

Maintaining a Science Gateway – Lessons Learned from MoSGrid

Lukas Zimmermann

Applied Bioinformatics,

University of Tübingen,

Tübingen, Germany

lukas.zimmermann@

student.uni-tuebingen.de

Richard Grunzke

Center for Information Services

and High Performance

Computing, Technische

Universität Dresden, Dresden,

Germany

richard.grunzke@tu-dresden.de

Jens Krüger*

Applied Bioinformatics,

University of Tübingen,

Tübingen, Germany

krueger@

informatik.uni-tuebingen.de

Abstract

We here present the experiences collected

maintaining and updating the MoSGrid science

gateway over the past years. Insights are provided on a

technical and organizational level useful for the design

and operation of science gateways in general. The

specific challenges faced and solved are considered to

be valuable for other communities.

1. Introduction

The Molecular Simulation Grid (MoSGrid) is being

operated for over six years now [1]. The scientific

gateway provides workflows, access to compute

infrastructure and data management capabilities for

computational chemists and scientists from related

fields. Molecular simulations are resource-demanding

by their very nature. Ab initio quantum chemistry

calculations are decelerated by solving the Schrödinger

equation, molecular dynamics require adequate

representation of potential large systems and emerging

thermodynamic properties, docking approaches rely on

large underlying screening libraries. These molecular

simulations need to be run on high performance

computing (HPC) resources to enable scientific

projects to perform cutting edge research.
Regardless of their scientific background, all users

wishing to conduct studies of that kind should have the

opportunity to do so. Having steadily recurring

requirements and necessities already at their fingertips,

these users should be relieved from the need to deploy

these themselves, for example grid engines, storage

systems, and involved software.
Those specifications mentioned here clearly point

towards the direction of science gateways. MoSGrid,

whose maintenance over the past six years shall be

discussed here, bridges the gap between complex

software1 in molecular simulations and user

convenience. It is discussed which challenges need to

be met for a science gateway to be maintained and

scientific protocols to be curated.
MoSGrid consists of a sophisticated stack of

technologies providing access to German compute

infrastructures. Maintaining these technologies and

providing a high-level service to the community is a

challenging task. The experiences made are shared to

provide helpful insight for other communities. Figure 1

shows the landing page of the MoSGrid science

gateway, representing the entry point to the services

discussed in the following sections. We will provide

insights going beyond the update process of individual

components of the gateway framework, providing a

broader picture of the whole venture.

2. Related Work

Extensive literature search yielded no results on

related work focusing on the specific topic of updating

and maintaining a complete science gateway. Thus, to

the best of our knowledge, the challenges of systematic

and reliable procedures for updating science gateways

seem to be an unaddressed issue.
For some specific frameworks used in science

gateways such as gUSE/WS-PGRADE [2,3]

procedures exists to extend underlying databases,

functionalities and portlets consequently upgrading the

gUSE/WS-PGRADE version. Science gateways like

the AMC Neuroscience Gateway [4], the VisIVO

Gateway [5] and the Statistical Seismology Gateway

[6], but also others, undergo this process regularly.
A similar approach is available for updating Galaxy

[7] instances keeping features, configuration files,

databases, tools, and other major functionalities up to

date.

* corresponding author

6233

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41918
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

For the Catania Science Gateway [8] no particular

upgrade documentation could be obtained. But as this

framework was designed to be very modular, updating

individual components appears feasible. The Catania

Science Gateway Marketplace offers the possibility to

virtual research communities (VRCs) to request new

applications and functionalities.
HUBzero [9] which is the underlying content

management system for e.g. nanohub.org [10] offers

ready-to-use packages available for Debian 6/7 and

RHEL 6.
Apache Taverna is a popular software suite for

designing workflows. Webservices can be attached to

workflows as WSDL descriptors. The project is now

merged into the Apache Incubator stage [11,12], so

efforts for maintenance of both suites can be unified.
Apache Airavata is a software framework enabling

the composition, management, execution and

monitoring of applications and workflows on

distributed computing resources [13]. Apache Airavata

is a fairly new technology and can be considered to be

still under development.
Vine Toolkit [14] offers an API for developers

which is particularly focused on plugins, each adapted

to solving a well-defined problem. Thus, Vine Toolkit

is modular from its very design. It is also a reasonable

candidate when it comes to the integration with Liferay

and supports many operating systems due to the

employment of the Apache Flex Framework [15].
KNIME, the Konstanz information miner [16], is

an open source tool suite for the assembly of data

analysis pipelines. It offers its deployment as server

application with the TomEE Application server.

