p
lic

at
io

n
 E

n
gi

n
n

er
in

g
D

o
m

ai
n

 E
n

gi
n

ee
ri

n
g

Product 
Management

Domain 
Requirements 

Engineering
Domain Design

Domain 
Realisation

Domain 
Testing

Common Assets

Application 
Requirements 

Engineering

Application 
Design

Application 
Realisation

Application 
Testing

Requirements
Architecture Components

Tests

Requirements Architecture Components Tests

Application N 
Artefacts

Application 1 
Artefacts

Figure 1. Life-cycles of the SPLE Framework [18].

engineering life-cycle domain and deals with the scope
of the product line [13, 18].

B. Mobile Learning

The ICT-based learning modalities offer many benefits
for the educational process, such as support to teachers,
reduction in their workload and their empowerment for
a more appropriate monitoring and feedback from learn-
ers. Educational software developed for these modalities
should provide learning activities and their automatic
correction and assessment. The idea is to identify the
learners’ difficulties, helping them to overcome their
limitations [9, 12].

Particularly for m-learning, some significant changes
can be noticed. M-learning has literally led the teaching
and learning process to streets, in lines, trips or other
places. Another important characteristic refers to per-
sonalization; since the mobile device is personal, appli-
cations with some level of configuration are preferred
over the ones that do not exhibit configurable features.
Several studies have been conducted for the adoption of
mobile devices as a way of mitigating problems in the
educational area [24]. Furthermore, the reduced price of
such ICTs contributes to their acquisition [20].

Software and applications from different learning
modalities, including m-learning, share several common
features. Therefore, researches can identify those to be
adapted for use among the different modalities. For in-
stance, a code editor can be developed from an e-learning
system for an m-learning environment. However, the
mobile device specificities, as its reduced screen and the
input mechanism, must be respected.

Despite the positive results showed by the learning
modalities in several fields, there still are some domains

6265



that do not well explore these advantages [8]. This is
the case of the teaching of programming domain, which
is briefly discussed next.

C. Teaching of Programming Domain

The teaching of programming has been significantly
adopted in undergraduate courses nowadays. Further-
more, many initiatives have also investigated its adop-
tion in primary and secondary education [5, 8].

Although several mobile applications have been devel-
oped for the teaching of programming1, they still do not
provide mechanisms for giving support to teachers as
ICT-based educational software. Most applications are
created for informal learning [2, 16], i.e., they do not
explore features from formal learning environments that
directly support the achievement of educational goals
and curricula. Also, they do not provide a more con-
figurable level of their features to attend the teaching of
programming and their users, and mitigate the problems
in this domain (e.g., right use of programming concepts,
comprehension of programs, refactoring and factoring
programs, learners’ motivation, among others) [22].

Considering the teaching of programming and the lack
of effective m-learning solutions in this domain, another
issue can be noticed: the few solutions that adopt reuse-
based software engineering approach. Specifically, we
highlight the reduced number of SPLs for both edu-
cational software of general purpose and educational
software for the teaching of programming [15].

In this perspective, several opened challenges to be
addressed by our SPL proposal can be identified: (a)
the reduced number of m-learning SPL [15]; (b) the
several commonalities among the learning modalities (e-
learning and t-learning) that may be adapted or reused
in m-learning applications, and the several commonal-
ities among the teaching of programming software and
applications [16] that may also be adapted or reused;
(c) the few adaptable solutions for the mitigation of
problems in the teaching of programming and those
that do not support formal learning; (d) the need for
creating quality m-learning applications that support
teachers’ activities and facilitate feedback and decision
making according to the learners’ performance; and (e)
the need of investigating the adoption of different mobile
development technologies for the implementation of an
SPL that supports different platforms and disseminates
our practices and lessons learned.

III. SPL Project and Design Decisions

Based on the relevance of the three SPL main activi-
ties defined by SEI [21] and with the need for adoption a
set of processes that guide the development of our SPL,

1goo.gl/019DIJ

our first project decision was the selection of the SPLE
framework (Figure 1). We chose this framework mainly
because it shows a significant and complete material,
and has a well-defined process (nine sub-process) into
two life-cycles. Additionally, the SPLE framework has
its roots in different well-known initiatives and supports
different development methods, as RUP (Rational Uni-
fied Process) [18].