KNIME’s capabilities in terms of High-Performance

Computing (HPC) are represented by the cluster

execution plugin, which enables individual nodes of

the workflow being submitted to an Oracle grid engine,

and a recent development of integrating KNIME with

HPC using UNICORE. KNIME heavily relies on

community-curated nodes in order to delegate support

to the user base.
MyExperiment [17] is a repository with which

scientists can share their experiments with their

community. These workflows can be of several

different supported formats to solve diverse challenges

from different scientific areas. Also, workflows can be

combined in so-called packs, which gives their

distribution more structural integrity.
There are also commercial solutions available for

data mining. One instance is RapidMiner [18], which

was also selected to be leader in the 2016 Gartner

Magic Quadrant for Advanced Analytics Platform [19].

Here, support is provided directly by the developers

and included in the license fee.

All the individual approaches for the different

frameworks are viable and can be reasonable answers

to infrastructure-related questions. But science

gateways usually consist of considerably more, for

example customized user interfaces, connections to

compute and data resources, authentication and

security concepts. These challenges also need to be

handled on the long run.

3. Operational Strategy

Before describing the infrastructural and

technological details of the MoSGrid science gateway

we focus on the operational concept behind MoSGrid.

When MoSGrid was conceived and funded by the

German education ministry, and subsequently by the

EU in the SCI-BUS and ER-flow projects, it was

anticipated that the operation and maintenance of

portal, storage, and compute infrastructure is being

shared among a few core project members.

Furthermore, it is notable that MoSGrid is one of the

last major D-Grid projects being maintained in

Germany. These two main factors had some

considerable impact on design decisions which had

direct influence on maintenance and operational

considerations. The security concept based on personal

user certificates is one major example, the federated

storage concept based on XtreemFS is another one.

Although such decisions were reasonable when they

were made about six years ago, some exterior

developments turned the operation of MoSGrid into a

challenging enterprise. In 2012 D-Grid was

decommissioned, which had many implications for

MoSGrid. From an operational point of view the most

relevant one was that compute centers only reluctantly

support a certificate-based authentication mechanism

for reasons that have been hard to conceive. It also

turned out to be quite challenging as the Zuse Institute

Berlin, which is an important MoSGrid partner, had to

limit its resources dedicated to XtreemFS development

and operation of the MoSGrid storage instance.

Fortunately, the remaining partners were able to handle

these and similar challenges. The main strategy can be

condensed in a single sentence: How can we keep the

portal and associated services running with personnel

and financial restraints? In essence, with limited

resources at hand, security and operation related issues

have the highest priority, which is accompanied by

some shortcomings. Software updates, which merely

introduce new features are considered optional and are

at most applied with an unavoidable delay. Extensions

and further developments are limited to essential

improvements.

6234

4. Infrastructure

The following chapters encompass topics more

related to ‘low-level’ infrastructural matters. The

discrimination from portal related topics is by no

means strict due to the tightly integrated multilayer

structure of the gateway (see Figure 2). The individual

components have been described in detail earlier

(please refer to [1]).

4.1. Storage

XtreemFS is a distributed data management system

[20]. It is integrated with MoSGrid in a frictionless

way as previously described [1]. In order to ease the

maintenance of XtreemFS, the installations at different

locations (Berlin, Dresden, Tübingen, and Cologne)

were consolidated to Dresden. Although the resilience

is theoretically lowered, this step safes considerable

maintenance effort. It turned out that the coordination

of slight setup changes or updates among four compute

centers required more effort than the updates

themselves. Now the data management system is

exposed via the UNICORE system at Dresden to be

utilized by the other UNICORE installations as the

central entry point, instead of the previously local

XtreemFS installations. The MyData Portlet still

utilizes the XtreemFS API in the same way, but now

directly connects to the installation in Dresden.

Figure 1 Landing Page of the MoSGrid science
gateway serving as entry point and providing

basic information.

Another option to decrease the maintenance effort

was evaluated as well, which involved to phase out

XtreemFS completely. This would have significantly

decreased the complexity further as the effort of

updating and maintaining XtreemFS would have been

avoided. This would be feasible since XtreemFS is just

running locally in Dresden and UNICORE is utilized

to expose it for access. XtreemFS is then not strictly

needed anymore. This was not done as XtreemFS is

also accessed via its API independently of UNICORE

from within the application domain portlets and the

MyData portlet on the science gateway. Hence, it

would have involved too much of an effort to partly re-

develop the portlets in order to access the storage via

other means. Instead of a direct XtreemFS connection,

UNICORE could serve as an uniform entry point.

Anyhow, re-deploying XtreemFS in Dresden offered

the most sustainable effect for the lowest required

effort for the time being.

4.2. UNICORE

UNICORE [21] is a middleware to abstract from

complex computing resources and expose them in

various ways such as a multitude of clients and APIs

with various high-level services being available. The

integration of UNICORE with the MoSGrid science

gateway was previously described [1].
A part of the continuous maintenance involves

considerable efforts in updating UNICORE. When

configuration files need to be adapted, which seldom is

the case, the effort is even more elevated. Updates are

a necessity to counter security issues in either the

underlying libraries that UNICORE employs or the

UNICORE libraries themselves.

Figure 2 Multilayered architecture of MoSGrid
including the underlying infrastructure. In

particular, the individual services and
corresponding technologies are highlighted.

Since the beginning of MoSGrid, the Atlas cluster

at Dresden was a major part of the computing

infrastructure underpinning MoSGrid. Atlas was

decommissioned at the end of 2015. This had no

further consequences on the MoSGrid capabilities but

the computing resource capacity was reduced. Atlas'

replacement is the Taurus cluster. Since expertise with

6235

the UNICORE middleware has been gathered since the

first days of MoSGrid, it was installed also for Taurus

and is at the time given fully operational. To integrate

Taurus with MoSGrid, two options are taken into

consideration.
First, the new UNICORE registry in Dresden could

be employed for all workflows in MoSGrid; however,

this would require all workflows to be adapted

accordingly. To complicate issues even further, each

individual node of each workflow must be

reconfigured. In addition, UNICORE version

compatibility problems arise in such cases. The

UNICORE submitter for gUSE was developed in the

context of the MoSGrid project in 2010. The current

UNICORE libraries at that time were versioned to 6.4

and deployed consequently. This installation had

functioned without problems since then. Recently, with

UNICORE 7, problems appeared, affecting the data

staging between nodes of a workflow.
Second, the current MoSGrid registry could be used

to also incorporate the Taurus cluster. This is currently

not possible, as the registry is of an older version and

cannot be updated, since the newest UNICORE version

requires Java version 8. This in turn cannot be installed

on the respective server as the Linux operating system

concerned is outdated. We consider this issue to be

completely solvable given enough time.
For all efforts described in this section a simple

four (or more) eyes strategy is followed. The two or

more people involved in each aspect discuss and

coordinate the effort. For reoccurring tasks, like

certificate renewals, a simple note about the

accomplishment is sufficient, for more complex

challenges like registry migration, extended

discussions are required.
Currently, we are evaluating the following course

of action. First, efforts would be undertaken to update

the gUSE submitter to the newest UNICORE version

to avoid library compatibility problems. Second, a

migration to the new UNICORE registry should

prevent incompatibilities. Third, an alternative DNS

entry for the new UNICORE Registry could be created

to avoid the need to adjust every workflow manually.

4.3. Authentication and Security

The whole security concept of MoSGrid relies on

grid certificates issued by trusted certification

authorities (CA). All interacting bodies need to have a

valid certificate including a valid chain of trust down to

the root of the CA [22]. In practice this means that all

users need to obtain a personal certificate as well as all

portal, storage, and compute resources need to have a

server certificate. These certificates usually need to be

renewed once a year which can be considered as slight

inconvenience for the users that are often IT-novices.

On the portal administrative side the reoccurring

renewal of approximately a dozen server certificates

e.g., for the portal itself, each UNICORE instance,

XtreemFS storage, etc. becomes an organizational

challenge. Another item on the maintenance checklist

is the renewal of the public keys of the root certificates.

Each public key from an integrated certificate authority

needs to be up-to-date. In the end the communication

between all entities of the MoSGrid science gateway is

then handled by SAML trust delegation assertions

relying on mutual trust.
Currently, the problem arose that modern browser

started to drop their support for Java applets. This is a

problem for MoSGrid as the secure and user-friendly

client-side creation of the SAML trust delegation

assertions for users depends on such a Java plugin. We

evaluate the intermediate solution of creating a

documentation for users to utilize the UNICORE

Commandline Client (UCC) to create assertions and

then upload them through the portal. The command

looks like the following:
"ucc issue-delegation

-S "CN=mosgrid.informatik.uni-

tuebingen.de, OU=Universitaet

Tuebingen, O=GridGermany, C=DE"

-s "CN=othello.zih.tu-dresden.de,

OU=Technische Universitaet Dresden,

O=GridGermany, C=DE"

-t assertion -V 60"
The SAML trust delegation assertion is issued to a

subject (-S) to access computing a site (-s) in the name

of the issuer (configured via the UCC preferences file).

The name of the delegation is set with the option "-t"

and the validity in days with "-V". We are currently

working on a new security portlet to enable this

procedure for the users in a convenient way. From a

technological perspective, this portlet will rely on

JavaServer Pages, which seems to be best supported by

the gUSE software stack and thus a sustainable

solution.
The mid-term plan is to incorporate an identity

federation such as eduGAIN [23]. This way, users do

not need to apply for and regularly renew certificates

and they do not have to configure them anymore. They

could use their usual home institutional login.