Furthermore, as SPLE framework has several tasks in
its sub-processes, it is easy adapting the framework for
our domain, allowing the inclusion of other approaches
for supporting the SPL activities, as well.

Finally, based on the SPLE framework sub-process,
our study focuses on the three first sub-processes from
the domain engineering, namely product management,
domain requirements engineering and domain design. As
these sub-processes are the most relevant for allowing the
development of the SPL and its products, and literature
does not provide many discussions about the approaches
adopted in these first phases, we: (i) discuss and jus-
tify several project and design decisions; (ii) conduct
the three first phases; and (iii) propose and evaluate
an m-learning conceptual architecture model. We have
selected the three first sub-processes because of their
importance as requirements for the conduction of next
six sub-processes of the SPLE framework.

A. Methodology

The methodology applied to support the selection of
the approaches and methods that complement each sub-
process of the SPLE framework follows these steps:

1) Conduction of two systematic mappings (SM) for:
(i) the identification of educational SPLs and ap-
proaches adopted to support our selection of ap-
proaches; and (ii) the identification of m-learning
architectures, for a possible adoption of an existing
architecture, or even for proposing improvements
or comparisons with our architecture model;

2) Selection of approaches and their artifacts for each
SPLE sub-process based on the evaluation results
of these approaches from the literature primary
studies (first SM);

3) Identification of m-learning architectures based on
the literature primary studies (second SM);

4) Conduction of the three first phases of the SPLE
framework; and

5) Evaluations of each artifact generated for possible
improvements in the selected approaches and for
guaranteeing that each selection is the best for
integrating the proposed SPL.

Each sub-process that integrates the approaches and
methods (Section II) is discussed next.

6266



B. Product Management

This SPLE sub-process determines the common and
variable features in an SPL for the definition of the scope
of the line. If a new feature is required, the sub-process
measures its impact and the implications for updating
all the other sub-processes involved. To support the
management of the features in this sub-process, we se-
lected FeatureIDE tool2 [23], which is an Eclipse3 Plugin
that generates an XML (eXtensible Markup Language)
capable to be used together with mechanisms (e.g., a
parser) or other tools for management of the products,
and support to source code traceability.

The FeatureIDE tool was also used to conduct the
validation of our feature model. The tool found no dead
feature and identified 874 possible valid products.

C. Domain Requirements Engineering

This sub-process is responsible for the five basic re-
quirements engineering tasks, namely elicitation, docu-
mentation, negotiation, validation/verification and man-
agement. It also encompasses the conception of the
requirements artifacts, i.e., goals, features, scenarios, use
cases, and data, functional and behavioral models [13].

The goal artifact describes the intention (objective)
the system or application under consideration should
achieve. It is defined to be aligned with the stakeholders’
needs. The aim of our research is how to improve the
teaching of programming through m-learning applica-
tions. To achieve it, the conception of the applications
should consider a reuse-based approach for a better
development process. As addressed in Section I, we chose
to work with an SPL mainly due to: (i) the results
from a Systematic Mapping (SM) [15], which did not
retrieve SPLs for m-learning and for the teaching of
programming domains; (ii) the benefits provided by the
adoption of the SPL methodology; and (iii) the capa-
bility of working with variabilities and commonalities
from several software and applications for teaching of
programming [16].

Features, in the context of requirement artifacts, are
end-user visible characteristics of a system. In an SPL,
they define the set of common and variable character-
istics to be selected and used for the development of
products. Each feature, when representing variabilities,
needs to satisfy constraints to be consistently used. Such
features can be represented in the SPL context, through
many methods, among them we chose the feature model
[10] to be used as an input artifact for the next sub-
process.

Scenarios and use cases are requirements artifacts that
facilitate communication among the parts representing

2goo.gl/JfqxEu
3http://www.eclipse.org/

the requirements. They represent the actors’ interactions
(users and other entities) with the system, reducing the
chances of ambiguity. Since our aim is to develop an
SPL that attends a wide range of applications for the
teaching of programming, the models were not modeled
at the initial phase. Such decision was taken according
to the following project restrictions: (i) reduced team of
developers, (ii) short time for the development process;
and (iii) delivery of quick solutions. The scenarios and
use cases diagrams will be included as artifacts in the
core assets during and after the domain realisation sub-
process.