Technically, the Unity service [21] shall act as the

identity proxy as it integrates well with UNICORE as

well as Shibboleth [24] which is the underlying

technology of eduGAIN. Then, UNICORE will be

configured to trust the Unity instance and accept

SAML assertions that are issued by this Unity instance.

This is necessary as users do not have a certificate

anymore and can, thus, not issue assertions anymore by

themselves.

6236

VAVID [25] is a science gateway that is based on

MoSGrid and tailored to use cases related to wind

energy power stations and car crash simulations. In

VAVID an integration with Unity is currently being

developed to be used with a LDAP authentication

source. It is anticipated to adapt this for MoSGrid with

eduGAIN. As this approach still requires considerable

effort, it is not possible to implement this for MoSGrid

at this point in time.
Another security related aspect regarding safe

communication also had to be addressed when the

science gateway instances were migrated. For the

production instance of MoSGrid SSL certificates need

to be transferred from the keystore of the previously

employed JVM, where one must ensure not to break

the certificate chain between Root CA and the

certificate issued by the University of Cologne for

encrypted communication. Consequently, the HTTPS

protocol could be enabled again, which is not used for

the development instance.

4.4. Portal Instance

The gUSE Liferay bundle is currently deployed on

a Virtual Machine (VM) at the WSI of the University

of Tübingen. The choice of the OS respects the

recommendations of the developers of gUSE and

currently is Scientific Linux 6.7; the underpinning Java

Virtual Machine is 1.7. Software packages are

maintained in a conservative manner: new packages

are exclusively installed via the package manager of

SE6, yum. MySQL in server version 5.1.73 on the

same machine is used to store the Liferay and gUSE

databases. No foreign software repositories are

integrated to avoid incompatibilities between OS user

space programs and deployed gUSE infrastructure.
For the most recent updates – instead of iteratively

patching from gUSE 3.6.3 to the most recent version

3.7.4 – the gUSE install wizard, which internally

downloads Liferay 6.2 GA2 and Apache Tomcat

7.0.55, was executed to install the gUSE instance from

scratch. For production purposes, the Apache Tomcat

Native Library support was supplemented via yum.
The advantage is the access to the APR connector

including the support of non-blocking I/O and

OpenSSL. In addition, the Tomcat server classpath was

supplemented with more recent version of already

present libraries, such as the cryptography library

Bouncycastle and javax.mail. Additionally, the JavaEE

API was updated from version 5 to 7 for an enhanced

compatibility with Servlet 3.
Detailed description of the Portal setup will be

given in the following section.

5. Portal

The MoSGrid science gateway spans multiple

layers of tightly integrated technologies (see Figure 2).

The following section will cope with topics related to

the portal itself.

5.1. Liferay

The Liferay portal framework developed by Liferay

Inc. is probably the most sophisticated portal engine

available, even regarded as the leading product among

software covering the same market [19]. The spectrum

of out-of-the-box features ranges from LDAP support

to message boards and with Liferay 6.1 encompasses

about 180 portlets. All major Java application servers

and databases are supported [26].
The employment of Liferay in MoSGrid offers a

consistent framework for both administrative and

scientific components and, in conjunction with Vaadin

[27], user-friendly GUI elements, in particular Google

Web Toolkit (GWT) widgets. Vaadin is heavily

utilized in MoSGrid’s simulation portlets to keep the

layout consistent and to harmonize the usage of

different simulation portlets. For example, the selection

of a workflow, assigning a descriptive name to the new

workflow instance, and specifying parameters in a

uniform input mask, is all presented with the same

look-and-feel.
MoSGrid modifies the user view of the portlet with

a custom theme. For the new portal installation, a new

theme was written which (a) remains close to the color

scheme of the previous MoSGrid instance and (b)

incorporates many elements of Liferays ‘classic’ theme

to make the navigation elements look slim and modern.

Previous bulky MoSGrid portlet styles were essentially

discarded. Themes are one possibility of creating

Liferay Plugin Projects, which is best accomplished

with support of the Liferay Plugins SDK and the

Liferay IDE offered for Eclipse IDE.
Liferay 6.2 brings new capabilities of portal

administration, for instance a revised control panel for

application management deployment, a marketplace

for the acquisition of new apps, and an improved web

content management system, which for instance allows

organizing web content in folders, in the same fashion

as media objects.

5.2. gUSE/WS-PGRADE

The Grid User Support Environment (gUSE)

enables distributed computing over a range of

supported middlewares and backend execution

environments [2]. The frontend is driven by an Apache

6237

Tomcat (version 7.0.55) application server with

Liferay (version 6.2) already fully incorporated. Recent

developments in MoSGrid comprised exhaustive

updates of the frontend node and gUSE itself (going

from version 3.6.3 to 3.7.4), which was accompanied

by the migration from Liferay 6.1 to version 6.2 [26].