The next task regards the definition of the set of
requirements according to the five basic requirements
engineering tasks [18]:

Elicitation: in this phase, the analysis of the stake-
holders’ needs was conducted. A catalog was proposed
encompassing features for dealing with the teaching
of programming domain. We have elicited thirty-three
primary studies from a previously conducted SM [16],
extracting their features;

Documentation: in this phase, the features previously
identified as product requirements were written in a
more precise way. Since our aim is the development of m-
learning applications for the teaching of programming,
we did not only consider the applications features, but
also those related to the specificities of the mobile plat-
form and general educational concepts;

Negotiation: in this phase the stakeholders’ opinion is
considered to obtain an adequate level of consensus on
the requirements. Since this phase was not adequate for
the catalog conception, a case study with a teacher and
a team of three developers was conducted as a way to
get feedback.

Validation and verification: in this phase, the require-
ments were analyzed for the creation of a set of clear,
complete, correct and understandable requirements. Sev-
eral interactions were conducted for refining the number
of requirements from 498 in the initial analysis to 97 in
the beta version of the catalog4. However, it is important
to notice that these requirements can change in the
course of our research.

Management: this phase deals with the maintenance
of the requirements in the development and the product
line life-cycle, implying in possible changes in the defined
requirements and the inclusion of new ones. The phase
should be retaken at each new inclusion or modification
of the requirements scope and is directly related to the
product management sub-process.

D. Domain Design

This sub-process generates the reference architecture
of the m-learning applications for the teaching of pro-

4http://caed.icmc.usp.br/mlearning/?page=index

6267



gramming. For our SPL, the architecture is divided
in two parts. The first part represents an infrastruc-
ture for supporting educators in the development of m-
learning applications using the core assets. The second
part presents the m-learning architecture model, which
was proposed with basis on the requirements catalog
and on the feature model. All features presented on
the second part come from the core assets and should
generate a valid mobile application from the supporting
infrastructure. For modeling both parts of the proposed
architecture, two systematic mappings were conducted.

Systematic Mapping of Educational SPLs

The first SM was conducted in 2015, retrieving 10
SPLs for educational purposes and none SPL for the
teaching of programming [15]. The results were con-
sidered for the selection of approaches for supporting
the sub-processes from SPLE framework and for the
development of the architecture of the infrastructure for
creation of the SPLs products (first part). The complete
protocol is available at https://goo.gl/Q70pL1.

The most significant SPL conception method adopted
in the SM results was the extractive, following by the
proactive; none of them adopted the reactive method.
Those three methods were propose by Krueger [11].
Briefly, in the proactive method the SPL is developed
from a scratch. In the reactive, the SPL is incremented
according to the demand. Finally, in the extractive
method, artifacts are extracted from software and ap-
plications for evolving the SPL [11].

For the engineering domain, FODA approach [10] was
adopted in most of the studies, followed by SMarty
[14, 17]. The technologies and tools adopted in the ap-
plication engineering were: REST (representational state
transfer), Java, Android, Ajax, AOP (aspect oriented
programming) and S.P.L.O.T. (SPL online tools)5, a
tool that, such as the FeatureIDE, can validate feature
models.

The most important primary study retrieved was the
proposed by FalvoJr et al. [6]. In this study, the authors
specify an m-learning SPL for educational generic pur-
pose with a supporting mechanism. Based on this SPL,
we considered the adopted technologies and the project,
a SOA (service-oriented architecture), for developing our
supporting infrastructure, described next.

Systematic Mapping of M-Learning Architectures

The second SM was conducted in 2016, retrieving 26
mobile learning architectures. The complete protocol of
this mapping is available at http://goo.gl/Gp9Fd0.

The SM searched for general architectures that encom-
pass a big number of features from m-learning applica-
tions and learning environments. However, none of the

5http://www.splot-research.org/

returned architectures of the SM allowed its adoption as
main architecture in our research.

The returned architectures do not encompass the
features identified in our domain requirements engineer-
ing phase, as contents, learning activities, assessment,
feedback and learning performance. Those features were
found isolated in most of the cases, hindering their
adoption. Thereby, the primary studies were used only
for allowing comparisons and improvements in our ar-
chitecture model, during the domain design phase.

Finally, the results of both SMs, the m-learning re-
quirements catalog and the feature model modeled us-
ing FeatureIDE tool were considered as inputs for the
conduction of the domain design sub-process. The SPL
architecture developed in this phase is presented next.

IV. A M-Learning SPL Architecture Proposal

The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software elements, the externally visible prop-
erties of those elements, and the relationships among
them. The architecture is defined as the fundamental
organization of a system, embodied in its components,
their relationships with each other and the environment,
and the principles governing its design and evolution [4].

Different levels must be adopted for the representation
of an architecture. Specifically for an SPL approach,
notations used for documenting software architecture in
single systems engineering generally do not provide suf-
ficient means to represent variability, requiring specific
documents, as a reference architecture.

The architecture developed in the domain engineering
is called reference architecture and includes the variation
points and variants documented in the feature model. It
also determines the reusable components to be developed
during Domain Realisation and tested in the Domain
Testing sub-process [18]. The main artifacts of an SPL
architecture are: (i) the architectural structure, (ii) the
architectural texture, and (iii) the architecture views
(logical view, development, process and code view) [18].

Basically, the architectural structure exhibits, in a
macro view, the layers (packages) and their sub-packages
of the applications, whereas the architectural texture
determines the general rules each of the parts must obey.
Finally, the architecture views represent the system in
different ways to capture all the specifications for the
architecture development.

• Logical view : describes the application related with
its problem domain. In our project, it is represented
by the feature model;

• Development view : represents the hierarchical de-
composition of the system into pieces. Since we
adopted UML and SMarty to represent this decom-

6268



position, the most used representations are package
diagram, component diagram and class diagram;

• Process view : shows the decomposition of the run-
ning system into ordered activities and their rela-
tionships. The activity and sequence UML diagrams
are used to represent them; and

• Code view : represents the decomposition of the exe-
cutable code into files and their assignment for pro-
cessing units. The main artifact that expresses this
decomposition is the UML deployment diagram.

Figure 2 shows a macro representation of our SPL
architecture model through a diagram of layers (pack-
ages), its sub-packages and a list of approaches, tools
and technologies adopted with their respective life-cycle
and architectural layers. It is highlighted that the tech-
nologies presented are related only with the first part of
the architecture, responsible for facilitating the concep-
tion of the m-learning applications. Such a structure is
proposed based on the primary study [6] returned in the
first SM conducted [15].

At the top of Figure 2 is the SPLE framework and its
layers. The interaction between domain engineering life-
cycle and application mechanism (green arrow) supports
the creation of applications. Application mechanism in-
teracts with the application engineering life-cycle for the
creation of m-learning applications for the teaching of
programming (blue arrow), which reduces the amount
of technical support.

The user selects the desired features through a web
user interface (Web UI ) and sends their requisition
to the server (REST services), which identifies them,
selecting the application template desired. All artifacts
are put together and the server returns the desired m-
learning application to the user.

In the domain engineering layer, Domain Require-
ments Engineering is the sub-process that creates the M-
learning Requirement Catalog, which is the main artifact
used with the FeatureIDE tool for the creation of the
Feature Model. As addressed in Section III, the model
was adopted in the Domain Design for the proposal of
the architecture model, including the variability man-
agement facilities provided by the SMarty approach.

Our model was divided according to the nine cat-
egories defined in the m-learning requirement catalog,
namely feedback and results, users, monitoring and
learning performance, contents, programming mecha-
nisms, assessments, support to teaching and learning,
learning activities and nonfunctional requirements. All
categories were considered during the design and defi-
nition of the layers (packages) and their sub-packages
of the m-learning applications architecture proposal, as
illustrated in Figure 2. Packages, sub-packages and rela-
tionships in dashed lines represent variable features, the
ones represented with solid lines are common features.

The blue arrow specifies the m-learning applications
architecture. The mobile client application provides
a macro view of Presentation Layer, Service Layer,
Business Layer (Educational and Programming), Data
Layer (persistence) and Cross-Cutting/Orthogonal Ser-
vices Layer and their interactions with external ele-
ments, External Infrastructure and External Sources.

In this point, we highlight the first adaptation of the
SPLE framework to our needs. To fit our educational
domain and to perform a fast delivery of m-learning
applications we have adopted the proactive and the
reactive development approaches [11] for the next phase
(domain realisation) (Figure 2 – Red arrow).

The decision implies in the identification of possible
new features required by the users (teachers or learners).
Consequently, the sub-processes of the application engi-
neering must send feedback to the domain engineering
layer, triggering the reactive process of development of
new features and updating of other artifacts. This is
essential to guarantee that the SPL allows a concise
generation of new product configurations.