In addition to the usual upgrade routine, the operating

system deploying Tomcat was also updated to

Scientific Linux 6.7.
In essence, gUSE consists of a series of web

applications that provide all functionality required to

offer a modern science gateway. The DCI-bridge

allows a standardized connection to distributed

computing infrastructures (DCIs) by introducing a new

layer of abstraction between workflow systems and the

computing resources. Assembly and presentation of

statistics is accomplished with the Stataggregator and

Statvisualizer modules, respectively. Most importantly,

WS-PGRADE offers portlets for creating and

modifying workflows, as well as the possibility to

download their templates from the gUSE repository.
The latest recent update encompassed

redeployment of gUSE web applications in the context

of the portal reinstallation. The DCI-bridge descriptor

was the most important configuration to update, to

ensure that it complies with the new XML schema

specifications and contains up-to-date configuration for

the UNICORE middleware.

5.3. Portal Databases

Data persistence is guaranteed by a MySQL

database management system with two separate

databases for gUSE and Liferay [2,26]. Among others,

the tables contain information about workflows,

statistics, and user credentials. We employ the gUSE

database for having user submitted workflows in a

persistent state and to keep their work safe. The

Liferay database keeps track of user-specific attributes

like portlet configurations on private pages. Table

schemas are automatically updated when migrating

from Liferay 6.1 to Liferay 6.2. It is required to dump

tables from the previous installation and submitting

encompassed queries to the newly established MySQL

DBMS, the update process then commences on the

next start of Liferay and the integrity of the tables and

the document library is then validated.

5.4. Portlet API

Integrating new components (e.g. simulation or

visualization portlets) should be possible for different

developers in a highly consistent way. This need gave

rise for establishing an API for portlets specifically

adapted to the requirements of MoSGrid [1], which

are: (a) portlets with a consistent layout for the

submission of scientific workflows, (b) a well-

documented way to connect new portlets to XtreemFS,

and (c) the monitoring of intermediate and output files

with subsequent data visualization. All MoSGrid-

specific components extend the Portlet API.
From a developer’s perspective, Java is the

language of choice for MoSGrid extensions. Bindings

for gUSE features are provided by its Application-

Specific Module (ASM), Liferay access is provided by

the respective Liferay SDK, and server-side

components are easily created with the Vaadin

Framework. For the simulation portlets, ASM provides

methods to query the repository of user workflows

when the respective user credentials are provided.

Combining the Liferay SDK with the Liferay IDE

plugin for Eclipse provides a powerful way to create

new portlets plugins, hooks, layouts, and themes.

Especially the last plugin type was employed to give

MoSGrid its design; the corresponding theme is

developed with the help of the Apache Velocity

project.
The Portlet API is currently characterized via a

strong dependence on other components, e.g. the

XFSbridge, which is not necessarily required for the

principal function of the particular domain portlet. This

currently has the effect that simulation portlets will fail

to start as soon as the XtreemFS installation in Dresden

becomes unreachable. This constitutes an important

point of improvement in the near future.

Figure 3 Docking workflow created with the graph
editor of WS-PGRADE. It is used within the
Docking portlet and available to all MoSGrid

users.

Another challenge arises due to inherent

incompatibilities between Vaadin 6.8.12 and Liferay

6.2. The Vaadin plugin for the Liferay control panel for

this version combination is not functional and any

attempts to make it work failed so far. As a

consequence, the compilation of widgetsets with

Google Web Toolkit is aggravated and one needs to do

this manually. All attempts to do so have also failed

6238

due to problems of the application referring to the

correct widgetset.
Javascript libraries offer a large array of

opportunities for data visualization and intuitive

human-computer interaction. For these purposes, the

ChemDoodle [28] and Dygraphs [29] modules are on

their verge of being made available again on the

updated MoSGrid portal to enable simplified input of

chemical structures and visualization with dynamic

graphs, respectively. Current work on the gateway

heavily focuses on re-establishing widgetset

compilation to offer a variety of new portlets in the

future.

5.5. Simulation Portlets and Workflows

A new user proceeds as follows to submit a new

workflow instance: First, in the input phase, a toolsuite

is selected according to the needs of the experiment.

Then, a workflow is to be chosen which encompasses a

well-defined series of individual processing steps,

which can be influenced by parameters provided by the

user. The user then switches to the submission phase

where individual steps of the workflow are to be

examined and adjusted to individual needs with

optional default values being preset. Finally, the

workflow (see Figure 3) is submitted and the progress

can be monitored in the monitoring tab. Intermediate

and output files are also made available there.