A. Architectural Structure and Texture

The structure of the m-learning applications depicted
in Figure 2 includes five layers, besides external in-
frastructure and external sources. The layers and their
texture are characterized as follows:

Presentation Layer: it is the layer responsible for
providing an user graphic interface and its components
presented in UI Components sub-package. It is also
responsible for translating the users’ interactions in logic
commands that will be redirected for the other applica-
tion layers though the presentation logic components/-
controller sub-package.

The challenges for the domain realization (the next
SPLE sub-process) related to such components are the
conception of different and adaptable presentations,
since an application may be executed in different mobile
devices of different screen sizes. Besides, it is need to re-
duce graphical elements from other modalities solutions,
decreasing the user’s memory load for recognizing the
interface and their functionalities. The main resource to
reduce the load of graphical elements is put together all
functionalities in floating menus and buttons which can
be hidden when other functionality is being used.

Additionally, input interactions, mainly the virtual
keypads, must be more pleasant and natural for not de-
motivating the users. In learning activities, for instance,
where it is need to write long texts as source-code, it
is important to allow the communication with other
input physical devices or, as an alternative, creating new
presentations for the virtual keypads.

Services Layer: the service interfaces and data con-
tracts (or message types) are defined and implemented

6269



SPL Creation Application

Web UI

M-learning Application

Message Types

External Infrastructure (Servers)

Data Sources

Data Synchronization

Services

Unrellable Networks

External 
Sources

OER / LO

Other devices

Service 
Consumers

...

Mobile Apps

User

Product 
Management

Domain 
Requirements 

Engineering

Domain 
Design

Domain 
Realization

Domain 
Testing

Application 
Requirements 

Engineering

Application 
Design

Application 
Realization

Application 
Testing

Feedback
(assets)

SPL Support Infrastructure

Common Assets

Requirements Architecture Components
Tests

Application Templates

REST Services

User

UI Components

Presentation Logic Components/Controller

Application Facade / Interface

Supporting for Teaching and Learning

Educational 
Elements

Teaching of Programming

...

Content Activities Assessment Feedback Performance

Synchronization

Availability

Configuration

Communication

Recovery

Interoperability

Operability

Internationalization

Modificability

P
re

se
n

ta
ti

o
n

 
La

ye
r

B
u

si
n

es
s 

La
ye

r

D
at

a 
La

ye
r

Data Access Components Service Agents

Local Data/ 
Cache

Security

M-learning Requirements 
Catalog

Feature Model SMarty
D

o
m

ai
n

 E
n

gi
n

ee
ri

n
g

A
p

p
lic

at
io

n
 E

n
gi

n
ee

ri
n

g
A

p
p

lic
at

io
n

 M
ec

h
an

is
m

E-Learning

Se
rv

ic
es

 
La

ye
r

Service Interfaces

Approaches, Technologies 
and Tools Adopted 

C
o

n
ce

p
tu

al
 M

-l
ea

rn
in

g 
A

p
p

lic
at

io
n

 R
ef

er
en

ce
 A

rc
h

it
ec

tu
re

· SPLE Framework*
· SMarty and UML
· Feature Model
· FeatureIDE
· S.P.L.O.T.

· SOA
· HTML5
· CSS3
· JavaScript
· REST

Cross-Cutting/Ortogonal 
Services Layer

...

*with modifications to fit the domain.

Figure 2. Macro View of the Architecture of M-Learning Application and SPL Application Generation.

in this layer, which avoids the exposition of details of
the internal processes or the business rules used in the
application. Service interfaces expose the business logic
implemented in the application for potential consumers.

The main challenge is the definition of resources to be

available to clients. Moreover, the way such services will
behave and relate with the business layer (educational
and programming domain features) in a more isolated
way must be designed.

6270



Business Layer: this layer encompasses both the edu-
cational domain issues and the teaching of programming
domain issues. The application facade/ interface receives
the process requisitions and redirects them to the desired
educational sub-packages. The idea is to provide a sim-
plified interface to the business logic components often
through the combination of multiple business operations
into a single operation, and facilitating the use of the
business logic and reducing dependencies.

In the educational context, the logic layer is responsi-
ble for each supporting mechanism to content, activities,
assessments, learning feedback and performance.

The supporting for teaching and learning sub-package
receives data collected in the UI components and uses
them for conducting a business process according to a
preestablished order. It deals with the availability of the
different educational mechanisms (content, activities,
assessment, feedback and performance) and their rela-
tionships among them and with the educational goals.

The educational elements, on the other hand, group
the entities responsible for encapsulating the business
logic and data necessary for representing real world
elements, such as learners, teachers, classes, courses.
They provide access to the business data and related
functionalities, validating the data within the entity
and encapsulating the logic application for ensuring
consistency and implementation of business rules and
behavior. Intelligent tutoring and other support entities
are also included in this sub-package.

Finally, the other units are directly related to the
teaching of programming sub-package, responsible for in-
cluding the teaching of programming domain, describing
the way it will be taught to learners, the strategies, repre-
sentations, mechanisms and necessary tools that provide
the correct solution to stakeholders and achievement of
the educational goal.

When the user selects the desired features in the web
UI for creating the application, tips related to each
selected programming feature and the problems in the
teaching of programming that may be mitigated by a
specific feature are given. Additionally, considerations
of learning theories, also included in our m-learning
requirements catalog, can be used for tracing the desired
educational goal and presented to users for supporting
the process of application creation.

Data Layer: this layer abstracts the logic required
for the access to the data stores, which can occur in
either a local data (client side application), or a cache, or
directly in a remote data base synchronized with features
from cross-cutting/orthogonal services layer. They cen-
tralize common data access functionalities to facilitate
the application for configuration and maintenance. The
different components for those tasks are included in the
data access components sub-package.

Finally, sub-package Service Agents implements data
access components necessary for communicating the ap-
plication with the services in the external infrastructure.
It isolates the varying requirements for calling services
from the application and converts the data from the
application to be used for the services.

The main challenge in the components is the guarantee
of the data’s quality traffic to be supported by cross-
cutting elements and the respective service approach
adopted. Additionally, the processes to monitor and to
store data is also a challenge. Based on a big number of
learners’ access, the infrastructure for storing data must
be available and capable to provide all the simultaneous
accesses needed.

Cross-Cutting/Orthogonal services Layer: this layer
represents all non-functional requirements and the fea-
tures related to technical issues, as security, configu-
ration, communications (protocols, technologies), mo-
bility and mobile devices specificities, availability and
internationalization. It also includes the communication
with external sources, such as external applications,
other learning systems, as e-learning or even t-learning
systems, with other systems that may consume the same
services from the application, and repositories of learning
objects (LO) or/and open educational resources (OER).

The challenge related with the cross-cutting compo-
nents, or orthogonal services – when the application is a
service-based, is how to encapsulate them. As they are
cross-cutting, the encapsulation of these components is
not a trivial task and, for the majority of them, it is
nearly impossible since they deal with specificities of
quality that are spread for all the other components.
Furthermore, considerations of quality of services must
be included, based on a priority order defined by the
stakeholders.

Additional Considerations: The architecture can sup-
port the development of m-learning applications for both
formal or informal learning, including or not services,
justifying the variable packages and sub-packages in Fig-
ure 2. When only a service-oriented architectural style
(SOA) is considered, the business layer, data layer and
the most components of the cross-cutting/orthogonal
services layer must be allocated on the server side. In
other words, such layers and their components must be
available only on the server side that is being accessed by
the services layer. When the stakeholders select features
without services, all the functionalities will be stored at
user mobile device.

The different abstraction levels of the diagrams can
lead to a better understanding of each package and
set of components in their respective sub-package. The
models are modeled for the execution of the next SPLE
sub-processes, namely domain realization and domain
testing, which will allow the generation of m-learning

6271



applications to be tested. Additionally, prior to the
development of the components and the supporting
infrastructure, the technologies of front-end and back-
end must be identified and other m-learning applications
with open source-code must be considered to be candi-
dates in the extraction of their components for our SPL.

Next we show a preliminary evaluation of the model
through an online questionnaire (qualitative analysis).

B. Questionnaire with Experts

To perform the next phases of the development of
the proposed SPL, the model of the architecture should
be approved by the main stakeholders involved, i.e.,
software engineers, programming teachers, m-learning
experts and mobile developers. Thus, an online ques-
tionnaire in a checklist format was applied with the
stakeholders, called from now as participants.

A total of 31 participants answered the questionnaire.
23 were programming teachers, and eight were software
engineers (and had never taught programming before).
Among the 23 teachers, three were m-learning experts
and four were mobile developers. They have 5.2 years of
expertise in average.