Submitted workflow instances will be stored without a

time limit and all related files can be accessed from the

XtreemFS portlet, which users can employ to view and

download their workflow-related files.

Table 1 Currently available applications and
number of curated workflows available through

the individual simulation portlets.

Simulation

Domain
Toolsuite Workflows

Quantum

Chemistry
Gaussian 09
NWChem

7
1

Molecular

Dynamics
Gromacs

eSBM Tools
4
1

Docking Autodock Vina
CADDSuite

FlexX

2
1
2

Overall more than 100 scientific workflows have

been created and deployed via MoSGrid over the past

years. But as there is the need to check each concrete

workflow in detail after each (partial) update only a

much smaller number is made available through the

domain specific portlets (see Table 1). This set of

workflows represents well curated simulation

protocols, robust enough to ensure that also novice

users can obtain meaningful results. A representative

example is shown in Figure 4.
Critical from a maintenance point of view are

changes to the computing infrastructure accessible

through UNICORE. The use of UNICORE registries

orchestrating the access to individual compute

resources allows to replace particular resources by

alternatives e.g., a replacement of a HPC cluster

without the need to change workflows. But this

requires that everything is perfectly consistent with the

previous configuration. Furthermore, the capabilities of

the UNICORE incarnation database to map the call of

a particular application from a workflow to an

installation of that application on a remote compute

resource facilitate migration and updates. There are no

standards or automatisms for handling e.g., a version

upgrade of an application. Such a change can affect the

configuration of workflow nodes, the MSML template

[30] describing the workflow and sometimes even the

structure of the workflow graph. If for example a new

version of a particular application provides a modified

output scheme, it might be necessary to rework the

whole workflow including a parsing step to ensure

consistent results.

Figure 4 Docking workflow created with the graph
editor of WS-PGRADE. It is used within the
Docking portlet and available to all MoSGrid

users.

6. Stability and Resilience

Providing a stable and resilient service for the users

of MoSGrid has the highest priority. Only satisfied

users return and use the service regularly or provide

constructive feedback which is essential to improve a

science gateway. If there would be frequent outages,

disappearing jobs or lost data, user satisfaction can not

be retained.
MoSGrid is an academic portal relying on the

support of various university compute centers

distributed over multiple states of federal Germany.

6239

We are truly grateful for the close collaboration over

the past years. Such a distributed infrastructure poses

some challenges. One, which might be considered as

trivial on the first glance, are scheduled maintenances

at compute centers. To communicate such an event

beginning from the technician being in charge of the

work, over the compute center management to the

MoSGrid operators and consequently to the user base,

remains difficult as all these layers are involved.
Although all services used by MoSGrid are closely

monitored, it may happen, in particular when there are

unexpected events, that problems and failures are not

detected correctly. This can lead to situations where

services appear to be operational which in fact are not.

Hence workflows can be submitted to compute

instances which are not working correctly, leading to

failures with error messages that are difficult to trace.

The distribution over multiple sites can amplify this

problem.
Although plenty of infrastructural challenges exist,

MoSGrid was continuously operated over the last six

years without extended periods of downtime. On

average each year one or two scheduled maintenances

of less than a week were performed. Approximately

four to twelve technical failures happen every year

which are fixed immediately or latest on the next work

day. So far no security breach was observed.
The modus operandi has to be considered not

optimal from a technical perspective, alas the possibly

most efficient way to run things regarding the

academics involved in MoSGrid. Consequently, we

consider the level of service for the users of MoSGrid

to be very high, in particular for an academic science

gateway, alas not comparable to any industrial

environment.

7. Lessons Learned

The maintenance and operation of the MoSGrid

science gateway over the past six years brought some

unexpected challenges well beyond home-made issues

one could eventually plan for. With the end of D-Grid

quite a few external services such as virtual

organization management or certificate-based

authentication mechanisms were not available anymore

in the way they originally were. In close collaboration

with the compute centres, solutions could be obtained

to ensure the service to the users. In particular, the

principle of mutual trust and open communication

turned out to be the key aspects for successful

collaboration.
Another more technical aspect we faced is the

migration of a science gateway instance. Migrating an

existing production environment to a new machine

with an updated operating system and also updating

essential components of the software infrastructure

introduces challenges, which were not realized at the

time the project was concluded. Hence, a careful

planning and generous provision of manpower, time

and further resources are essential to ensure a

successful update. In order to prepare for this

endeavour an almost identical development instance

resembling a twin of the actual MoSGrid instance was

used to evaluate and practice update steps. This proved

to be highly useful but cannot prepare for all details

which might arise, complicating matters.
The actual effort spend on the maintenance of

individual components is difficult to quantify.