24 questions were proposed based on [7]. Each ques-
tion could be answered according to the following: (1)
totally complies; (2) partially complies; (3) does not
comply; and (4) indifferent. The complete qualitative
study protocol and results are available at http://goo.
gl/Ll3o8D. The questions were divided in seven groups:
general aspects, conceptual aspects, infrastructure as-
pects, modeling aspects, SOA aspects, educational domain
aspects, and m-learning domains aspects. All questions
were previously analyzed through a pilot execution.

The majority of the participants (52%), totally com-
plied that the conceptual model architecture and its
educational and mobile learning concepts were feasible.
42% indicated that the model partially satisfied the
domain, 2% indicated that the model does not comply,
and 4% remained indifferent. We point out that the
indifferent answer was indicated when the participant
did not have the expertise to answer an specific question.

Based on the answers of all participants, we observe
that all the seven evaluated aspects represented in the
architecture model were considered totally satisfied, as
shown in Figure 3.

Considering the answers by stakeholders’ expertise,
as teachers of programming, software engineers, mobile
developers and m-learning experts, a different perspec-
tive can be also analyzed. For the 16 teachers of pro-
gramming, the most of aspects were considered totally
complied, with one exception for the modeling aspects,
showing a statistical tie for totally and partially com-
plied answers.

80

42
34 32 37

98

55
65

13 19 24 20

46 45

4 4 5 0 0 4
116 3 4 6 5 7 13

0

20

40

60

80

100

120

General Aspects Conceptual
Aspects

Infrastructure
Aspects

Modeling
Aspects

SOA Aspects Educational
Domain Aspects

M-learning
Domain Aspects

All Participants (31)

Atende totalmente (4) Atende parcialmente (3) Não Atende (2) Indiferente (1)

Figure 3. Evaluation Results by Set of Questions.

In the perspective of software engineers (8), the infras-
tructure aspects were totally complied, conceptual and
modeling aspects had a statistical tie between the totally
and partially complied answers. The other aspects were
considered partially complied.

Mobile developers (4), as the teachers of program-
ming, considered all the aspects totally satisfactory.
Finally, m-learning experts’ answers (3) showed a statis-
tical tie. They considered the infrastructure aspects as
totally and partially complied. The other aspects were
totally complied.

Despite the small number of participants, they rep-
resent the roles of the stakeholders that we intend to
support with our SPL. Further evaluations with other
methods will be applied with next models of the archi-
tecture in order to allow its concise development.

V. Conclusions and Future Works

Based on different approaches and methodologies, in
this study we described the SPLE framework and the
adaptations made for the inclusion of specific mecha-
nisms, allowing the conception of the SPL architecture
model for the development of m-learning applications
for the teaching of programming. The choices and ap-
proaches adopted can support project and design deci-
sions for the conception of SPLs in other domains.

The main challenges, as seen in each layer of our
proposal, are related with adaptation of interfaces, func-
tionalities and strategies for the effective adoption of
mobile devices in the teaching of programming.

Based on a questionnaire applied with the main stake-
holders, the architecture model was considered feasible
in all the aspects that the high model represents, thus
allowing the conduction of the next phases of the SPLE
framework.

As future work, we highlight: (i) model the archi-
tectural UML diagrams discussed in this study; (ii)
validate these UML models with experts; (iii) conduct
the domain realisation phase, in which we should develop
the components of our architecture and evolve the SPL
for allowing the conception of our first applications; (iv)
develop the proposed mechanism to facilitate the gener-
ation of products by non-technical users; and (v) include

6272



new components, extracted from other m-learning appli-
cations, to populate the SPL core assets.

Acknowledgments

The authors acknowledge Brazilian funding agencies
– Fapesp (Processes 2013/07375-0 and 2014/03389-9),
CAPES (Procad 071/2013) and CNPq – for the financial
support, and thank Dr. Timo Käkölä and the anonymous
reviewers for their valuable suggestions to improve the
quality of the paper.

References

[1] H. Ahn and S. Kang. A comparison of software
product line architecture design methods from the
practicality viewpoint. Korea Conf. on Soft. Eng.,
2009.

[2] V. C. O. Aureliano and P. C. A. R. Tedesco. Ensino
e Aprendizagem de Programação para Iniciantes:
uma Revisão Sistemática da Literatura focada no
SBIE e WIE. Simp. Brasileiro de Inf. na Ed., 2012.