Updating a solitaire configuration file or workflow

node is a matter of minutes. To organize such a step

ensuring consistency over multiple sites easily extends

to an effort distributed over several weeks. Hence,

providing generally applicable numbers for the

challenges depicted in this paper is not possible in a

meaningful way.
To generalize, the experience gained over the past

years but in particular throughout the update: Choose a

robust and actively maintained science gateway

framework suiting the needs of developers and

community. Enrich such a framework with features

and services which truly add an extra value. Keep the

number of used technologies, interdependencies and

overall complexity as low as possible. Ensure that

direct access to remote compute and data instances is

possible. Following these advices already in the design

phase for a new science gateway improves the chances

for its robustness and consequently a positive user

experience.

8. Future Work

Quite a few new technological approaches have

emerged since the original design of MoSGrid was

conceived. Most notably is the containerization of

applications. This approach is not new by itself, but

since Docker [31] made its appearance and became

useable on a production ready level, it should be

considered to contain small-scale but complex

scientific applications [32]. It eases version

management and deployment and also facilitates the

usage of cloud resources for high throughput

workflows. For high scaling MPI parallel applications

this approach remains suboptimal. It also should be

considered that the (academic) compute centers

connected to the science gateway need to support

Docker. Furthermore, quite some effort has to be made

to handle user mapping, data staging and security

issues for Docker instances. We anticipate to port most

6240

of our molecular docking applications and workflows

to such an environment to increase their flexibility and

sustainability.
Another trend is the usage of mobile devices for

almost everything, so why should science gateways not

be used with such devices [5,33]? For MoSGrid this

means that all webpage content is designed in a simple,

readable and scalable way. Wherever visual content

like graphs, plots or molecular structures are displayed,

we rely on WebGL enabled solutions, like

ChemDoodle or Dygraphs [28,29]. We intend to go

further into this direction, especially for the submission

of scientific workflows. For the thorough analysis of

simulation data, we see some natural limits as the

processing of these large amounts of data or the

visualization of complex simulation systems on a

mobile device clearly has its limits.
We are looking forward to see further virtualization

possibilities to appear. The employment of so called

microservices promises to enable scientists to

conveniently move compute resources to their research

data and not vice versa.

9. Summary

MoSGrid is now successfully operated for more

than six years, well over the original funding period.

Several hundred users have used MoSGrid successfully

throughout this time period and it is also regularly used

in teaching higher education classes. We hope that

sharing our experiences in providing this service to the

computational chemistry community will provide some

insight useful to other communities. We suggest to

consider a lean, robust and open-source technology

stack when making design decisions for future science

gateways.

10. Acknowledgement

The excellent collaboration with the Zuse Institute

Berlin (ZIB), the Regional Computer Center Cologne

(RRZK), the Paderborn Center for Parallel Computing

(PC²), and the Center for Information Services and

High Performance Computing Dresden (ZIH) is

gratefully acknowledged. Special thanks go to S.

Gesing, P. Thiel, P. Schäfer, S. Herres-Pawlis and L.

Packschies for the long and fruitful collaboration.

Furthermore, financial support by the German

Research Foundation for the MASi project (NA711/9-

1) is gratefully acknowledged.

11. References

[1] Krüger, J., Grunzke, R., Gesing, S., et al. The MoSGrid

Science Gateway – A Complete Solution for Molecular

Simulations. Journal of Chemical Theory and Computation

10, 6 (2014), 2232–2245.

[2] Kacsuk, P., Farkas, Z., Kozlovszky, M., et al. WS-

PGRADE/gUSE Generic DCI Gateway Framework for a

Large Variety of User Communities. J. Grid Comput. 10, 4

(2012), 601–630.

[3] Gottdank, T. Introduction to the WS-PGRADE/gUSE

Science Gateway Framework. In Science Gateways for

Distributed Computing Infrastructures. Springer

International Publishing, Cham, 2014, 19–32.

[4] Shahand, S., Jaghoori, M.M., Benabdelkader, A., et al.

Computational Neuroscience Gateway: A Science Gateway

Based on the WS-PGRADE/gUSE. In Science Gateways for

Distributed Computing Infrastructures. Springer

International Publishing, Cham, 2014, 139–149.

[5] Sciacca, E., Vitello, F., Becciani, U., Costa, A., and

Massimino, P. VisIVO Gateway and VisIVO Mobile for the

Astrophysics Community. In Science Gateways for

Distributed Computing Infrastructures. Springer

International Publishing, Cham, 2014, 181–194.

[6] Kocair, Ç., Şener, C., and Akkaya, A.D. Statistical

Seismology Science Gateway. In Science Gateways for

Distributed Computing Infrastructures. Springer

International Publishing, Cham, 2014, 167–180.

[7] Afgan, E., Baker, D., van den Beek, M., et al. The Galaxy

platform for accessible, reproducible and collaborative

biomedical analyses: 2016 update. Nucleic acids research,

(2016), gkw343.

[8] Ardizzone, V., Barbera, R., Calanducci, A., et al. The

DECIDE Science Gateway. Journal of Grid Computing 10, 4

(2012), 689–707.

[9] McLennan, M. and Kennell, R. HUBzero: A Platform for

Dissemination and Collaboration in Computational Science

and Engineering. Computing in Science and Engineering 12,

2 (2010), 48–52.

[10] Klimeck, G., McLennan, M., Brophy, S.P., Adams III,

G.B., and Lundstrom, M.S. nanoHUB.org: Advancing

Education and Research in Nanotechnology. Computing in

Science & Engineering 10, 5 (2008), 17–23.

[11] Hull, D., Wolstencroft, K., Stevens, R., et al. Taverna: a

tool for building and running workflows of services. Nucleic

Acids Research 34, suppl 2 (2006), W729–W732.

[12] Apache Taverna. https://taverna.incubator.apache.org/.

[13] Apache Airavata. https://airavata.apache.org/.

6241

[14] Russell, M., Dziubecki, P., Grabowski, P., et al. The

Vine Toolkit: A Java Framework for Developing Grid

Applications. In Parallel Processing and Applied

Mathematics. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007, 331–340.

[15] Apache Flex. http://flex.apache.org/.

[16] Berthold, M.R., Cebron, N., Dill, F., et al. KNIME - The

Konstanz Information Miner. SIGKDD Explorations 11, 1

(2009), 26–31.

[17] Roure, D. De, Goble, C., and Stevens, R. Designing the

myExperiment Virtual Research Environment for the social

sharing of workflows. Future Generation Computer Systems,

IEEE Computer Society (2007), 603–610.

[18] Hofmann, M. and Klinkenberg, R. RapidMiner: Data

Mining Use Cases and Business Analytics Applications.

Chapman & Hall/CRC, 2013.

[19] Murphy, J., Valdes, R., Phifer, G., Tay, G., and Revang,

M. Gartner: Magic Quadrant for Horizontal Portals. 2014.

https://www.gartner.com/doc/2861117/magic-quadrant-

horizontal-portals.

[20] Hupfeld, F., Cortes, T.., Kolbeck, B., et al. The

XtreemFS Architecture - A Case for Object-based File

Systems in Grids. Concurrency and Computation: Practice

and Experience 20, 17 (2008), 2049–2060.

[21] Benedyczak, K., Schuller, B., Petrova, M., Rybicki, J.,

and Grunzke, R. UNICORE 7 - Middleware Services for

Distributed and Federated Computing,. International

Conference on High Performance Computing Simulation

(HPCS), (2016), (accepted).

[22] Gesing, S., Grunzke, R., Krüger, J., et al. A Single Sign-

On Infrastructure for Science Gateways on a Use Case for

Structural Bioinformatics. Journal of Grid Computing 10, 4

(2012), 769–790.

[23] Geant Project: eduGAIN - Interconnecting Federations

to Link Services and Users Worldwide.

http://www.geant.net/service/eduGAIN/Pages/home.aspx.

[24] Morgan, R.L., Cantor, S., Carmody, S.T., Hoehn, W.,

and Klingenstein, K.J. Federated Security: The Shibboleth

Approach. Educause Quarterly 27, (2004), 12–17.

[25] Aguilera, A., Grunzke, R., Markwardt, U., Habich, D.,

Schollbach, D., and Garcke, J. Towards an Industry Data

Gateway: An Integrated Platform for the Analysis of Wind

Turbine Data. International Workshop on Science Gateways

(IWSG), (2015), 62–66.

[26] Liferay. https://www.liferay.com/.

[27] Grönroos, M. Book of Vaadin. 2010.

https://vaadin.com/book.

[28] ChemDoodle. http://www.chemdoodle.com/.

[29] Dygraphs. http://dygraphs.com/.

[30] Grunzke, R., Breuers, S., Gesing, S., et al. Standards-

based metadata management for molecular simulations.

Concurrency and Computation: Practice and Experience,

(2013), http://doi.wiley.com/10.1002/cpe.3116.

[31] Docker. https://www.docker.com/.

[32] Haydel, N., Gesing, S., Taylor, I., et al. Enhancing the

Usability and Utilization of Accelerated Architectures via

Docker. 2015 IEEE/ACM 8th International Conference on

Utility and Cloud Computing (UCC), (2015), 361–367.

[33] Rodriguez, J.M., Zunino, A., and Campo, M.

Introducing mobile devices into Grid systems: a survey.

International Journal of Web and Grid Services 7, 1 (2011),

1.

6242