[3] R. Capilla, J. Bosch, and K.C. Kang. Systems and
Software Variability Management: Concepts, Tools
and Experiences. Springer, 2013.

[4] P. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley,
2002.

[5] C. Duncan, T. Bell, and S. Tanimoto. Should
your 8-year-old learn coding? In Proceedings of
the Workshop in Primary and Secondary Comp.
Education, pages 60–69, New York, USA, 2014.

[6] V. Falvo Junior, N. F. Duarte Filho, E. OliveiraJr,
and E. F. Barbosa. Towards the Establishment of
a Software Product Line for Mobile Learning Ap-
plications. Int. Conf. on Soft. Eng. and Knowledge
Engineering, 1:678–683, 2014.

[7] N. F. D. Filho and E. F. Barbosa. A contri-
bution to the establishment of reference architec-
tures for mobile learning environments. IEEE
Revista Iberoamericana de Tecnologias del Apren-
dizaje, 10(4):234–241, Nov 2015.

[8] K.J. Harms, D. Cosgrove, S. Gray, and C. Kelle-
her. Automatically Generating Tutorials to Enable
Middle School Children to Learn Programming In-
dependently. pages 11–19, 2013.

[9] A. Jalil, M. Beer, and P. Crowther. Pedagogi-
cal requirements for mobile learning: A review on
mobilearn task model. Journal of Int. Media in
Education, (1), 2015.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain Anal-
ysis (FODA) Feasibility Study. Technical report,
Carnegie-Mellon University, November 1990.

[11] C. W. Krueger. Easing the Transition to Software
Mass Customization. In Soft. Product-Family Eng.,
volume 2290, pages 282–293. Springer, 2002.

[12] E. Lavrischeva and A. Ostrovski. General disci-
plines and tools for e-learning software engineering.
Communications in Comp. and Inf. Science, 347
CCIS:212–229, 2013.

[13] F. J. Linden, K. Schmid, and E. Rommes. Software
Product Lines in Action: The Best Industrial Prac-
tice in Product Line Engineering. Springer-Verlag
New York, Inc., 2007.

[14] A. Marcolino, E. OliveiraJr, I. M. S. Gimenes, and
E. F. Barbosa. Empirically Based Evolution of a
Variability Management Approach at UML Class
Level. In Annual Comp. Soft. and Applications
Conf., Vasteras, Sweden., pages 354–363, 2014.

[15] A. S. Marcolino and E. F. Barbosa. Linhas de
Produto de Software no Domı́nio Educacional: Um
Mapeamento Sistemático. Simp. Brasileiro de Inf.
na Educação, 1:239–249, 2015.

[16] A. S. Marcolino and E. F. Barbosa. Softwares
Educacionais para o Ensino de Programação: Um
Mapeamento Sistemático. Simp. Brasileiro de Inf.
na Educação, 1:190–199, 2015.

[17] E. OliveiraJr, I. M. S. Gimenes, and J. C. Mal-
donado. Systematic Management of Variability in
UML–based Software Product Lines. Journal of
Universal Comp. Science, 16(17):2374–2393, 2010.

[18] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer-Verlag, Secau-
cus, NJ, USA, 2005.

[19] N. Rubens, D. Kaplan, and T. Okamoto. E-
Learning 3.0: Anyone, Anywhere, Anytime, and AI.
In New Horizons in Web Based Learning, pages 171–
180. Springer, 2014.

[20] M. Sarrab. M-learning in Education: Omani Un-
dergraduate Students Perspective. Procedia - Social
and Behavioral Sciences, 176:834 – 839, 2015. Int.
Educational Tec. Conf. Chicago, IL, USA.

[21] SEI. Software Engineering Institute A Framework
for Software Product Line Practice. http://www.
sei.cmu.edu/productlines/, 2016.

[22] D. M. Souza, M. H. S. Batista, and E. F. Barbosa.
Problemas e dificuldades no ensino de programação:
Um mapeamento sistemático. In Revista Brasileira
de Inf. na Ed., volume 24, pages 1–14, 2016.

[23] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke,
G. Saake, and T. Leich. Featureide: An extensible
framework for feature-oriented software develop-
ment. Science of Comp. Prog., 79:70–85, 2014.

[24] UNESCO. Mobile learning for teachers global
themes, 2012. Accessed in 10 out. 2013.

6273


